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Abstract. The Huntington’s disease (HD) mutation leads to a complex process of Huntingtin (Htt) aggregation into multimeric
species that eventually form visible inclusions in cytoplasm, nuclei and neuronal processes. One hypothesis is that smaller,
soluble forms of amyloid proteins confer toxic effects and contribute to early cell dysfunction. However, analysis of mutant
Htt aggregation intermediates to identify conformers that may represent toxic forms of the protein and represent potential drug
targets remains difficult. We performed a detailed analysis of aggregation conformers in multiple in vitro, cell and ex vivo models
of HD. Conformation-specific antibodies were used to identify and characterize aggregation species, allowing assessment of
multiple conformers present during the aggregation process. Using a series of assays together with these antibodies, several forms
could be identified. Fibrillar oligomers, defined as having a �-sheet rich conformation, are observed in vitro using recombinant
protein and in protein extracts from cells in culture or mouse brain and shown to be globular, soluble and non-sedimentable
structures. Compounds previously described to modulate visible inclusion body formation and reduce toxicity in HD models
were also tested and consistently found to alter the formation of fibrillar oligomers. Interestingly, these compounds did not alter
the rate of visible inclusion formation, indicating that fibrillar oligomers are not necessarily the rate limiting step of inclusion
body formation. Taken together, we provide insights into the structure and formation of mutant Htt fibrillar oligomers that can
be modulated by small molecules with protective potential in HD models.
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INTRODUCTION

Huntington’s disease (HD), characterized by pro-
gressive movement abnormalities, psychiatric symp-
toms and cognitive deficits, is invariably fatal with
no disease modifying treatment available. Aberrant
accumulation and aggregation of mutant Huntingtin
(Htt) are hallmarks of disease, representing an early
therapeutic target for chemical compound screens.
The tight threshold of above 40 glutamine repeats
required for disease manifestation [1] can be func-
tionally demonstrated by the propensity to form fibrils
in vitro and in vivo [2, 3], implicating aggregation
as a surrogate for the disease process. Aggregation
was first demonstrated to be associated with HD by
the discovery of intranuclear inclusions in both dis-
eased mouse brain and human patient brain tissue [4,
5]. Further examination has suggested that inclusion
bodies may initially reduce the levels of toxic solu-
ble mutant Htt species and confer a lower risk of cell
death in primary neurons [6]; therefore, specific SDS-
soluble aggregation conformations may be linked to
toxicity. Mechanistic studies of protein aggregation
has led to a proposed common aggregation pathway
in amyloid diseases [7–9] and current efforts seek
to determine which species along this pathway are
toxic to cells. Aggregation intermediates may be “on
pathway” to form fibrils (e.g., protofibrils and soluble
fibrils) or “off pathway” to form species such as prefib-
rillar and fibrillar oligomers (Fig. 1) [9–12]. Prefibrillar
oligomers have been previously defined as soluble,
globular structures which do not stain with thioflavin-S
[8]. As these oligomers preceded fibril formation and
disappear upon the formation of mature fibrils, they
therefore were termed ‘prefibrillar’ [13, 14], however
later studies indicate that the formation of prefibrillar
oligomers occurs through a pathway independent of the
fibrillization pathway [15]. Annular protofibrils are a
discrete class of pore-like structures thought to disrupt
membrane permeability and are present in human AD
brain samples. The pathway for annular protofibrils
formation is also independent of the fibril formation
pathway [16]. Fibrillar oligomers are morphologically
similar yet immunogically distinct from prefibrillar
oligomers and have a �-sheet rich conformation sim-
ilar to that of fibrils [10], thus were named ‘fibrillar’
oligomers in spite of being spherical in nature. A pre-
vious study in AD described the increased presence
of these fibrillar oligomers in patient brain tissue with
levels of fibrillar oligomers correlating with cognitive
decline. Prefibrillar oligomers and annular protofibrils
were detected in brain tissue of both non-affected and

affected individuals [17]. This supports the hypothesis
that fibrillar oligomers are involved in the pathogenesis
of amyloid diseases.

Antibodies that recognize specific conformations,
such as prefibrillar oligomeric forms (A11) [8], annular
protofibrillar forms (APF) [16] or fibrillar forms (OC)
[10] (Fig. 1) of amyloid proteins are valuable tools to
define the presence of protein conformers based upon
recognition of various amyloid structures, indepen-
dent of disease protein sequence [8, 18]. This suggests
that amyloid oligomers and soluble fibrils have a com-
mon structure that is distinct from other forms of the
protein (e.g., monomers and visible aggregates). Addi-
tionally, a recent study showed that fibrillar oligomers
seed the formation of more fibrillar oligomers, but
not fibrils [12]. Therefore, fibrillar oligomers may
have the same self-replicating capacity characteristic
of prion proteins, supporting the concept that amyloid
proteinopathies may involve prion-like mechanisms
[19, 20] and that fibrillar oligomers may be toxic. Thus,
it is important to develop a means of characterizing
and detecting the modulation of fibrillar oligomers of
amyloid forming proteins.

In this study we use biochemical approaches
and conformation specific antibodies to visualize
oligomeric species in multiple models of HD. As was
previously shown for A� fibrillar oligomers [10, 12],
we find that Htt fibrillar oligomers are globular in
nature, soluble in SDS and that they are preferentially
modified by aggregation modulators that have neuro-
protective properties. Of note, altering levels of fibrillar
oligomers did not alter the rate of visible aggregate
formation, indicating that these species are not the rate
limiting factor for inclusion body formation. This pro-
vides a unique and novel cell-based system for use
in future studies to correlate the presence of fibril-
lar oligomers to toxicity in cells by modulating their
levels using small molecules, thus providing alterna-
tive assays to inform our knowledge of the process
of mutant Htt aggregation and in turn address drug-
Htt interactions together with better pharmacodynamic
readouts.

MATERIALS AND METHODS

Protein purification

Glutathione S-transferase (GST)-HD fusion pro-
teins were purified as described [21–23]. Cleavage of
the GST moiety by a PreScission Protease (GE Health-
care) initiates aggregation. Fresh, unfrozen GST-HD
fusion protein was used for each experiment. Solutions
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with fusion proteins were centrifuged at 20,000 × g for
30 min at 4◦C to remove any preexisting aggregates
before the addition of the PreScission protease.

Dot blot assay

The dot blot assay was performed as previously
described [8, 15]. Briefly, 2 �L aliquots of each
oligomerization reaction were applied onto a nitrocel-
lulose membrane (Pierce). The membrane was blocked
for 1 hour at room temperature with 10% nonfat
milk in Tris-buffered saline containing 0.01% Tween
20 (TBS-T) and probed with A11 anti-prefibrillar
oligomer antibody (kind gift from Dr. Glabe, 1 : 1500),
OC anti-fibrillar oligomer antibody (kind gift from
Dr. Glabe, 1 : 1500) or anti-Htt antibody (CAG53b,
kind gift from Dr. Wanker, 1 : 1000). Peroxidase-
conjugated AffiniPure goat anti-mouse secondary
(Jackson ImmunoResearch Laboratories) was used
at 1 : 5,000 for 1 h at room temperature. Blots were
detected using ECL chemiluminescence detection
reagent (Amersham).

SDS-AGE of PC12 cell homogenates

The analysis of mutant Htt fragments by SDS-AGE
with Western analysis was performed as described
[24–26]. The Htt14A2.6 PC12 line was generated and
propagated as described [27]. This cell line expresses
a truncated Htt peptide containing the first 17 amino
acids and 103Qs fused in-frame to EGFP with a
complete protein sequence of MATLEKLMKAFES-
LKSF (103Q)-EGFP. The cells were maintained in
complete medium with continued selection: Dul-
becco’s modified Eagle’s medium (5% glucose) with
10% horse serum, 5% fetal bovine serum, 1%
penicillin/streptomycin, and 200 mg/ml G418. Htt
expression was induced with Ponasterone A (5 �M)
(PA) for the indicated times. Three independent exper-
iments were performed. At 24 and 48 h post-induction,
cells were lysed in radioimmune precipitation assay
buffer (10 mM Tris, pH 7.5, 150 mM NaCl, 1 mM
EDTA (from a concentrated stock at pH 8.0), 1% Non-
idet P-40, 0.5% SDS) containing Complete Protease
Inhibitor (Roche Diagnostics). A DC protein assay
(Bio-Rad) was performed to determine protein con-
centration. Lysate (30 �g) was added in a 1 : 1 ratio
to loading buffer (150 mM Tris, pH 6.8, 33% glyc-
erol, 1.2% SDS) and loaded onto a 1% agarose gel
containing 0.1% SDS and run until the dye front had
migrated at least 12 cm to allow for maximum resolu-
tion of aggregates from the dye front. The proteins were

then semidry-blotted (Owl HEP-1) onto a polyvinyli-
dene difluoride membrane in transfer buffer (192 mM
glycine, 25 mM Tris-base, 0.1% SDS, 15% MeOH).
This blot was blocked for 1 hour in 5% bovine serum
albumin in Tris-buffered saline containing 0.1% Tween
20 at room temperature. The blot was then probed
with either OC anti-fibrillar oligomer antibody (Glabe,
1 : 1500), EM48 (Millipore, 1 : 1000) or EGFP (Clon-
tech, 1 : 1000). Peroxidase-conjugated AffiniPure goat
anti-mouse or goat anti-rabbit secondary antibody
(Jackson ImmunoResearch Laboratories) was used at
1 : 50,000 for 1 h at room temperature. Blots were
detected using PICO detection reagent (Pierce). The
molecular mass standard used in SDS-AGE was
ferritin (400 kDa).

SDS-AGE of R6/2 mouse brain homogenates

At 8 weeks of age R6/2 and nontransgenic cortex
were homogenized with 10 volumes of ice-cold sam-
ple buffer (100 mM Tris-HCl, pH 7.4, 150 mM NaCl,
and a protease inhibitor mixture) by a rotor/stator type
tissue homogenizer and sonication with 10 pulses/min
and 15% power. Samples were analyzed without
centrifugation (total homogenates) and diluted 1 : 1
into non-reducing Laemmli sample buffer (150 mM
Tris-HCl, pH 6.8, 33% glycerol, 1.2% SDS, and
bromophenol blue). Bradford assays were used to
determine protein concentration in the homogenates
before the addition of Laemmli sample buffer. Total
protein (50 �g) was loaded per SDS-AGE well. Mutant
Htt oligomers were imaged after immunoreaction
with OC and EM48 antibodies as described above or
MAB2166 (Millipore, 1:1000).

Size-exclusion chromatography

6 �M recombinant Httex1Q53 was allowed to
aggregate for 4 hours at 37◦C. Samples were then
clarified by centrifugation for 30 min at 20,000 × g
and supernatant was injected and fractionated by
Superdex200 10/300 size-exclusion column. The sep-
aration was performed at 4◦C with a flow rate of
0.5 mL/min in PBS. The elution was done with one
column volume and fractions (500 �l per fraction)
were applied to nitrocellulose membrane (0.1 �m) via
slot blot manifold apparatus (Hoefer PR 648) without
any washing steps or detergent treatment. Membranes
were probed with OC anti-fibrillar oligomer antibody
and EM48 anti-Htt antibody as described above. The
amount of Htt conformers (OC or EM48) per frac-
tion was quantified by densitometry of developed blots
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using NIH Image J. Protein standards were used to
estimate size of Htt peaks. Void volume of elution was
obtained with Blue dextran (Dead volume = V0).

Atomic force microscopy

6 �M recombinant Httex1Q53 was allowed to
aggregate for 3 hours at 37◦C and injected onto the
Superdex200 size-exclusion column as above. Frac-
tions 31, 47 and 81 were collected and deposited on
freshly cleaved mica (Ted Pella Inc., Redding, CA) and
allowed to sit for 30 s. The substrate was then washed
with 200 �L of ultrapure water and dried under a gentle
steam of air. Images were taken with silicon cantilevers
(Veeco Instruments, Santa Barbara, CA) with a nomi-
nal spring constant of 40 N/m and resonance frequency
of ∼300 kHz. Typical imaging parameters were drive
amplitude 150–500 kHz with set points of 0.7–0.8 V,
scan frequencies of 2–4 Hz, image resolution 512 by
512 points, and a scan size of 2–10 �m.

Filter-retardation assay

The same lysates used in the SDS-AGE assays were
analyzed by cellulose acetate filter-retardation assays.
Lysate (30 �g) was diluted to 200 �L with 2% SDS and
filtered through cellulose acetate membrane (Schle-
icher & Schuell, 0.2-�m pore size) with a Bio-Rad
dot blot filtration unit. The assay was performed as
described [2]. The blot was then probed with primary
and secondary antibodies and developed as described
above.

Chemical compounds

Epigallocatechin gallate (EGCG) was purchased
from Sigma-Aldrich (E4143). CEP-1347 was received
as a gift from Cephalon, Inc.

Immunocytochemistry and quantitation
of aggregates

Cells were grown on UV-treated cover slips to
approximately 50% confluency and induced with
5 �M PA for 48 h, fixed in 2% formaldehyde, and
incubated for 2 min with 0.1% Triton X-100 in
PBS. Fixed cells were 4′,6-diamidino-2-phenylindole
stained. Fluorescent microscopy was performed on
a Zeiss AxioObserver.Z1 microscope and Axiovision
software. At least 500 cells were counted from five
to six fields in three independent experiments for
each data point at 10X magnification. Aggregation is

expressed as the percentage of cells with aggregates
versus total number of EGFP-positive cells.

Quantification of Western blots

Quantification was done by densitometry with
ImageJ. Relative levels of mutant Htt were normal-
ized to control samples treated with vehicle in all of
the assays.

Time-lapse microscopy

14A2.6 cells were grown as described above and
0.5 × 106 cells were plated onto collagen-coated glass
bottom microwell dishes (MatTek, P35G-1.5-14-C).
24 hours after plating, cells were induced with PA
and allowed to equilibrate in the imaging system. The
amount of equilibration time varied between exper-
iments and was factored in to the time elapsed for
analysis. Cells were then allowed to grow for 48
hours in a VivaView live cell imaging system (Olym-
pus). Cells were imaged at 20X magnification every
10 minutes for 48 hours in 9 locations per well (to
monitor sufficient cell numbers) in three indepen-
dent experiments. Results are shown as the number
of hours before the appearance of the first aggregate
in that location, indicative of the ‘lag phase’ of Htt
aggregation.

Statistical analysis

Statistical analyses were performed using Graph-
Pad Prism 5.04 software. All data are expressed
as mean ± SEM. P < 0.05 was considered to be
statistically significant. Statistical comparisons of den-
sitometry results were performed by one-way ANOVA
followed by Bonferroni’s multiple comparison or Dun-
nett’s multiple comparison tests.

RESULTS

Fibrillar oligomers are detected in HD models

Fibrillar oligomers have been identified in human
Alzheimer’s disease (AD) brain tissue and the presence
of these species as detected by a conformation specific
antibody (OC) correlates with symptoms of cognitive
dysfunction [10, 17], suggesting disease relevance. Htt
forms soluble oligomers and fibrillar structures both
in vitro and in vivo in a polyglutamine dependent
manner [9, 21, 22, 25], however the presence of fib-
rillar oligomers has not been systematically evaluated.
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Therefore, we investigated whether these structures are
also present in models of HD and characterized their
structural properties.

To begin to evaluate the presence of oligomeric
species, aggregation of purified GST-Httex1Q20 and
GST-Httex1Q53 (2.5 �M) was initiated by incubation
with a site-specific protease then allowed to proceed
at 37C for 144 h. Aliquots were removed beginning
at 48 hours post-initiation and at subsequent 24 hour
time points up to 144 hours. Samples were spotted
onto a nitrocellulose membrane and then probed as
a Western blot with conformation specific and anti-
Htt antibodies (Fig. 2A–C). The prefibrillar oligomeric
antibody (A11) was raised against a molecular mimic
of soluble oligomeric A�40 and was found to be spe-
cific for prefibrillar oligomers of a number of amyloid
proteins including A�, �-synuclein and polyglutamine
[8]. The fibrillar oligomeric antibody (OC) was gener-
ated by immunization with homogeneous A�42 fibrils
and specifically recognized fibrils, but not random coil
monomer or prefibrillar (A11 positive) oligomers of
A�. Additionally, OC recognizes 100,000 × g soluble
fibrillar oligomers which are immunologically distinct
from prefibrillar oligomers recognized by A11 [10]. At
144 hours, prefibrillar oligomers were detected with
the A11 antibody in both the 20Q and 53Q samples
(Fig. 2A). At this same time point, fibrillar oligomers
are only detected in the 53Q samples using the OC
fibrillar oligomer antibody (Fig. 2B), reflecting polyg-
lutamine repeat-length dependence. All of the samples
show Htt reactivity with the N-terminal Htt antibody
CAG53b (Fig. 2C) [4]. These results indicate that
recombinant Httex1p can form prefibrillar and fibrillar
oligomers as defined by reactivity to antibodies specific
for these conformations in vitro.

We next examined cellular models of HD for the
presence of aggregation conformers using SDS-AGE
gels to visualize high molecular weight aggregated Htt
[24–26]. SDS-AGE uses low amounts of SDS and no
reducing agent, which allows the visualization of large
(>400 kD), SDS-soluble, oligomeric species. Lysates
from PC12 cells stably expressing inducible, truncated
Httex1p with 103Q fused to EGFP were first analyzed.
The A11 prefibrillar oligomer antibody did not show
any reactivity with SDS-AGE analysis (Fig. 2D). High
molecular weight species were detected upon mutant
Httex1p induced expression, showing reactivity with
both the OC fibrillar oligomer antibody (Fig. 2E) and
EGFP antibody for detection of tagged Htt (Fig. 2F).
The presence of the OC-reactive species increases
over time from 24 to 48 hours post-induction, which
reflects optimal expression [27], indicating that fibrillar

Fig. 1. Schematic illustrating the possible conformers of aggregated
mutant Htt and the conformation-specific antibodies that recog-
nize the structures. Misfolded monomers can assemble into multiple
conformers of aggregated protein including prefibrillar oligomers,
fibrillar oligomers and annular protofibrils. These structures are rec-
ognized by the A11 prefibrillar oligomer antibody, the OC fibrillar
antibody and the APF annular protofibrils antibody, respectively. It
is unknown if these conformers can convert into the other types of
conformer, which is indicated by a dashed arrow between the various
structures. Additionally, it is currently unknown which of these con-
formers is the precursor to fibril formation, also indicated by dashed
arrows.

oligomers are present in this cell model of HD and
accumulate in a dose-dependent manner. Additionally,
we have previously shown that oligomers resolved by
SDS-AGE do not react with the 3B5H10 monoclonal
antibody which appears to recognize monomeric or
very small (<400 kD) oligomeric form of Htt based
upon the inability to resolve these reactive species from
the dye front [26]. Taken together, these data suggest
that the �-sheet rich, OC-positive fibrillar oligomeric
species are resolved by SDS-AGE analysis.

Finally, we investigated whether these same species
are present in brain tissue dissected from R6/2 mice to
determine if fibrillar oligomers can be detected ex vivo.
Striatal tissue from 8 week old R6/2 transgenic mice
expressing a human Htt exon 1 transgene [28] con-
taining ∼200 Qs (Fig. 2G–I), a stage when visible
aggregation can be observed, was analyzed and showed
that oligomeric Htt of a similar size to the fibrillar
oligomers from cell lysates could only be detected in
the R6/2 mice and not in non-transgenic control lysates
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Fig. 2. Fibrillar oligomers are present in multiple models of HD.
A–C, Recombinant Httex1Q20 and Httex1Q53 were allowed to
aggregate at 37C for 144 h. Aliquots were spotted onto nitro-
cellulose at times indicated. Blots were probed with A, A11
anti-prefibrillar oligomer antibody B, OC anti-fibrillar oligomer
antibody and C, CAG53b anti-Htt antibody. D–F, Htt expres-
sion was induced in PC12 cells stably expressing truncated
Httex1p. At 24 and 48 h post-induction cells were lysed and
the lysates were analyzed by SDS-AGE. Cells without induc-
tion of Htt expression were used as negative controls. Blots were
probed with D, A11 anti-prefibrillar oligomer antibody, E, OC
anti-fibrillar oligomer antibody and F, anti-GFP antibody. G–I,
Striatal brain tissue homogenates from 8 week old non-transgenic
and R6/2 transgenic mice were analyzed by SDS-AGE. Blots
were probed with G, OC anti-fibrillar oligomer antibody, H,
EM48 anti-Htt antibody and I, MAB2166 anti-C-terminal Htt anti-
body.

(Fig. 2H) using Htt antibody (EM48). OC oligomer
antibody reactivity to mutant Htt was not detected pref-
erentially in R6/2 mouse tissue, potentially masked by
the presence of endogenous protein recognized by the
antibody that is independent of mutant Htt (Fig. 2G).
The OC antibody is not sequence specific, therefore
this may reflect the presence of a large immunoreactive
protein in the striatal samples which adopts a �-sheet
rich conformation recognized by this antibody. This
protein is not endogenous Htt, as there is no reactivity
with the C-terminal Htt antibody MAB2166 (Fig. 2I).
Given our previous findings that oligomers of protein
from recombinant systems, cell lysates and transgenic
mice show similar resolution patterns on SDS-AGE
gels [25] and that the only conformer we see resolved
by SDS-AGE is the OC-positive fibrillar oligomer;
the EM48-positive oligomers resolved by SDS-AGE
from the R6/2 mouse samples likely represent fibrillar
oligomeric species.

Huntingtin fibrillar oligomers are SDS-soluble
globular structures

Oligomers are resolved by SDS-AGE; however
these species could represent SDS insoluble or sol-
uble conformers. To determine whether Htt fibrillar
oligomers are SDS-soluble, filter-retardation assays
were performed using lysates from stably express-
ing PC12 cells (Fig. 3A, B). Samples were boiled
in 2% SDS to ensure that all SDS soluble species
were dissolved and then applied to a cellulose acetate
membrane and probed with OC fibrillar oligomer
(Fig. 3A) or EGFP antibodies (Fig. 3B). This assay
detects all SDS-insoluble material greater or equal to
the pore size (0.2 �m) of the membrane [2]. Since
no reactivity is detected using the oligomer antibody
in lysates, we conclude that the OC-positive fibrillar
oligomers using SDS-AGE analysis are SDS-soluble.
Further, although the OC antibody can recognize
both oligomers and fibrils, our previous data showed
that the oligomers resolved by SDS-AGE are non-
sedimentable at 20,000 × g, indicating that these
SDS-soluble species are fibrillar oligomers but are not
fibrils [25], as defined by sedimentation analysis.

In order to define the SDS soluble structures rec-
ognized by the conformation-specific antibody OC,
size-exclusion chromatography was performed on
aggregated recombinant Httex1Q53. 6 �M Httex1Q53
was allowed to aggregate for 3 h at 37◦C, which allows
the formation of oligomers but not larger aggregates
[22]. The sample was injected onto a Superdex200
size-exclusion column and fractions collected and
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spotted onto a nitrocellulose membrane, and then
probed with OC anti-fibrillar oligomer antibody and
EM48 anti-Htt antibody (Fig. 3C). Similar to findings
in cell lysates on SDS-AGE gels, overlapping reactivity
was observed depending on the antibody used. EM48,
which recognizes aggregated Htt, reacted with species
in fraction 31, corresponding to the largest structure,

both antibodies recognized fraction 47 and the species
in fraction 81 demonstrated greater reactivity with the
OC anti-fibrillar oligomer antibody. The medium-sized
structures eluting in fraction 47 are recognized by both
the anti-Htt and the OC antibody and are likely to be
the structures resolved on the SDS-AGE gels given
that the species on the gels are also recognized by

Fig. 3. Fibrillar oligomers are SDS-soluble globular structures. A–B, Htt expression was induced in PC12 cells stably expressing truncated
Httex1p. At 24 and 48 h post-induction cells were lysed and the lysates were analyzed by filter-retardation assay. Cells without induction of
Htt expression were used as negative controls. Blots were probed with A, OC anti-fibrillar oligomer antibody and B, anti-GFP antibody. C,
Recombinant Httex1Q53 was allowed to aggregate at 37C for 4 h and then separated on a size-exclusion column. Fractions were spotted onto
nitrocellulose and probed with either OC anti-fibrillar oligomer antibody or EM48 anti-Htt antibody. D, Fractions corresponding to EM48
reactivity only (Fraction 31), both EM48 and OC reactivity (Fraction 47) and OC reactivity only (Fraction 81) were analyzed by AFM. Scale
bar = 1 �m.
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both antibodies. The final OC reactive peak beginning
at fraction 80 on the chromatogram eluted at a much
lower apparent molecular weight than expected. We
hypothesize that the fibrillar oligomers interacted non-
specifically with the column matrix which influenced
the retention time of the oligomers. The low level of
EM48 reactivity to this later fraction indicates that it is
likely Htt, but that the EM48 epitope might not be as
accessible as in the other fractions.

To evaluate the morphologies of the eluted species,
fractions 31, 47 and 81 were imaged on mica using
atomic force microscopy (AFM) (Fig. 3D). AFM
images reveal mostly large fibril-like structures esti-
mated to be 100–200 nm in length in fraction 31.
Fractions 47 and 81 have only globular structures
present which are similar to those seen with fibrillar
oligomers of A� [12]. These findings indicate that the
structures recognized by the OC anti-fibrillar oligomer
antibody are globular in nature, despite having the
�-sheet rich structure recognized by the OC antibody
which is typically associated with fibrillar structures.

Green tea (−)-epigallocatechin-gallate decreases
fibrillar oligomers and SDS-insoluble Htt in a
stably-expressing truncated Httex1p model of HD

Given that fibrillar oligomeric species are present
in several HD models, we next asked whether forma-
tion of this species is a dynamic process that can be
altered by small molecules that change visible inclu-
sion formation. Small molecules have been identified
in various types of aggregation screens that select for
modulation of visible aggregate formation and reduced
neurotoxicity in HD models [27, 29-31]. However,
using visible aggregates as a measure may be insuffi-
cient to identify alterations in the aggregation process
and may represent a less informative outcome measure
for therapeutic intervention.

Epigallocatechin gallate (EGCG) is an antioxidant
in green tea that inhibits the formation of insoluble
aggregates of recombinant Htt in vitro and reduces

toxicity and visible aggregate load in a yeast model
of HD [32]. EGCG also reduces the formation of
small Htt oligomers by promoting the formation
of larger ones visualized by AFM analysis [32].
ECGC was therefore tested for modulation of fibrillar
oligomers in inducible PC12 cells. While the relative
amount of monomeric Htt does not appear to change
with EGCG treatment (one-way ANOVA: F = 0.1567,
P = 0.9545) (Fig. 4A, B), there is a dose-dependent
decrease in the level of mutant Htt oligomers as
determined by SDS-AGE analysis (one-way ANOVA:
F = 9.551, P = 0.0019) (Fig. 4C, D). EGCG signifi-
cantly decreases the amount of SDS-insoluble mutant
Htt (one-way ANOVA: F = 6.623, P = 0.03) (Fig. 4E,
F) and as previously shown, also decreases the num-
ber of visible inclusions in the 14A2.6 cells (one-way
ANOVA: F = 4.579, P = 0.0019) (Fig. 4G, supplemen-
tal figure 1). Relative levels of monomeric, oligomeric
and insoluble Htt were determined by densitometry of
blots probed with anti-EGFP antibody.

It is possible that the fibrillar oligomers are the
‘seeds’ of inclusion body formation and therefore the
rate limiting step of inclusion body formation. To
test this hypothesis, we utilized live-cell imaging to
monitor inclusion body formation in real time and
treated the cells with EGCG to decrease the levels
of fibrillar oligomers (supplementary video file 2). We
find that EGCG treatment does not alter the kinet-
ics of visible aggregate formation (one-way ANOVA:
F = 0.8071, P = 0.4927) (Fig. 4H), suggesting that
reduced oligomeric species does not affect the kinetics
of inclusion body formation.

CEP-1347 increases fibrillar oligomers and
SDS-insoluble Htt in a stably-expressing truncated
Httex1p model of HD

To determine if fibrillar oligomers are also modu-
lated by a compound that increases visible inclusion
formation, CEP-1347 was tested. This small molecule
is an inhibitor of Mixed Lineage Kinases (MLKs),

Fig. 4. EGCG decreases oligomers and SDS-insoluble Htt in a stably expressing truncated Httex1p model of HD. A–F, 14A2.6 cells were
treated with EGCG at the concentrations listed for 48 hours. Cells were lysed and analyzed for different conformations of mutant Htt. A–B,
SDS-PAGE analysis of lysates shows no significant difference in monomeric Htt (one-way ANOVA: F = 0.1567, P = 0.9545) C–D, There is a
dose-dependent decrease in the level of mutant Htt oligomers (one-way ANOVA: F = 9.551, P = 0.0019; Dunnett’s multiple comparison test:
0 �M vs. 0.01�M P = n.s., 0 �M vs. 0.1 �M P < 0.05, 0 �M vs. 1 �M P < 0.01, 0 �M vs. 10 �M P < 0.01). E–F, EGCG treatment decreases the
amount of SDS-insoluble mutant Htt (one-way ANOVA: F = 6.623, P = 0.03; Dunnett’s multiple comparison test: 0 �M vs. 0.01 �M P = n.s.,
0 �M vs. 0.1 �M P = n.s., 0 �M vs. 1 �M P = n.s., 0 �M vs. 10 �M P < 0.05). G, 14A2.6 cells were treated with EGCG at the concentrations listed
for 48 hours. Cells were then fixed and the number of cells containing aggregates was counted by fluorescence microscopy. EGCG treatment
significantly decreases the percentage of cells containing at least one visible aggregate (one-way ANOVA: F = 4.579, P = 0.0019; Dunnett’s
multiple comparison test: 0 �M vs. 0.01 �M P < 0.05, 0 �M vs. 0.1 �M P < 0.05, 0 �M vs. 1 �M P < 0.01, 0 �M vs. 10 �M P < 0.01). H, EGCG
treatment does not appear to affect aggregation kinetics (one-way ANOVA: F = 0.8071, P = 0.4927).
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Fig. 4. (Continued)
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Fig. 5. CEP-1347 increases oligomers and SDS-insoluble Htt in a stably expressing truncated Httex1p model of HD. A–F, 14A2.6 cells were
treated with CEP-1347 at the concentrations listed for 48 hours. Cells were lysed and analyzed for different conformations of mutant Htt. A–B,
SDS-PAGE analysis of lysates shows no significant difference in monomeric Htt (one-way ANOVA: F = 0.4630, P = 0.7622) C–D, There is a dose-
dependent increase in the level of mutant Htt oligomers (one-way ANOVA: F = 7.096, P = 0.0056; Dunnett’s multiple comparison test: 0 nM vs.
100 nM P = n.s., 0 nM vs. 200 nM P = n.s., 0 nM vs. 500 nM P < 0.05, 0 nM vs. 1000 nM P < 0.01). E–F, CEP-1347 treatment appears to increase
the amount of insoluble Htt by filter-retardation assay (one-way ANOVA: F = 3.195, P = 0.0415). G, 14A2.6 cells were treated with CEP-1347 at
the concentrations listed for 48 hours. Cells were then fixed and the number of cells containing at least one aggregate was counted by fluorescence
microscopy. CEP-1347 treatment significantly increases the percentage of cells containing visible aggregates (one-way ANOVA: F = 24.75,
P = 0.0019; Dunnett’s multiple comparison test: 0 nM vs. 100 nM P < 0.01, 0 nM vs. 200 nM P < 0.001, 0 nM vs. 500 nM P < 0.001, 0 nM vs.
1000 nM P < 0.001) H, Treatment with CEP-1347 does not appear to affect aggregation kinetics (one-way ANOVA: F = 1.289, P = 0.2775).
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including MLK1, MLK2, MLK3, and dual leucine
zipper kinase (DLK) [33, 34], which activate JNK
and induce apoptosis [35, 36]. CEP-1347 is protec-
tive against cell based expanded repeat Htt phenotypes
as well as in Drosophila and R6/2 mouse models
of the disease [37]. The mechanism of protection
from CEP-1347 appears to involve coordinated reg-
ulation of multiple signaling pathways and altered
aggregation. Relevant to the studies presented here,
CEP-1347 increases the number of cells containing
visible aggregates in inducible PC12 cells [37], there-
fore the effect on fibrillar oligomers was determined.
The amount of monomeric Htt is not altered with
CEP-1347 treatment (one-way ANOVA: F = 0.4630,
P = 0.7622) (Fig. 5A, B), however the levels of fibrillar
oligomers significantly increased in a dose-dependent
manner (one-way ANOVA: F = 7.096, P = 0.0056)
(Fig. 5C, D). The amount of SDS-insoluble Htt
also increases with CEP-1347 treatment (one-way
ANOVA: F = 3.195, P = 0.0415) (Fig. 5E, F) and as
previously described, the percentage of cells con-
taining visible aggregates is significantly increased
(one-way ANOVA: F = 24.75, P = 0.0019) (Fig. 5G,
supplemental figure 3). Relative levels of monomeric,
oligomeric and insoluble Htt were determined by den-
sitometry. Similar to EGCG, treatment with CEP-1347
does not appear to affect aggregation kinetics (one-way
ANOVA: F = 1.289, P = 0.2775) (Fig. 5H quantitation,
video file, supplemental video file 4). This indicates
that fibrillar oligomers are not the rate limiting step
of inclusion body formation, as altering the levels of
fibrillar oligomers does not alter the rate of inclusion
body formation.

DISCUSSION

HD is an amyloid disease caused by an abnormal
expansion of polyglutamine in the Htt protein. Simi-
lar to Alzheimer’s disease, predictions have been made
that soluble forms of amyloid in HD may confer toxi-
city [6]. To expand our knowledge of this possibility, a
detailed analysis of aggregation conformers in multi-
ple models of HD was performed and the structure of
Htt fibrillar oligomers characterized in order to deter-
mine levels and sizes of these species which accrue in
HD.

Characterization of oligomeric species

In this study, we show that an expanded polyQ
mutant Htt fragment that causes mutant Htt-mediated
aggregation and cellular toxicity [27] forms soluble

fibrillar oligomers of greater than 400 kD in a cellu-
lar model of HD. The Htt fibrillar oligomers react to
the OC anti-fibrillar oligomer antibody, are globular
structures and are soluble in SDS.

Recombinant fragments of Htt (e.g., Httex1Q53)
can not only form prefibrillar oligomers, as shown
previously [21], but fibrillar oligomers as well. It is
known that recombinant Httex1Q44 can form globu-
lar and protofibrillar aggregation conformers that are
rich in �-structure [9]. Our results indicate that these
�-rich conformers are likely fibrillar oligomers, which
are implicated in pathogenesis of neurodegenerative
diseases [17]. We have also developed an assay to quan-
tify the relative levels of fibrillar oligomers utilizing
the SDS-AGE technique in assays to monitor modu-
lation of these species. This species was identified in
lysates from an inducible stably-expressing truncated
Httex1p-GFP cell model, which is relevant as this cell
line has been used to screen for chemical inhibitors of
aggregation [27, 38]. Therefore, SDS-AGE gel assays
can be used to analyze lysates from this cell line which
had been treated with aggregation modulators to iden-
tify desirable outcomes for compound screens.

We verified that oligomers of the same size as those
present in cell lysates are detected in striatal tissue
of a mouse model of HD. Unfortunately; the OC
anti-fibrillar oligomer antibody recognized a species
independent of the presence of mutant Htt even though
oligomers of Htt could only be detected in the trans-
genic samples and not the wild-type samples. Because
the OC antibody is not sequence specific, it is possi-
ble that a large protein present in the striatal samples
adopts a �-sheet rich conformation that can be rec-
ognized by this antibody, masking any signal from
the Htt oligomers. This protein is not endogenous Htt
as there was no reactivity with MAB2166, an anti-
body that recognizes a C-terminal region of Htt and
will recognize endogenous Htt. Given the similarity
between oligomers originating from recombinant pro-
tein, cell models and mouse brain tissue [25]; and since
other types of aggregation conformers (i.e., �-rich
monomers, prefibrillar oligomers and annular protofib-
rils) were not detected by antibodies specific for those
conformations, we conclude that the species resolved
by SDS-AGE are likely fibrillar oligomers. As such, we
can utilize antibodies against the Htt protein or epitope
tags as a surrogate for OC antibody reactivity.

OC reactivity has been shown for fibrillar oligomers
as well as mature fibrils [10]. Therefore, it was impor-
tant to establish that the species resolved on the
SDS-AGE assay were in fact oligomeric. The globu-
lar structures of Htt recognized by the OC anti-fibrillar
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oligomer antibody are similar to the structure of A� fib-
rillar oligomers [12]. The data presented indicates that
the structures recognized by the OC anti-oligomer anti-
body are globular in nature despite having the �-sheet
rich structure typically associated with fibrillar struc-
tures. We established that OC-positive species from
cell lysates are soluble in SDS as they are not retained
by filter-retardation assay. Additionally, the oligomers
were not altered after sedimentation of the fibrillar
material [25]. Together, these results indicate that the
OC-positive species resolved by SDS-AGE are soluble
fibrillar oligomers and not mature fibrils.

Pharmacologic modifiers of aggregation

To evaluate whether the fibrillar oligomers defined
in the various assays are also modulated by small
molecules previously established to alter aggrega-
tion, EGCG and CEP-1347 were tested and showed
decreased and increased levels of fibrillar oligomers,
respectively. EGCG has previously been shown to
reduce expanded repeat Htt aggregation [32] and to
reduce the formation of Htt prefibrillar (A11-positive)
oligomers by promoting formation of larger ones
[32]. The larger oligomers are likely “off-pathway”
as EGCG has been shown to refold amyloido-
genic polypeptides into unstructured, “off-pathway”
oligomers [39]. These “off-pathway” oligomers are not
likely to be fibrillar oligomers as fibrillar oligomers
have a defined structure and decrease in quantity with
EGCG treatment whereas the “off-pathway” oligomers
increased in quantity with EGCG. The data here
indicates that EGCG reduces fibrillar oligomers and
inclusion body formation in a cell model of HD. Both
of these outcomes could be beneficial in the treatment
of HD and indicate that fibrillar oligomers may track
with pathogenesis.

EGCG also appears to decrease the amount of visi-
ble aggregate formation without altering the ‘seeding’
which is thought to trigger the polymerization into
inclusion bodies [40, 41]. This is intriguing as one
might expect that a decrease in visible aggregate for-
mation could result from a decrease in the formation
of the aggregation ‘seeds’. These results suggest that
increasing the formation of ‘off-pathway’ oligomers
could shift the equilibrium away from inclusion body
formation, but that this shift does not prevent the for-
mation of the ‘seed’ that leads to aggregate formation.
This result also suggests that fibrillar oligomers are not
the aggregation ‘seeds’ as EGCG reduces the presence
of fibrillar oligomers but did not alter the kinetics of
aggregation, which correlates to previous work done

with A� showing that fibrillar oligomers did not seed
the nucleation of A� fibrils [12]. This is consistent
with additional compound testing with other aggre-
gation inhibitors (e.g., methylene blue and cystamine,
unpublished data in review and Supplementary Figure
5, respectively), which also reduce the presence of fib-
rillar oligomers and visible aggregates but do not affect
the rate of visible inclusion formation. Further char-
acterization of the interaction between off-pathway
species and aggregation conformers will be necessary
to draw firm conclusions regarding this interaction.

CEP-1347 increased the number of cells contain-
ing visible aggregates in a clone of stably-expressing
expanded repeat Htt polypeptide in PC12 cells [37]
and increased levels of fibrillar oligomers in these
lines. This finding was surprising given that if fibril-
lar oligomers are a toxic aggregation intermediate, one
might anticipate that an increase in this species would
result in an increase in toxicity. However; it is possible
that an increase in inclusion body formation is in some
way reducing the toxicity of the fibrillar oligomers in
this mode or that the effects of CEP-1347 on signal
transduction pathways and apoptosis [35–37] could be
a confound by preventing mutant Htt-mediated cell
death in spite of an accumulation of these fibrillar
oligomers. Additionally, CEP-1347 is increasing vis-
ible aggregate formation without increasing the rate
of aggregation. This indicates that CEP-1347 might
be able to stabilize the aggregate seed once it has
formed, allowing for the formation of inclusion bod-
ies in a higher percentage of cells. This could shift
the equilibrium away from a toxic intermediate toward
the formation of inclusion bodies resulting in a pro-
tective effect in cells. Ultimately, given the complexity
of potential mechanisms of CEP-1347, it is difficult
to ascertain how significant the increase of oligomers
levels is to disease state. Future investigation into more
specific compounds will lead to a more refined under-
standing of the role of fibrillar oligomers in disease
progression.

In summary, we provide evidence that mutant Htt
forms OC-positive fibrillar oligomers in various mod-
els of HD. We establish that the relative levels of
fibrillar oligomers can be monitored using SDS-AGE
analysis. The results from the pilot sampling of com-
pounds that increase or decrease visible aggregation
translate to modulation of fibrillar oligomers. Testing
the effect of a greater number of small molecules on
levels of fibrillar oligomers will be required to ascer-
tain the exact correlation between fibrillar oligomers
and toxicity. Of several aggregation inhibitors tested
(EGCG as described and others including cystamine
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and methylene blue, not shown), each showed reduc-
tion of fibrillar oligomers. For the one compound
that can increase inclusion formation (CEP-1347,
as described), fibrillar oligomer formation was also
increased, suggesting that these types of assays can
be used to evaluate specific conformers to uncover
optimal therapeutic targets.

Of particular note in this study is the development of
a battery of assays that allow for the ability to query not
only one readout, such as inclusion body formation, but
to instead assess all intermediate forms (monomeric,
oligomeric and insoluble forms), as well as the rate
at which they form, in a variety of models. While we
have presented data here showing oligomer and insol-
uble Htt levels moving in the same direction, levels
of each can be altered independently [25], suggesting
that there is not one single readout for identifying ther-
apeutic potential. As such, utilizing a combinatorial
approach that allows for the identification of modula-
tion of all forms of Htt is critical for the advancement
of treatments. Furthermore, while these data have
focused on models of Htt aggregation, the same tech-
niques can be employed in all forms of proteinopathies
(e.g., Alzheimer’s and Parkinson’s diseases) to screen
for modulation of aggregation conformers, thereby
increasing our understanding of disease mechanisms
for multiple disease states.
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SUPPLEMENTARY MATERIAL

Supplemental figures and videos are visi-
ble in the electronic version of this article:
http://dx.doi.org/10.3233/JHD-2012-129004

Figure S1: Representative data for EGCG treatment.
A–E, Representative images used to count visible
inclusions in 14A2.6 cells treated with EGCG.

Figure S2: Representative video illustrating the lag
phase of inclusion body formation in 14A2.6 cells

treated with EGCG. Treatment with EGCG does not
appear to affect the rate of inclusion body formation.

Figure S3: Representative data for CEP-1347
treamtent. A–E, Representative images used to count
visible inclusions in 14A2.6 cells treated with CEP-
1347.

Figure S4: Representative video illustrating the lag
phase of inclusion body formation in 14A2.6 cells
treated with CEP-1347. Treatment with CEP-1347
does not appear to affect the rate of inclusion body
formation.

Figure S5: Cystamine decreases oligomers and SDS-
insoluble Htt in a stably expressing truncated Httex1p
model of HD. A, Cystamine appears to decrease the
levels of soluble fibrillar oligomers in 14A2.6 cells
by SDS-AGE analysis. B, Cystamine decreases the
amount of SDS-insoluble Htt in 14A2.6 cells by filter-
retardation assay.
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