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Abstract. Huntington’s disease (HD) is an autosomal dominant progressive neurodegenerative disorder due to an expanded
CAG/polyglutamine repeat in the coding region of the huntingtin (htt) gene that causes the preferential degeneration of striatal
neurons. Although HD is classically considered a motor disorder, cognitive decline manifests even before the appearance of
motor symptoms, and reflects the impairment of additional neuronal populations, such as cortical and hippocampal neurons, in
the presence of mutant htt (mhtt). Studies on cognitive dysfunction in HD patients have focused on the cortico-striatal pathway.
Here we will describe that HD patients and mouse models share many cognitive defects. Alterations in hippocampal synaptic
plasticity and function found in HD mouse models highlight that changes in the functioning of the hippocampal formation
contribute to cognitive dysfunction in humans. The similarity between the cognitive dysfunction in HD patients and mouse
models has helped to understand better how cognitive dysfunction takes place. Moreover, it validates the use of HD mice to
study the molecular mechanisms involved in HD cognitive decline. Several studies in HD mouse models indicate that altered
synaptic composition/function, deficient neurotrophic support, kinase/phosphatase imbalance, and transcription dysregulation
play an important role in cognitive impairment. This knowledge opens the possibility of identifying relevant therapeutic targets
to fight cognitive decline in HD. The finding that in HD many mechanisms are similarly altered in hippocampal and striatal
neurons suggests the possibility of a common therapeutic strategy to ameliorate both cognitive and motor dysfunction.
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INTRODUCTION

Huntingtin (htt) is expressed in almost all tissues, has
a widespread distribution in the brain, its expression
levels are similar in control individuals and in Hunt-
ington’s disease (HD) patients, and there is no evidence
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of increased htt expression in the brain regions most
affected in HD (reviewed by [1]). Thus, several cell-
type specific features likely play a role in rendering
some neuronal populations more vulnerable to the
toxic/malfunctioning effects of mutant htt (mhtt).

A remarkable feature of the brain is synaptic inter-
action. Given that altered neuronal connections are
critical to the appearance of motor deficits, and cor-
tical and striatal neuropathology [2, 3], it is likely
that HD pathology firstly occurs in synapses [4] as
has been pointed out [5–7]. Cognitive dysfunction
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appears to be the most clear first symptom in HD
patients, as well as in mouse models of the disease
[8–10]. Cognition is highly related to synaptic func-
tion and plasticity, and mhtt is expressed in dendrites
and synapses [11, 12]. In fact, mhtt forms aggregates in
those subcellular compartments [11]. Moreover, mhtt
interacts with several pre- and post-synaptic proteins
involved in vesicle transport, receptor internalization,
and control of synaptic function [5]. Thus, several
questions deserve attention: what is the main role of
mhtt in cognitive dysfunction? By which mechanisms
can mhtt modify neuronal plasticity leading to cogni-
tive deficits? Is there any molecule or pathway more
susceptible to be affected by mhtt, thereby contribut-
ing to cognitive decline? Here, we will present studies
showing that cortical and striatal malfunctioning, as
well as compromised hippocampal function play a role
in cognitive impairment in HD patients. Furthermore,
we will relate findings in HD humans and mouse mod-
els, and we will try to answer those questions by going
over the molecular alterations described in HD mice
that can underlie, or at least contribute to, cognitive
disturbances in humans, as they can be relevant thera-
peutic targets to fight cognitive decline in HD.

METHODOLOGICAL CONSIDERATIONS

Limitations of human studies

Like other disorders, HD is characterized by a
diversity of clinical presentations, rates of progres-
sion and responses to therapy, suggesting the existence
of different subgroups and possible variations in
the underlying pathological processes (reviewed by
[13]). The heterogeneity of human patients can
account for the discrepancies in the studies showing
[14–17] or not [18–20] cognitive deficits in pre-
symptomatic HD-gene carriers. In fact, significant
differences in cognitive processes between controls
and pre-symptomatic HD patients subgroups have been
reported [21]. Moreover, it seems that cognitive and
neuropsychological pre-clinical alterations in HD do
not follow uniformly [17]. Additionally, discrepan-
cies could also depend on the selected tests, and on
the low number of subjects used in most of these
studies. Regarding neuroimaging techniques, although
they have provided essential data to the understanding
of HD pathophysiology, there are still some method-
ological problems to face like individual differences in
brain activation due to comorbidity and/or medication,
while complex statistical calculations and fallacies in
interpreting the results can lead to variability and dif-
ferences in the conclusions [22–24].

It is also important to mention that some careless
interpretations might have been carried out. Cognitive
alterations in HD have often been related to cortico-
striatal dysfunction, while hippocampal impairment is
usually obviated in the interpretation of human HD
studies, and can also play an important role in those
deficits (see below).

Limitations of studies in HD mouse models

Learning and memory tasks in rodents often involve
not only cognitive function but also physical skills.
So, in HD mouse models performance in the Mor-
ris water maze or acquisition of a motor skill could
be influenced by deficiencies not directly related to
altered cognition but to fatigue or changes in mus-
cular strength. On the other hand, the generation of
HD mouse models using distinct strain backgrounds
increases the difficulty of interpreting and compelling
findings. In addition, mhtt also differs between mouse
models as some express only a portion of the mhtt pro-
tein, while others express full-length mhtt, which adds
variability mainly in phenotype severity (HD mouse
models are reviewed elsewhere; [25, 26]). However,
despite these problems and caveats, behavioral tasks
studied in rodents have been crucial to reveal many
aspects of HD progression, and mouse models have
helped to start uncovering the molecular pathways
underlying cognitive impairment in HD.

As for human studies, there are some misinterpreta-
tions in studies evaluating conditioned motor learning
in mice, which although is thought to be mainly medi-
ated by cortico-striatal pathways, can also involve
the hippocampus [27]. Similarly, visual discrimination
learning, strongly affected in HD mice [28, 29], is usu-
ally related to the striatum, but hippocampal function
can also be involved in this paradigm [30, 31].

MULTIPLE MEMORY SYSTEMS AND
THEIR INTERACTIONS

We will briefly introduce the multiple memory sys-
tems since this will be useful to put the reader in
context, and because some emerging ideas can help
to understand how to integrate findings from studies
in humans and in HD mouse models (for complete
reviews see [32, 33]).

Classically, the acquisition of new motor skills, the
development of instrumental behavior and the forma-
tion of habits is thought to involve the striatum. The
frontal cortex (together with a cortico-striatal loop)
has been implicated in working memory, attention,
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and planning of goal-directed behaviors. Finally,
several forms of episodic and semantic memories
depend on temporal structures like the hippocampus
and entorhinal cortex (reviewed by [32–34]). How-
ever, it is now generally accepted that there is an
interaction between striatal, cortical and hippocam-
pal systems. Thus, the final cognitive outcome can
depend on compensatory, competitive or cooperative
interactions between systems (reviewed by [35–37]).
Importantly, under pathological conditions these inter-
actions become imbalanced, and the performance of
one memory system can increase to compensate the
functional alterations ongoing in another related sys-
tem [38]. Given that the limits between memory
systems are not so clear [39], cognitive impairment in
HD patients can be more difficult to relate to specific
neural systems than previously thought.

COGNITIVE DYSFUNCTION IN HD

Several studies in patients and in mouse models of
HD have been carried out to identify cognitive deficits
and evaluate their progression. Unfortunately, studies
in humans have mainly focused on the cortico-striatal
function, and less frequently on the hippocampal for-
mation [13] or other brain regions. However, some
cognitive tests/abilities involve hippocampal integrity
in addition to cortico-striatal function. Evidences from
studies in mouse models show that synaptic plastic-
ity alterations are found, not only in striatum, but
also in the hippocampus [40], which can explain the
hippocampal-related cognitive impairment observed in
these animals. In addition, alterations in synaptic plas-
ticity or activity in other brain regions such as the
thalamus [41, 42] could also account for cognitive
decline observed in HD patients [43]. However, in the
present review, we will focus on cortico-striatal and
hippocampal synaptic plasticity and function. Table 1
summarizes the cognitive deficits found in HD mouse
models that better correlate with those found in
patients.

HD patients

In the following sections we will present stud-
ies regarding cognitive dysfunction in HD patients
in whom impairment of the cortical and striatal
function could be playing a main role, and data
showing that hippocampal function is also compro-
mised. Cognitive deficits will be classified according
to their manifestation: before the onset of motor symp-
toms (pre-symptomatic individuals), or when motor

Table 1
Summary of the cognitive deficits found in HD mouse models that

better correlate with those found in HD patients

Cognitive alterations HD patients HD mice
Pre-symptomatic stage References Model References

Lack of strategy-shifting [50] R6/1 [28]
YAC128 [82]

Procedural learning deficits [57] R6/1 [258]
YAC128 [82]
Knock-in [94]

Deficiencies in motor learning [49] YAC128 [82]
Loss of executive function [21] R6/2 [259]

Early-middle stage

Loss of inhibition [46] R6/2 [260]
in pre-pulse inhibition paradigm YAC128 [82, 87]

Decreased recognition memory [67, 261] R6/1 [88, 90]
R6/2 [88]

Knock in [91, 132]
Spatial learning deficits [16, 54] R6/1 [88]

R6/2 [29]
Knock-in [91]

symptoms are already evident (early-middle symp-
tomatic patients). Cortico-striatal-related cognitive
alterations seem to appear earlier and be more severe
than those likely mediated by the hippocampus and
related temporal structures. Thus, mhtt affects differ-
entially distinct brain regions, indicating that there are
complex interactions between the mutation and the
molecular environment.

Cortico-striatal dysfunction
One of the most common and persistent cognitive

deficits in HD patients at pre-symptomatic stages is a
difficulty in tasks requiring a shift in strategy [14, 44].
Interestingly, this aberrant response may stem from an
inability to inhibit the previously learned response,
a process thought to be mediated by the striatum
[45]. Reinforcing the idea that loss of inhibition could
account for the strategy-shifting deficits observed in
humans, it has been demonstrated that there are alter-
ations in the pre-pulse inhibition paradigm in HD
patients at early stages [46]. At pre-symptomatic
stages, HD patients also show alterations in executive
functions, verbal fluency [21, 47], procedural learning,
planning, and explicit motor learning [14, 48, 49]. In
early-stage symptomatic HD patients, there is also a
deficit in discrimination learning and reversal learn-
ing, again arguing in favor of perseverance in learned
responses [50]. Moreover, attention, acquisition of
psychomotor skills, planning, executive functions and
memory progressively decline [44, 51–53].

In middle symptomatic HD patients a widespread
cognitive decline is observed in which executive
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function, verbal fluency, perceptual speed and reason-
ing are strongly affected [16, 54]. Finally, at more
advanced stages, a sub-cortical dementia gradually
develops, with alterations in several simple and com-
plex cognitive functions involving slow information
processing, decreased motivation, depression, apathy
and personality changes [55, 56].

Impairment of the cortico-striatal function in HD
patients is also supported by neuroimaging studies.
A study using functional magnetic resonance imag-
ing shows alterations in a serial reaction time task
paradigm in HD pre-symptomatic individuals with
respect to controls. These alterations correlate well
with decreased activity in the frontal cortex, and the
putamen is also consistently less activated in HD
patients than in control individuals [57]. Executive
function is impaired in early HD patients correlating
with caudate and putamen atrophy [51, 58]. Mild-
stage HD patients show less activation of dorso- and
ventro-lateral prefrontal cortex, left inferior parietal
cortex and left putamen during a parametric verbal
working memory task. This reduced activity corre-
lates with a loss of grey matter in these brain regions,
and with a lower accuracy in the performance of the
task [59]. A reduction in blood flow in caudate, pari-
etal and frontal cortex in middle-stage HD patients,
as assessed by high resolution single photon emission
computerized tomography, correlates well with poor
performance in distinct neuropsychological cognitive
tests [60]. Decreased dopamine binding in the striatum
of mild to moderate-stage HD patients was also found
to correlate with deficits in visuospatial skills, episodic
memory, verbal fluency and reasoning [54].

Dysfunction of the hippocampus and temporal
structures

To our knowledge, studies focusing on the hip-
pocampal function in HD patients are lacking.
However, some of the cognitive tasks used in human
studies can involve the participation of the hippocam-
pus and temporal lobe structures. For instance, spatial
working memory, spatial recognition memory [61],
object recognition memory [62, 63], episodic mem-
ories [64, 65], and some forms of associative learning
[66] are, at least in part, regulated by the hippocampus.

Pre-symptomatic HD patients show no serious
deficits in spatial working memory as they perform
well tasks involving these cognitive abilities, although
their latency to respond is higher than in controls [14].
On the other hand, pre-symptomatic HD-gene carri-
ers show impairments in recognition memory [67].
In early-mild symptomatic HD patients, there are

alterations in associative learning, pattern and spatial
short-term memory and in spatial working memory
[68]. Although the authors suggested a role for the
cortico-striatal circuitry, they did not mention that
alterations in the hippocampus and related structures
could be also involved. At this stage of the disease,
deficits in recall and recognition memory are consistent
and clear [69]. In middle-stage HD patients, a rather
global cognitive decline is observed including episodic
memory and spatial memory deficits [16, 54]. Finally,
at more advanced stages, there is a so-called sub-
cortical dementia, with alterations in several cognitive
functions, some of them likely involving impairment
of the hippocampal function [55, 56]. Thus, tasks
relying on hippocampal and cortico-temporal integrity
(declarative memories: visuospatial, spatial working-
memory and object and spatial perception/recognition)
are altered in HD patients but to a lesser extent than
those dependent on cortico-striatal integrity (procedu-
ral learning). This is supported by the finding that,
when HD patients have to solve a cognitive task, the
hippocampus, which is less impaired, attempts to com-
pensate for striatal dysfunction [70]. It is noteworthy
to mention that, according to findings from distinct
verbal learning tasks involving the hippocampal func-
tion [71], it has been suggested that, in HD, long-term
memory is more prone to be affected than short-term
memory [13, 16, 72–74].

Interestingly, tests assessing episodic memory
and visuomotor abilities significantly correlate with
metabolic reductions in temporal cortices [75]. Reduc-
tions in dopamine binding have also been correlated
with deficits in the Stroop, Digit span and Tower of
London tests [76]. Thus, imaging studies also pro-
vide evidences that alterations in the temporal region
contribute to cognitive defects in HD patients.

HD mouse models

Cortico-striatal impairment
Several cognitive tasks can be used to evaluate

cortico-striatal function in rodents as for example
delayed-alternation tasks, discrimination tasks, proce-
dural learning tasks and acquisition of new motor skills
[77–79]. Performance in delayed-alternation tasks,
which are highly dependent on cortico-striatal integrity
[78], is strongly affected in HD mouse models at early
ages: 5 week-old R6/2 [29], 10 week-old R6/1 [28] and
12 month-old knock-in mice [80]. Furthermore, visual
discrimination learning [28, 29], as well as tactile-
dependent learning [81], is altered in pre-symptomatic
R6 mice. In addition, alterations in strategy-shifting,
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a paradigm that can reveal aberrant perseverance on
a learned response, are one of the most obvious pre-
symptomatic deficits in both exon-1 and full-length HD
mouse models [28, 29, 82].

Hippocampal dysfunction
Several tasks involving hippocampal and related

temporal structures, such as the Morris water maze
[83], spontaneous alternation task [84, 85], and novel
object recognition test [86], have been used to evalu-
ate learning and memory in HD mouse models. Spatial
learning and navigation are altered at pre-symptomatic
stages in R6/1, R6/2, YAC128 and HdhQ7/Q111 mice
[29, 87–90]. Moreover, object and spatial recogni-
tion memories are also impaired in pre-symptomatic
R6/1, R6/2 and HdhQ7/Q111 mice [88, 90, 91]. These
impairments persist during disease progression [92,
93]. However, exon-1 mouse models often display a
rapid and severe phenotype progression, which does
not allow distinguishing the onset of cortico-striatal-
related cognitive deficits from those related to the
hippocampus. The use of knock-in mice has partially
elucidated this question since alterations in cortico-
striatal-dependent cognitive tasks, involving delayed
alternation and attention, have earlier onset [80, 94,
95] than changes in hippocampal-dependent cognitive
tasks such as spatial learning [91]. In agreement with
human data, some declarative long-term memories
are earlier and more severely altered than short-term
memories in both exon-1 and full-length HD mouse
models [88, 90, 91, 96]. Furthermore, hippocampus-
based learning skills are preserved in R6/2 mice at ages
in which striatum-based learning is impaired [97], and
hippocampal function can overcome deficits in stri-
atal function [98]. Thereby, compensatory mechanisms
operate so that less affected hippocampus balances
striatal failure in HD.

SYNAPTIC PLASTICITY ALTERATIONS IN
HD MOUSE MODELS

Activity-dependent modifications in synaptic effi-
cacy (synaptic plasticity), such as long-term poten-
tiation (LTP) and long-term depression (LTD), are
widely believed to underlie information processing
and storage in the brain [99] (for a comprehen-
sive historic overview on LTP and LTD research
see [100, 101]). Here, we will present the most
relevant findings regarding cortico-striatal and hip-
pocampal plasticity alterations in HD mice. It is
intriguing that whereas human studies have focused on

cortico-striatal dysfunction to explain cognitive alter-
ations in HD, researchers using mouse models have
mainly focused on hippocampal function and related
areas. Accordingly, the hippocampus is the brain
region in which almost all synaptic plasticity changes
have been described, and whose clear anatomical orga-
nization makes its study easy and comfortable. Studies
in HD mice have provided several evidences that hip-
pocampal function is strongly affected suggesting that
many findings in HD patients could be related to
this disturbance. This is relevant because hippocam-
pal, cortical and striatal systems interact to regulate
cognitive function.

Cortico-striatal pathway

Electrophysiological studies in cortico-striatal slices
from HD mouse models have revealed, in general, ear-
lier and more severe alterations in these connections
than in hippocampal synapses [40, 102]. However, the
progression of cortico-striatal deficiencies seems to be
biphasic. In fact, Ca2+ currents in medium-sized spiny
neurons (MSNs) are increased in young R6/2 mice,
whereas they decrease in symptomatic transgenic mice
[103–106]. Interestingly, a propensity towards cortico-
striatal synaptic depression is also observed in YAC
mice [107]. Studies in different HD mouse mod-
els showed that glutamatergic transmission is either
increased or decreased respect to wild-type mice [103,
108–110]. In YAC mice, this biphasic effect seems
to correlate with an enhanced N-methyl-D-aspartate
receptor (NMDAR) response at early ages that then
dramatically decreases with age [111], indicating that
each phenomenon occurs at different stages of the dis-
ease. On the other hand, evoked synaptic responses
and spontaneous synaptic currents are both altered in
the cortico-striatal pathway, and these alterations get
worse as the neurological phenotype advances in HD
mice [40].

Some studies have addressed cortical synaptic plas-
ticity in pre-symptomatic HD animals. The study of the
representation of the row of vibrissae after associative
learning indicates that R6/1 mice display deficits in
plasticity in the primary somatosensory cortex [112].
Other studies found deficits in cortical LTP [113–115],
which could be rescued by dopamine receptor 1 acti-
vation [115]. At relative middle stage of the disease,
cortico-striatal LTP is impaired in R6/2 mice [116],
a defect that is still present in advanced stages [117].
Furthermore, the inability of cholinergic interneurons
to display LTP could facilitate the dysfunction of stri-
atal projecting neurons (reviewed by [118]). At later
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symptomatic ages, there is a progressive loss of cell
capacitance of MSNs in exon-1 mouse models [103,
109, 119]. This correlates with a loss of cortico-
striatal synaptic markers, reduction of dendritic spines,
reduced synaptic transmission, and with an inability to
express cortico-striatal LTP in the dorsal striatum [116,
117, 119, 120].

Hippocampal pathways

Assessment of hippocampal function has shown
that basal neurotransmission at hippocampal synapses
(CA3–CA1 field excitatory post-synaptic potentials)
appears normal, whereas LTP is reduced in transgenic
[28, 121] and knock-in [122, 123] mouse models of
HD. A decrease in mossy fiber potentiation was also
reported in R6/2 mice [124]. However, at advanced
ages, intrinsic membrane properties and action poten-
tials are also altered in R6/1 hippocampal neurons
[125], a phenomenon that occurs earlier in striatal
neurons [40]. The alteration of the intrinsic elec-
trophysiological properties of hippocampal neurons
appears later than LTP and LTD deficits suggesting
that neuronal plasticity dysfunction is synaptic in ori-
gin. Interestingly, YAC72 mice also show LTP deficits
which consist of LTD instead of LTP expression as
the disease progresses [126]. Related to this, abnor-
malities in hippocampal LTD expression seem to be
the most conspicuous alteration in different exon-1
HD mouse models [121, 125]. On the other hand,
paired pulse facilitation studies indicate that synap-
tic plasticity deficits observed in full-length [126], as
well as in exon-1 [121] mouse models, are mainly due
to post-synaptic dysfunction, although a pre-synaptic
component should not be ruled out [5]. Considering
all these findings, it could be assumed that persistence
of synaptic depression is the most conspicuous hip-
pocampal synaptic plasticity alteration, although LTP
is also impaired. Moreover, the onset of neuronal plas-
ticity deficits occurs earlier than the development of an
overt phenotype, independent of normal synaptic trans-
mission. Finally, a post-synaptic component more than
a pre-synaptic component seems to play a main role in
those alterations.

MOLECULES AND PATHWAYS
IMPLICATED IN COGNITIVE DECLINE IN
HD: LESSONS FROM ANIMAL MODELS

Cognition is highly dependent on plasticity pro-
cesses in which proper synaptic function plays an
important role. Thus, in order to design therapeutic

Table 2
Putative molecules contributing to cognitive deficits in HD mice

Protein Brain Mouse Type of References
region model alteration

PSD-95 Striatum R6/1 Reduced levels [128]
Hippocampus Reduced levels [90]

GluA1 Hippocampus R6/1 Reduced levels [90]
Complexin-II Striatum R6/2 Reduced levels [149]

Cortex
Hippocampus

Synapsin I Cortex R6/2 Altered [192]
Striatum phosphorylation

levels
NF-κB Forebrain Knock-in Disrupted [262]

synapse-nucleus
translocation

Dopamine Striatum R6/2 Reduced levels [138]
receptor 1 and binding

Dopamine Striatum R6/2 Reduced levels [138]
receptor 2 and binding

This table depicts several molecules involved in synaptic plasticity
and in learning and memory that have been studied in HD mouse
models, but whose alterations have not been directly related to the
progression of cognitive decline. The aim is to show potential new
therapeutic targets to fight cognitive impairments in HD.

approaches to treat cognitive impairment in HD it
is essential to know the molecular alterations that
can underlie, or at least contribute to, cognitive dis-
turbances in HD patients. In the next sections we
will focus on molecules/pathways involved in synaptic
function and plasticity processes that have been shown
to be sensitive to the presence of mhtt (Table 2). We
will also discuss those that have been demonstrated to
be involved in cognitive decline in HD models.

Synaptic molecules

In this section we will go through the changes
in synaptic components described in HD that likely
contribute to synaptic plasticity defects and cognitive
impairment.

At early stages of the disease, when cognitive and
plasticity alterations are detected, no changes in the
protein levels of any NMDAR subunit are observed in
the striatum of HD mouse models [127, 128]. Only
a loss of striatal GluN2B subunit has been described
in R6/1 mice at late stages of the disease [128]. Con-
versely, the function of NMDARs is severely altered
in HD models [103]. The fact that HD mouse mod-
els do not respond to intrastriatal NMDAR agonists
[111, 127–130] further supports the idea that intracel-
lular signaling pathways activated by the receptor are
affected in HD, which likely contributes to synaptic
plasticity impairment and cortico-striatal-dependent
cognitive defects.
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It is known for almost three decades that NMDARs
are essential for the expression of hippocampal LTP
[131], and the formation of hippocampal memory
[83]. CA3-CA1 LTP deficits in full-length YAC72
and knock-in mice seem to be due, at least in part,
to alterations in NMDARs [122, 126], while in R6/2
mice those deficits are NMDAR-independent [121].
Conversely, CA3-CA1 LTD deficits in R6/1 mice are
dependent on GluN2B-containing NMDARs [125]. As
for the striatum, no alterations in protein levels are
observed for any NMDAR subunit in the hippocampus
of R6/1 mice at early stages of the disease, when cog-
nitive and plasticity alterations are detected [28], thus
suggesting that hippocampal synaptic plasticity dys-
function dependent on NMDARs can be due to changes
in downstream signaling.

It is noteworthy that in addition to NMDARs
other glutamate receptors could play an impor-
tant role in hippocampal synaptic dysfunction in
HD. A good candidate is the �-amino-3-hydroxyl-
5-methyl-4-isoxazole-propionate receptor (AMPAR)
subunit GluA1 since it is early down-regulated in the
hippocampus of HD mouse models [28, 90]. Interest-
ingly, treatment with ampakines, drugs that enhance
AMPARs’ function, rescues LTP and object recogni-
tion memory in a knock-in mouse model of HD [132].
On the other hand, dopamine receptors, which are able
to modulate synaptic plasticity in cortico-striatal and
hippocampal connections (reviewed by [133]), are pro-
foundly altered in the caudate-putamen of HD patients
[76, 134–137], and in the striatum of mouse mod-
els [138–140] from very early stages of the disease.
Actually, dopamine deficits can also contribute to LTD
deficiencies reported in the perirhinal cortex [113], and
to LTP defects found in the dorsal striatum [116], and
in the prefrontal cortex [115] of HD transgenic mice.

In addition to receptors, alterations in scaffold-
ing proteins are suitable to contribute to synaptic
dysfunction in HD. To our knowledge, the most stud-
ied is post-synaptic density-95 (PSD-95). PSD-95
is a post-synaptic scaffold protein that stabi-
lizes NMDARs and AMPARs [141, 142] and
modulates their function [143]. Moreover, PSD-
95 anchors calcium/calmodulin-dependent protein
kinase II (CaMKII), SynGAP and neuronal nitric oxide
synthase [144, 145], and thus it is crucial for sig-
naling downstream NMDARs. In HD mouse models
PSD-95 is reduced in the striatum and hippocampus
from very early stages [90, 127, 128]. Importantly,
PSD-95 directly interacts with htt and polyglutamine
expansions increase this interaction removing it from
the synapse and altering neurotransmission [146]. On

the other hand, loss of complexin-II, a protein that
regulates fusion processes between synaptic vesicles
and the plasma membrane [147], has been shown in
PC12 cells expressing mhtt [148], in several brain
regions of R6/2 mice, including the cortex, striatum
and hippocampus [149], and in the striatum [150] and
frontal cortex [151] of HD patients. Interestingly, and
supporting a role for complexin-II reduction in HD
cognitive impairment, complexin-II knockout mice
display learning deficits [152], and impairment of LTP
in the CA3 region of the hippocampus [124] similar to
those observed in R6/2 mice.

Another emerging player in synaptic alterations is
protein kinase C and casein kinase substrate in neu-
rons protein 1 (PACSIN1). PACSIN1 is a neurospecific
phosphoprotein with a central role in synaptic vesicle
and receptor recycling [153]. Aberrant interaction with
mhtt removes PACSIN1 from the synapses in the cor-
tex of pre-symptomatic and early-stage HD patients
[151, 154], which likely limits its function in the stabi-
lization of synaptic proteins and receptors. Given the
dramatic changes in PACSIN1 found in HD patients,
it would be relevant to study in mouse models whether
they might contribute to synaptic plasticity alterations,
and cognitive impairment.

Brain-derived neurotrophic factor

Brain-derived neurotrophic factor (BDNF), a mem-
ber of the neurotrophin family, has emerged as an
important regulator of synaptic plasticity, and several
cognitive processes (reviewed by [155]). Interestingly,
whereas htt positively regulates BDNF expression,
mhtt impairs BDNF transcription and transport along
axons and dendrites [156–160]. BDNF is highly
expressed in the regions with highest dysfunction rates
in HD (cortex, striatum and hippocampus), and stri-
atal cells are highly dependent on BDNF for survival
and function [161–163]. BDNF down-regulation is
a widespread phenomenon in HD brain, observed in
patients and in mouse models of the disease [28, 122,
164–166]. On the other hand, the BDNF high-affinity
receptor TrkB is also reduced in HD models [167,
168], so the complete BDNF-TrkB system is strongly
affected in HD. Given that BDNF/TrkB signaling
enhances LTP induction not only in hippocampal
neurons [169], but also in MSNs [170], their down-
regulation is expected to contribute to striatal [116,
171], as well as hippocampal [122, 123] LTP impair-
ment described in HD models. Therefore, deficient
BDNF signaling likely plays an important role in
synaptic dysfunction, and learning and memory defects
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in HD. Actually, BDNF levels regulate the onset and
severity of cognitive and motor symptoms, and synap-
tic plasticity deficits in HD mouse models [28, 122,
172]. Moreover, it has been shown that decreased
activity-dependent BDNF expression contributes to
cortical microcircuit hypo-connectivity in HD cells
[173]. Interestingly, treatments focused on the recovery
of BDNF levels successfully improve synaptic plastic-
ity, and motor and cognitive functions in HD mouse
models [117, 132, 165, 174].

By which mechanism can BDNF deficits alter
synaptic plasticity and cognitive function? The BDNF-
TrkB system activates three main signaling pathways:
the extracellular signal-regulated kinase 1/2 (ERK1/2)
pathway, the phosphatidylinositol 3-kinase (PI3K)-
Akt pathway, and the phospholipase C� (PLC�)
pathway (reviewed by [175]). ERK1/2 and Akt path-
ways are not altered in the hippocampus of R6/1
animals at early ages [88, 176, 177], when cognitive
symptoms are already observed [28, 88]. Conversely,
PLC� activity is strongly reduced in the hippocampus
of young R6/1 mice [28]. These findings are relevant
because the main effect of BDNF on LTP expression is
basically modulated by the PLC� pathway [178, 179],
and hippocampal LTP is impaired in HD mice.

Kinase-phosphatase imbalance

Memory formation and synaptic plasticity processes
rely on balanced kinase and phosphatase activities
[180–182]. Several phosphatases are altered in HD
mouse models [183] and, most importantly, in the
caudate/putamen of HD patients [135, 176, 184]. Strik-
ingly, to our knowledge, their expression levels in
post-mortem cortical and hippocampal samples from
HD patients have not been analyzed. As many phos-
phatases altered in HD play a role in memory and
plasticity, this imbalance likely contributes to synaptic
alterations and cognitive impairment in HD.

Calcineurin plays an important role in synaptic
plasticity, and learning and memory [185–189]. Inter-
estingly, it is enriched in MSNs [190], and thus
variations in its expression levels/activity can seriously
alter their function. Calcineurin levels are reduced in
R6 mice striatum [140, 184, 191, 192], and lower
calcineurin activity has been shown in the striatum
of YAC128 mice at 12 months of age [193]. Con-
versely, in R6/1 mice hippocampal calcineurin activity
is unchanged from 4 to 30 weeks of age [88], and
calcineurin levels are unaltered in the cortex [184].
Cortical calcineurin protein levels are also unaffected

in HdhQ111/Q111 and HdhQ111/Q7 mice, but its activity
is significantly higher than in HdhQ7/Q7 mice [194].
Thus, it is expected that alterations in calcineurin activ-
ity contribute to striatal, and possibly cortical, synaptic
dysfunction in HD, while the hippocampus is likely not
affected by changes in calcineurin levels/activity.

PHLPP (Pleckstrin homology (PH) domain leucine-
rich repeat protein phosphatase)1� is reduced in
the striatum of exon-1 and full-length HD mouse
models [176]. Additionally, PHLPP1� levels are
also decreased in the cortex and hippocampus of
R6/1 mice. Since PHLPP negatively regulates the
Ras–Raf–MEK–ERK pathway [195], and participates
in learning and memory [196], it is likely that those
alterations in PHLPP levels can contribute to cognitive
defects in HD, but this issue remains to be addressed.

STEP (striatal-enriched protein tyrosine phos-
phatase) plays an important role in synaptic plasticity
through the opposition to synaptic strengthening, and
alterations in STEP activity contribute to aberrant
synaptic function and to cognitive impairment in
several neuropsychiatric disorders [197]. We recently
reported that R6/1 mice display reduced STEP protein
levels in the striatum and cortex, and increased
phosphorylation levels (increased inactivity) in the
striatum, cortex and hippocampus [177]. Given that
STEP is enriched in MSNs [198], and expressed at
lower levels in the cortex, hippocampus and amygdala
[199], aberrant STEP levels/activity, are likely to play
a role in cognitive impairment in HD. Reduced STEP
activity in HD can lead directly, or via the kinase
Fyn, to increased activity of the NMDAR subunit
2B [200], which can possibly produce LTD [201].
Interestingly, R6 mice show an aberrant facilitation of
LTD expression in the hippocampus by 3–4 months
of age [125]. Despite all the evidences supporting a
putative role for STEP in cognitive dysfunction in
HD, this hypothesis remains to be tested.

Regardless of several supportive evidences, a role
for the alterations of distinct phosphatases in the
cognitive decline observed in HD remains to be
directly demonstrated. In contrast, we recently showed
that cognitive dysfunction in R6 mice correlates
with increased hippocampal cAMP-regulated protein
kinase (PKA) activity, as indicated by the hyper-
phosphorylation of several PKA substrates localized
at the membrane [88]. PKA plays an important
role in the expression of hippocampal-dependent
memories [202]. In agreement, inhibition of hip-
pocampal PKA hyper-activity reestablishes long-term
recognition memory in R6 mice indicating that
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PKA-dependent processes are occluded in HD mice
hippocampus [88]. Interestingly, we also reported a
dysregulation of the PKA pathway in the striatum
of R6/1 mice [177]. Of note, cAMP immunoreac-
tivity is increased in the striatum of R6 mice [203,
204], and PKA substrates as GluN1 and STEP are
hyper-phosphorylated in the striatum of exon-1 and/or
full-length mouse models of HD at pre-symptomatic
stages [128, 177]. Given the cognitive deficits found in
striatal-dependent learning tasks in R6 mice [28, 29],
it is tempting to speculate that aberrant PKA signaling
can also contribute to this impairment.

Another kinase playing an important role in synaptic
plasticity, and learning and memory is CaMKII [182,
205, 206]. To our knowledge, hippocampal CaMKII
levels have not been analyzed in HD mouse models,
but reduced levels have been found in the striatum
[207] and cortex [208] of R6/2 mice at 6 weeks of
age, and in the synaptic plasma membrane fraction of
R6/1 striatum at 12 weeks of age [128]. Thus, these
changes could contribute to synaptic plasticity alter-
ations, and learning and memory defects in HD, but
this issue needs to be directly addressed.

Summing up, alterations in kinase and phosphatase
activities in HD are likely to contribute, directly or
indirectly, to changes in relevant signaling pathways
involved synaptic plasticity and activity-dependent
gene transcription underlying learning and memory
processes. Thus, kinases and phosphatases might be
interesting therapeutic targets to investigate in the con-
text of HD cognitive decline.

Transcriptional dysfunction and cognitive
impairment

Consistent with mhtt interaction with several tran-
scription factors, transcriptional dysregulation is a
well-documented phenomenon in HD [209, 210].
Given that learning and memory depend not only
on activity-dependent synaptic plasticity, but also
on changes in neuronal gene expression [211, 212],
it is likely that alterations in transcription path-
ways/machinery contribute to cognitive deficits in HD.
cAMP-responsive element binding protein (CREB)
plays a critical role in hippocampal-dependent synap-
tic plasticity and long-term memory [202, 213, 214].
Despite the aforementioned hyper-activity of PKA sig-
naling [88], the phosphorylation levels of CREB, a
nuclear PKA substrate, are not increased in the hip-
pocampus of R6 mice [88]. Similarly, no changes in
CREB phosphorylation levels were found in the hip-
pocampus of HdhQ7/Q111 knock-in mice [91]. The

transcriptional activity of CREB not only depends
on CREB phosphorylation, but also on the recruit-
ment of specific co-activators [215, 216]. In contrast
to the unaltered phosphorylation levels of CREB, the
expression of the CREB co-activator CREB-binding
protein (CBP), and of CREB/CBP target genes related
to memory, such c-fos, Arc and Nr4a2, is reduced
in the hippocampus of HdhQ7/Q111 mice [91]. Loss
of CBP has also been shown in the striatum of HD
mouse models, and improvement of CBP function
is neuroprotective [217, 218]. Regarding to cognitive
functions, mice heterozygous for CBP exhibit synap-
tic plasticity and memory deficits, as well as impaired
rotarod performance [219], and mice with a muta-
tion in the CREB-binding domain of CBP also have
motor learning deficits [220]. These alterations are
quite similar to those observed in HD mouse models.
Besides being a CREB co-activator, CBP possesses
histone acetyltransferase activity [221], which alters
chromatin structure allowing gene transcription. Inter-
estingly, treatment with a histone deacetylase inhibitor
improves motor impairment in R6/2 mice [222], and
memory deficits in HdhQ7/Q111 mice [91]. Given that
altered CBP levels/function is a common feature in
different HD brain regions, CBP could be a good ther-
apeutic target for general cognitive improvement.

THE TRIPARTITE SYNAPSE: A ROLE FOR
ASTROCYTES IN HD COGNITIVE
DECLINE?

The idea that astrocytes could play an important
role in plasticity and cognitive processes has been
increasing [223–226]. Moreover, neuroimaging stud-
ies showing the precise coordination between the
activities of neurons and astrocytes [227] suggest that
findings from studies in humans might reveal neuronal
as well as astrocytic dysfunction in HD.

In HD individuals, mhtt is also present in astro-
cytes [228], and expression of mhtt exclusively in
astrocytes causes disease, although the progression is
slower [229–231]. Moreover, the number of dendrites
is reduced leading to neuronal atrophy [232]. With the
“tripartite synapse” concept in mind [223–225], the
aforementioned studies also suggest that mhtt expres-
sion in astrocytes could play a role in the alteration
of synaptic plasticity in HD. Moreover, since cere-
bral blood flow is regulated by astrocytes (reviewed by
[233]), the finding that pre-symptomatic HD patients
already present resting decreased cerebral blood flow
in the prefrontal cortex and putamen [234, 235] could
indicate that there are early alterations in astrocytes in
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HD. Nevertheless, the precise role of astrocytes in cog-
nitive decline in HD still warrants further investigation.

THERAPEUTIC APPROACHES TO
COGNITIVE IMPROVEMENT

Nowadays, available therapies for HD include
symptomatic treatments to improve motor dysfunc-
tion and depression, while treatments for cognitive
symptoms have not yet been developed. So far, based
on the assumption that an impairment of cholinergic
pathways is also involved in cognitive dysfunction
in HD (for review see [236, 237]), treatments used
to ameliorate cognitive decline in HD patients are
those used with the same purpose in other neu-
rodegenerative disorders such as Alzheimer’s disease.
However, no improvements have been observed in HD
patients treated with acetylcholinesterase inhibitors
like donepezil [238, 239] and rivastagmine [240–242].
Conversely, a short-term administration of latrepirdine,
a weak acetylcholinesterase inhibitor, has been shown
to be well tolerated in HD patients, and to provide some
beneficial effects on cognition, but further investiga-
tions are needed to prove its therapeutic efficacy [243].

Beside these therapeutic approaches, no other clin-
ical trials have been designed to analyze whether
drugs targeting molecular pathways involved in learn-
ing and memory [244] could be used to fight cognitive
decline in HD. Therefore, there is a need to develop
alternative strategies, and we have to take advantage
from data obtained by analyzing HD mouse models.
New therapeutic strategies can be developed based
on altered molecular mechanisms leading to cognitive
dysfunction (Fig. 1), and on pharmacological treat-
ments showing benefits in mouse models. As discussed
before, the BDNF trophic pathway is down-regulated
in neurons affected in HD, and consequently treatments
focused on the recovery of BDNF levels improve both
motor and cognitive deficits in several mouse models
of the disease [117, 122, 165, 166, 172]. In addi-
tion, pharmacological treatments with molecules such
as cystamine and cysteamine [245], CEP-1347 [246],
sertraline [247, 248], ampakine [132, 174], rolipram
[249] or TP-10 [250] have been shown to improve
HD phenotype in mouse models, possibly by increas-
ing endogenous BDNF levels. Interestingly, there are
non-pharmacological approaches that improve BDNF
levels, and that have already been shown to be
beneficial in HD mouse models. Environmental enrich-
ment induces beneficial effects in HD mouse models
(reviewed by [251]) in part through increased expres-
sion of endogenous BDNF [252, 253]. Likewise,

dietary restriction slows the progression of neuropatho-
logical, behavioral, and metabolic alterations, and
increases BDNF levels in the striatum and cortex of HD
mice [254]. Accumulated evidence indicates that sir-
tuins (Sirt), NAD-dependent protein deacetylases, are
involved in the beneficial effects of caloric restriction
[255]. Recently, Sirt1 was shown to prevent mhtt-
induced decline in BDNF levels [256], and BDNF
was identified as a key target of Sirt1 transcriptional
activity. While mhtt interferes with CREB-regulated
transcriptional coactivator (CRTC) 1 (also known
as transducer of regulated CREB activity, TORC1)-
CREB interaction to repress BDNF transcription, Sirt1
rescues this defect both in vitro and in vivo [257]. Thus,
Sirt1 can be an additional therapeutic target to improve
BDNF levels and cognitive function in HD.

Additional evidences of possible treatments to
enhance cognition in HD come from studies show-
ing alterations in hippocampal PKA activity in R6
animals [88], and in histone acetylation in knock-
in mice [91]. We have recently shown that PKA
over-activation in the hippocampus contributes to long-
term memory deficits in R6 mice [88]. In agreement,
we observed that intra-hippocampal administration
of a PKA inhibitor reestablishes long-term recogni-
tion memory [88]. Moreover, PKA over-activation is
also observed in striatal cells expressing exon-1 mhtt
[177], thus suggesting that inhibition of the PKA
pathway could be also a good therapy to ameliorate
motor symptoms. Decreased histone acetylation in the
hippocampus has been shown to contribute to mem-
ory dysfunction in a knock-in mouse model of HD,
and treatment with the HDAC inhibitor TSA reverses
long-term memory impairments [91]. Interestingly,
administration of HDAC inhibitors to HD mouse mod-
els has been shown to improve survival and motor
performance in the rotarod, and to normalize striatal
atrophy and prevent brain weight loss (reviewed by
[217]). Thus, targeting PKA hyper-activity and his-
tone hypo-acetylation in HD could serve to ameliorate
cortico-striatal and hippocampal-dependent cognitive
function, as well as motor symptoms.

CONCLUSIONS AND FUTURE
DIRECTIONS

The study of the molecular mechanisms underlying
cognitive dysfunction in HD mouse models demon-
strates that many of the molecular pathways affected
by mhtt are common to different types of neurons. Con-
versely, the real contribution of astrocytes to synaptic
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Control

Pre-synaptic neuron Pre-synaptic neuron

Post-synaptic neuron Post-synaptic neuron

Huntington’s Disease

Fig. 1. Diagram showing putative therapeutic targets to improve cognitive decline in HD. Striatal- and hippocampal-related cognitive deficits
in HD could be caused by alterations in different pathways. Control and HD conditions are depicted for comparisons. 1, Down-regulation of
complexin-II could account for decreased pre-synaptic activity and function. 2, PSD-95 down-regulation and sequestration by mhtt could induce
an aberrant downstream signaling mediated by glutamate synaptic receptors. 3, Aberrant PKA hyper-phosphorylation and activity would lead
to a phenomenon of synaptic occlusion. 4, A dramatic decrease in the BDNF-TrkB system affects downstream signaling important for synaptic
plasticity and memory via the PLCy pathway. 5, Decreased CBP levels prompt to transcriptional dysregulation and histone hypo-acetylation
levels. Abbreviations: BDNF, brain-derived neurotrophic factor; CBP, CREB-binding protein; CPX-II, complexin-II; PKA, cAMP-regulated
protein kinase; PLCy, phospholipase C-gamma; PSD-95, post-synaptic density-95; TrkB: tropomyosin receptor kinase B.

plasticity alterations, and to cognitive impairment in
HD remains to be investigated. This knowledge will
lead to therapeutic advances, as the possibility arises
that the same treatment might improve both cognitive
and motor symptoms. In this way, our future challenge
is to design novel tools to treat cognitive symptoms
in HD based on these findings. As cognitive deficits
detected in mouse models resemble those observed
in HD patients, this encourages the search of novel
therapeutic approaches, as treatments that improve
phenotype in mouse models should be also effective in
the human pathology. In addition, it will also be impor-
tant to test whether a pharmacological treatment is
equally efficient when started either before or after cog-
nitive and motor symptoms have appeared. Moreover,
we consider that pharmacological treatments designed
to improve only motor or cognitive symptoms should
be revised in order to determine whether they are good
therapeutic strategies to counteract both symptoms.
Finally, as some of these treatments, in addition to ame-
liorate symptoms, are also neuroprotective it should be
expected that they would stop or help to slow down the
progression of the disease.
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