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Review

Hypothalamic and Limbic System Changes
in Huntington’s Disease

Åsa Petersén∗ and Sanaz Gabery
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Abstract. Huntington’s disease (HD) is a neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene.
Today, the clinical diagnosis of the disease requires unequivocal signs of typical motor disturbances, which is thought to be due
to pathology in the striatum of the basal ganglia. Increasing numbers of studies have emphasized that also non-motor symptoms
and signs are common and occur early in HD. These include psychiatric disturbances and cognitive impairment as well as sleep
disturbances with disrupted circadian rhythm, autonomic dysfunction and metabolic changes. Several of the non-motor features
may be results of dysfunction of the hypothalamus and the limbic system, which are interconnected structures central in the
regulation of emotion, sleep and metabolism. In fact, recent studies using postmortem tissue, magnetic resonance imaging and
positron emission tomography have shown that hypothalamic and limbic system changes occur early in clinical HD. This review
summarizes the current state of knowledge in this area based on clinical studies as well as experiments in animal models of the
disease and establishes that hypothalamic and limbic system changes are part of the HD pathology.
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HUNTINGTON’S DISEASE

Huntington disease (HD) is a monogenetic neurode-
generative disorder caused by an expanded CAG repeat
in the HD gene, which codes for an expanded polyg-
lutamine in the huntingtin (htt) protein [1]. Both the
normal and mutant form of htt is expressed in all
tissues in the body. It is a multi-functional protein
regulating a number of key cellular functions such as
vesicle transport and gene transcription [2, 3]. Loss
of medium spiny GABA-ergic neurons in the stria-
tum of the basal ganglia is a hallmark of HD and the
staging of neuropathology is based on the extent of
these changes [4]. Loss of neurons and general atro-
phy occur also in the cerebral cortex [5–7]. Neuronal
intranuclear inclusions (NIIs) of aggregated mutant htt
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are present in these regions [8]. Clinical diagnosis of
HD currently requires unequivocally signs of motor
disturbances such as chorea, which usually occur in
midlife [9, 10]. These symptoms of HD are associ-
ated with the basal ganglia pathology. Death occurs
15–25 years after motor onset as no cure nor disease
modifying treatment is available today [11, 12].

Individuals affected by the disease also suffer from
psychiatric symptoms and cognitive decline [9, 10,
12, 13]. The psychiatric symptoms include depression,
anxiety and irritability [14–16]. Reduced recogni-
tion of facial expression of emotions has consistently
been reported [17–26]. Other emotional and cogni-
tive changes include “frontal behaviour” characterized
by apathy, disinhibition, and executive dysfunction
[27, 28]. Psychiatric and cognitive changes are now
known to precede the motor symptoms by many years
[29]. Despite this, the focus on the movement disor-
der in the clinical practice and research of HD has
been strong. Recent studies have revealed that also
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other non-motor symptoms and signs in HD occur
early in the disease process. Sleep disturbances have
a prevalence of around 90% and are characterized by
an increased sleep onset latency, reduced sleep effi-
ciency, frequent nocturnal awakenings, and delayed
and shorted rapid eye movements [30–33]. Alterations
of the circadian rhythm and autonomic dysfunction
have been reported [34–37]. Disruption of body tem-
perature homeostasis has been reported in several
HD animal models [38, 39]. Furthermore, there are
metabolic changes characterized by increased appetite,
increased metabolism and weight loss in advanced
stages of the disease [40–42]. Hence, the clinical
presentation of HD is manifested by a spectrum of non-
motor features that often precede the progressive motor
dysfunction.

The limbic system is a group of anatomically and
functionally interconnected nuclei in the brain that
regulate emotion, sleep, circadian rhythm, tempera-
ture and body weight, functions disrupted in HD.
The concept of the limbic system has evolved over
time. Broca referred to the limbic lobe as part of the
cerebral cortex that forms a rim around the corpus cal-
lous and the diencephalon on the medial side of the
hemispheres (limbus is rim in latin), including struc-
tures such as the cingulate cortex, the parahippocampal
gyrus and the hippocampus [43]. In 1937, Papez pos-
tulated that the cortical control of emotion involved
the limbic lobe, and proposed a pathway from the
posterior hypothalamus (mammillary bodies) through
the anterior nucleus of the dorsal thalamus, the cin-
gulate cortex, the hippocampus and then back to the
hypothalamus via fornix, called the Papez circuit [44].
In parallel, the pioneering functional studies by Klu-
ver and Bucy demonstrated the association between the
limbic lobe and emotional and motivational processes
in the primate brain [45]. Further work by MacLean
[46] and Nauta [47] emphasized the critical connec-
tions between cortical structures and the hypothalamus
as well as the midbrain in the limbic system. Today,
the definition of the limbic system usually includes
the following structures: the hippocampus, the gyrus
cinguli, prefrontal cortex, the insula, septal nuclei, the
amygdala, the hypothalamus, the ventral striatum, ven-
tral tegmental area and the raphe nucleus [48, 49]. The
increased awareness of the non-motor aspects of HD is
now stimulating research investigating to what extent
this system is affected in HD. This review summarizes
the current state of knowledge in this area with special
focus on the hypothalamus and highlights the major
findings made so far in this growing and very exciting
area of the HD field.

NEUROPATHOLOGY IN THE HD
HYPOTHALAMUS

The hypothalamus consists of a number of nuclei
that express a variety of hormones and neuropep-
tides involved in the control of the endocrine system
as well as in the regulation of emotion, metabolism
and sleep [50–55]. These nuclei include the paraven-
tricular nucleus (PVN), the supraoptic nucleus, the
suprachiasmatic nucleus (SCN), the arcuate nucleus,
the nucleus tuberalis lateralis (NTL), the mammillary
bodies and the lateral hypothalamic area. Investiga-
tions of pathological changes in the hypothalamus and
the neuroendocrine system in HD began over 60 years
ago. The results so far in both clinical HD and in differ-
ent animal models of the disease have been discussed
in detail in a few reviews published over the last cou-
ple of years [56–59]. The major positive results from
studies investigating changes in the hypothalamus in
clinical HD are illustrated in Fig. 1 and are discussed
below.

Only few studies have investigated the neuropathol-
ogy in the hypothalamus in HD. The first systematic
analysis of a hypothalamic nucleus in HD was per-
formed by Kremer et al. who described a reduction
in the number of somatostatin neurons in and atro-
phy of the NTL [60–62]. The function of this specific
nucleus is still unknown. Loss of the neuropeptide
orexin (also called hypocretin), implicated in the sleep
disorder narcolepsy as well as in the control of emo-
tion and glucose metabolism, was then demonstrated in
the lateral hypothalamus of HD brains with Vonsattel
grades 1–4 [4, 63–65]. Although loss of around 30% of
orexin-expressing neurons in HD was not sufficient to
be reflected in the cerebrospinal fluid (CSF), this find-
ing inspired further studies focusing on sleep in HD
as well as on the extent of neuropathological changes
in the hypothalamus [66–69]. Advances in the knowl-
edge of hypothalamic changes in HD has however been
limited by scarcity of tissue from this region in brain
banks as well as due to lack of a clear morphological
definition of the borders of this region and its nuclei.
We have recently established a method to delineate
this region using robust anatomical landmarks in for-
malin fixed brain sections stained with the cell marker
cresyl violet and the myelin stain luxol fast blue [65].
Although our systematic stereological analyses of the
whole hypothalamic region using this technique only
detected a trend towards atrophy in a relatively small
cohort of 9 HD cases from Vonsattel grade 1–4 com-
pared to 8 controls, analyses of specific nuclei such
as the PVN revealed a significant loss of neurons in
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Fig. 1. Hypothalamic changes in HD. The illustration summarizes the main positive results from studies investigating hypothalamic changes in
clinical HD. CART: cocaine and amphetamine regulated transcript; CSF: cerebrospinal fluid; D2: dopamine D2; HPA: hypothalamic pituitary
adrenal axis; NTL: nucleus tuberalis lateralis; PVN: paraventricular nucleus.

HD cases [65]. We also detected loss of oxytocin and
vasopressin in the HD hypothalamus, which has also
been found in several mouse models of HD [70–74].
Importantly, these neuropeptides have been implicated
in social behavior and are now intensively studied as
promising targets new therapies for a number of men-
tal disorders [51, 75]. In particular, oxytocin has been
found to increase trust, empathy and interpretation of
emotional expression [51, 76, 77]. It is therefore pos-
sible that loss of oxytocin could be involved in causing
some of the psychiatric aspects of HD including the
reduced recognition of facial expression of emotions.

The neuronal cell population expressing cocaine and
amphetamine regulated transcript (CART) has been

found to be increased in the hypothalamic region,
which is also reflected in the CSF [65, 78]. The
neuropeptide CART is known to increase anxiety-
like behaviour in rodents and has been implicated
in mood disorders, and hence may therefore play
a role in causing anxiety in HD [79–81]. However,
not all neuropeptide- expressing populations in the
hypothalamus are affected in HD. Neuronal pop-
ulations expressing neuropeptide Y, histamine and
melanin concentrating hormone were not altered in
the HD hypothalamus of Vonsattel grades 1–4 [63,
65, 82]. Taken together, the neuropathological stud-
ies to date demonstrate that there is neuronal loss in
specific nuclei of the HD hypothalamus as well as
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specific alterations of metabolism and emotion con-
trolling neuropeptides.

The molecular mechanism/s linking expression
of mutant htt with hypothalamic pathology is still
elusive. One potential link may be provided by
huntingtin-associated protein-1 (HAP-1), a protein
highly enriched in neurons in the hypothalamus which
binds mutant htt stronger than wild-type htt [83]. HAP-
1 is an important regulator of early post-natal feeding
[84, 85] and expression of HAP-1 is reduced in trans-
genic HD mice that display weight loss [86]. However,
the food intake controlling function of HAP-1 might
not be important in adult stage [87] and other mouse
models such as the BACHD mouse does not show
altered expression levels at the time of metabolic dis-
ruption [70]. Another potential molecular mechanism
underlying the hypothalamic dysfunction in HD may
be transcriptional dysregulation as mutant htt has been
found to suppress Brn2, a key transcription factor for
the PVN neuropeptides [74].

HYPOTHALAMIC-RELATED
NEUROENDOCRINE CHANGES IN HD

Although hypothalamic changes can be reflected in
altered levels of neuroendocrine factors in CSF and
blood, the assessment of such effects are complicated
by the influence of gender, age, the diurnal rhythm, sati-
ety level, medication as well as variability of available
assays. The interpretation of results from studies pub-
lished so far focused on the neuroendocrine changes
in CSF and blood in HD patients is therefore limited
by a large variation between and within studies, hence
rendering it difficult to draw solid conclusions from
the data [56–59]. A few clinical studies investigating
hypothalamus-derived neuroendocrine factors in HD
have however revealed interesting results. Besides the
before mentioned increased levels of CART in CSF,
analyses of the hypothalamic pituitary adrenal (HPA)
axis in blood and urine together with mRNA levels
of corticotrophin releasing hormone in the hypotha-
lamus have collectively pointed to an upregulation
of this endocrine axis in HD [88–92]. An activated
HPA axis has been one of the most studied neuroen-
docrine changes in clinical depression and may exert
negative actions also on cognitive function and energy
metabolism [93]. Moreover, a delayed onset of the diur-
nal rise of the hormone melatonin has been found in HD
patients, suggesting dysfunction of the SCN [94]. Inter-
estingly, treatment with melatonin has recently been
shown to inhibit toxicity induced by mutant htt and

to delay disease onset in the R6/2 HD mouse model
[95].

Hypothalamic changes can also affect afferent sig-
nals from the periphery such as leptin, a satiety signal
from adipose tissue, ghrelin, an appetite stimulator
from the gastric mucosa, and insulin, an anabolic pep-
tide secreted from the pancreas [96]. Indeed, insulin
resistance has been found in early stages of HD [97].
Reduced leptin and increased ghrelin levels have been
found in later stages of HD, possibly reflecting the
catabolic stage commonly send in advanced HD [98].
Other studies have however failed to detect signifi-
cant difference in leptin and ghrelin levels between HD
patients and controls [99, 100]. Leptin levels have been
measured in several animal models of HD and have
been found to be both increased and reduced depend-
ing on the model used and sometimes the age of the
animals. Rodent models expressing a fragment of the
mutant HD gene show reduced leptin levels; the pub-
lished literature have reports of R6/2 from 6 weeks
of age [101], the N171-82Q at its symptomatic phase
[102] and the tgHD rat at 12 months of age [103]. The
full length BACHD mouse displays increased leptin
levels from 4 months of age [70] and in the YAC128
mouse it has been reported at 12 months of age [104].
Interestingly, the 140 CAG knock-in mouse model
shows increased levels at 7 months of age and then
decreased leptin levels at 22 months of age [101]. The
latter together with the notion that full length mutant
htt models may represent an early phase of HD and the
fragment mutant htt models mimic later stages, suggest
a biphasic curve of leptin alterations possibly mediated
by hypothalamic dysfunction [70].

IMAGING FINDINGS IN THE HD
HYPOTHALAMUS

Significant differences have been detected in the
gray matter contents in the hypothalamic region
between HD patients with motor symptoms and age-
and sex-matched controls using voxel based morphom-
etry (VBM) in magnetic resonance images (MRI) [105,
106]. In a recent study, we continued to investigate the
extent of changes in the hypothalamic region using MR
images from the PREDICT-HD study. The PREDICT-
HD study is an international multicenter observational
study which has enrolled a large number of indi-
viduals who have tested positive for the mutant htt
gene but who have not yet manifested with motor
symptoms, i.e., prodromal HD [107]. We found that
there was a significant reduction in the gray matter
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signal in the hypothalamic region in prodromal HD
that paralleled alterations in the striatum and insula
over a decade before expected onset of motor symp-
toms using VBM of MR images obtained using 1.5
Tesla (T) [108]. Using a different approach based on
mathematical modeling, gray matter content in the
hypothalamic region alone was powerful enough to
distinguish prodromal HD from controls. It was also
possible to distinguish different groups of prodromal
HD divided based on different expected time of motor
onset using only data from the hypothalamic region,
suggesting progressive changes. Furthermore, several
studies using positron emission tomography (PET)
have found reductions of dopamine D2 receptors as
well as microglia activation in the hypothalamic region
of prodromal HD [109, 110]. Taken together, these
results demonstrate that the hypothalamic region is
affected early on in HD.

OTHER LIMBIC SYSTEM CHANGES IN HD

Imaging studies have been instrumental in detecting
a number of changes also in other parts of the lim-
bic system besides the hypothalamus in clinical HD

Fig. 2. Limbic system changes in HD. The illustration provides an
overview of the main findings using imaging of the limbic system in
clinical HD. A: amygdala; C: cingulate cortex; F: fornix; Hipp: hip-
pocampus; Hyp: hypothalamus; PFC: prefrontal cortex; R: nucleus
raphe; VS: ventral striatum; VTA: ventral tegmental area.

(Fig. 2). Grey matter loss and atrophy of the amyg-
dala, the ventral striatum, the hippocampus, the insula,
the anterior cingulate cortex and the prefrontal cortex
have been reported [105, 110–117]. Reduction of D2
receptor binding has been detected in anterior cingulate
cortex, insula and amygdala [110, 118]. Both increased
and reduced activity in the anterior cingulate cortex has
been found using different fMRI paradigms in prodro-
mal and symptomatic HD as well as less functional
connectivity with other cortical regions, indicating
dysfunction of this area [119–123]. Reduced functional
connectivity and decreased activation of the left lat-
eral prefrontal cortex was found when verbal working
memory was tested using fMRI in prodromal HD [124,
125]. Interestingly, an association between depressive
state and hypoechogenicity in the raphe nucleus has
been detected using transcranial sonography in HD
patients, suggesting that serotonergic dysfunction in
this nucleus may play a role in depression in HD
[126]. Increased microglia activation is present in the
amygdala already in prodromal HD, indicating early
involvement of this area in the disease [110]. White
matter degeneration has been detected in the fornix
using diffusion tensor imaging [127]. Taken together,
imaging studies show both dysfunction and signs of
neurodegeneration early on in the limbic system in HD.

Neuropathological studies of the limbic structures in
HD are rare. However, cell loss in the anterior cingulate
cortex in HD cases with Vonsattel grades 1–3 has been
reported to be associated with mood symptoms [128].
This area also contain ubiquitinated inclusions [129].
Neuropathological analysis of the prefrontal cortex in
Vonsattel grade 3–4 HD brains has revealed neuronal
loss and gliosis [130]. The synaptic protein complexin
2 has been found reduced already in grade 1 HD pre-
frontal cortex and glutamate uptake has been found
decreased already in grade 0, again indicating early
neuronal dysfunction in this area [131, 132]. Less neu-
ronal density has been shown in the CA1 region of the
hippocampus in HD [133]. A qualitative immunohis-
tochemical study of the amygdala has shown severe
atrophy [134] and biochemical studies have revealed
increased levels of thyrotropin releasing hormone but
normal levels of vasoactive intestinal peptide (VIP),
somatostatin and neurotensin in the HD amygdala
[135, 136]. Importantly, pathology in the amygdala
could be involved in causing the reduced recognition
of faces in HD [137]. Further systematic and detailed
postmortem analyses of these structures as well as a
continuation of imaging studies will be important to
fully determine the extent and further characteristics
of pathology in these limbic areas in HD.
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Table 1
Summary of main alterations in the hypothalamic/limbic system in HD animal models

Region Pathology Model References

Hypothalamus Atrophy R6/2 (12 w) [72, 155, 156]
Neuronal loss R6/2 (12.5 w), N171-82Q (4 mo) [64, 86]
Loss of CART R6/2 (12 w) [72]
Loss of CRH R6/2 (8 w) [72, 74, 89]
Loss of GnRH R6/2 (9 w) [157]
Loss of orexin R6/2 (7.5 w), YAC128 (12 mo), [64, 67, 70]

AAV-hypo (4 w po)
Loss of oxytocin R6/2 (8 w), AAV-hypo (4 w po) [70, 74]
Loss of MCH R6/2 (8 w) [72]
Loss of POMC R6/2 (8 w) [72]
Loss of vasopressin R6/2 (8 w), AAV-hypo (4 w po) [70, 73, 74]
Loss of VIP R6/2 (11 w) [158]
Reduced HAP1 levels N171-82Q (4 mo) [86]
Reduced clock genes R6/2 (16 w) [37]
(mPer2, mBmal1) R6/2 (16 w) [37]
Loss of Brn2 R6/2 (8 w) [74]
Upregulation of HPA axis R6/2 (5.5 w) [89]

Hippocampus Reduced R6/2 (3.5 w), R6/1 [140–143, 159]
neurogenesis (20 w), N171-82Q (16 w), YAC128 (3 mo)

Increased ferritin R6/2 (5–7 w) [160]
Reduced serotonin R6/2 (4 w) [161]
Reduced HTR 1A, 2A, 1B R6/1 (12 w) [162]
Reduced BDNF R6/1 (12 w) [163]
Reduced PSA-NCAM R6/1 (7 w), R6/2 (7 w) [164]

Amygdala Atrophy TgHDrat (15 mo) [165]
Cingulate cortex Atrophy R6/1 (9 mo) [166]
Prefrontal cortex Altered activity R6/2 (7-8 w), TgHDrat (4-5 mo) [167, 168]

The transgenic R6/2 and R6/1 mice express around 150 and 120 CAG repeats, respectively, in exon 1 of the human HD gene [148]. The
N171-82Q transgenic mouse expresses the first 171 amino acids of human htt with 82 glutamines [169]. The YAC128 mouse expresses full
length human mutant htt with 128 glutamines [170]. The transgenic HD rat (tgHDrat) has 51 CAG repeats in around the first 22% of the rat HD
gene [171]. AAV-hypo is a mouse model constructed with selective hypothalamic injections of adeno-associated viral vectors expressing the first
853 amino acid fragment of human htt with 79 glutamines [70]. BDNF: brain-derived neurotrophic factor; CART: cocaine and amphetamine
regulated transcript; CRH: corticotrophin releasing hormone; GnRH: Gonadotrophin releasing hormone; HPA: hypothalamic pituitary adrenal;
HTR: serotonin (HT) receptor; MCH: melanin-concentrating hormone: POMC: proopiomelanocortin; PSA-NCAM: polysialylated form of the
neural cell adhesion molecule; VIP: vasoactive intestinal peptide; po: post-injection.

INSIGHTS FROM ANIMAL STUDIES

Studies using animal models of HD have identi-
fied a number of different pathological changes in the
hypothalamic/limbic system (Table 1). These studies
have played an important role in stimulating further
clinical investigations in this area. Also, functional
studies of the orexin system and the SCN in the R6/2
mouse have shown that these systems can be pharma-
cologically modulated despite their pathological state,
suggesting their therapeutic potential for treatment of
non-motor features of HD [138, 139]. The extent of
pathology in the animal models has however not always
been reflected in clinical HD. As an example, numer-
ous studies in transgenic HD mouse models have found
decreased neurogenesis in the dentate gyrus of the hip-
pocampus [140–143], which was later not found in
human HD tissue [144]. This highlights the impor-
tance of validating findings made in animal models

using clinical material. Animal models do provide use-
ful tools to study causative relationships which can
not be easily established in the clinical setting. One
such tool is the BACHD mouse model which expresses
full length mutant htt ubiquitously but is produced
using a cre-loxP system rendering it possible to inac-
tive mutant htt in specific brain regions or cells using
cre-recombinase [145]. Several animal models of HD
including the BACHD mouse model recapitulate the
clinical features of increased appetite and insulin resis-
tance [70, 89, 102, 146, 147]. Using adeno-associated
viral (AAV) vector technology with cre-recombinase
we recently showed that expression of mutant htt in the
hypothalamus controls these aspects of the metabolic
phenotype in the BACHD mouse [70]. Furthermore,
selective expression of mutant htt in the hypothalamus
of wild-type mice using AAV-vectors lead to the devel-
opment of metabolic disturbances as well as reduced
levels of oxytocin, vasopressin and orexin, features
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found in both transgenic mouse models with ubiquitous
expression of mutant htt as well as in clinical HD [70].
Hence, it is likely that hypothalamic dysfunction plays
an important role in the development of metabolic
changes in HD. However, one limitation of these exper-
iments is the fact the full length BACHD mouse (and
the YAC128 mouse) as well as the AAV-hypo model
gain weight whereas the mutant htt fragment models
lose weight similar to advanced stage HD patients [38,
70, 72, 86, 89, 104, 145, 148, 149]. Therefore, weight
loss in HD may be related to pathology in other tissues
of the body such as white and brown adipose tissue,
the gastrointestinal system and/or the skeletal muscle
[38, 101, 150–152]. Nevertheless, similar approaches
based on the cre-loxP system and viral vector tech-
nology in animal models can be useful to determine
the involvement of specific neuronal circuitries in the
limbic system for the development of other non-motor
features of the disease. Possibly the current therapeu-
tic strategies to lower expression of htt should aim at
targeting also these areas rather than only the typi-
cal chosen striatal region in order to have effects on
non-motor aspects of HD.

CONCLUSION

HD has previously been viewed as a movement
disorder with selective basal ganglia pathology. It is
now clear that its clinical spectrum requires multidisci-
plinary care in the crossroads of neurology, psychiatry,
genetics and cognitive medicine. Recent years’ studies
have highlighted that HD pathology also constitutes of
hypothalamic dysfunction and changes in the limbic
system, suggesting a neurobiological basis beyond the
basal ganglia for the early non-motor features of the
disease. As these alterations appear to occur early in
the disease process, they may provide effective targets
for disease-modifying interventions. However, further
studies are needed to fully determine the role and extent
of these changes in HD. Interestingly, as hypothalamic
and limbic system changes are implicated also in men-
tal illness and metabolic diseases, the intense efforts
in research and drug development for these conditions
may help to advance the understanding also of HD and
provide new effective treatment options [75, 153, 154].
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