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Abstract. Deep Packet Inspection (DPI) methods are extensively used in traffic classification. These methods extract unique application content
either at byte or bit level granularity and represent them as signatures. DPI involves string or regular expression matching, which is computa-
tionally expensive, and evaluating signatures at bit-level granularity makes it even more inefficient. With the ever-increasing bandwidth and the
high-speed internet traffic, the software implementations of DPI have become a performance bottleneck. In this paper, we propose HClass, a
DPI-based network traffic classifier completely implemented in software to speed up signature matching. Our contributions with HClass are
three-fold. First, we propose a hybrid signature matching technique with a combination of bit and byte-level signatures. Second, we propose
methods to perform bit-level signature matching with byte/word level operations to cope with software implementations and be compatible with
general-purpose CPU operations. Third, it uses a two-phase signature matching where first-phase signatures are short and quickly identify the
potential application(s), and the second-phase signatures verify the potential application(s) to reduce false positives. We perform experiments
with HClass on three datasets and report classification performance and execution time improvement of HClass with our implementations
in C language.
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1. Introduction

Real-time network traffic classification is important for Internet Service Providers (ISPs) and network admin-
istrators for network management operations. ISPs use traffic classification primarily for providing differentiated
treatment, meeting the Quality of Service (QoS) demands of applications, and other network management opera-
tions like security monitoring. Traditional port number based traffic classification is no longer reliable as various
protocols use non-standard port numbers for different reasons [26]. Thus recent works use other techniques like
machine learning algorithms [1,21,23], application behavior profiling [18] and deep packet inspection [12,19] to
classify network traffic. Machine learning algorithms use a set of flow level characteristics like packet inter-arrival
rate and the number of bytes/packets within a flow for uniquely identifying applications. A major limitation of
machine learning methods is that they have not been implemented in real networks [31]. Profiling applications will
be costly both in terms of computation and storage.

Deep Packet Inspection (DPI) analyzes the application payload for identifying the set of keywords [19,28] or
short sequence of bytes [33] or invariant bits [15] to generate signatures. Thus DPI is an effective method for traffic

*Corresponding author. E-mail: neminath@iiti.ac.in.

0926-6801/$35.00 © 2024 – IOS Press. All rights reserved.

mailto:phd1801101001@iiti.ac.in
mailto:neminath@iiti.ac.in
mailto:neminath@iiti.ac.in


518 P. Khandait and N. Hubballi / HClass: Fast hybrid network traffic classification with bit and keyword level signatures

classification as it relies on unique keywords or bits specific to an application. These application signatures are
usually represented in the form of Finite State Machine (FSM) and regular expressions. Hence signature evaluation
with payload content is computationally expensive [7]. Thus a challenge for the DPI-based traffic classifiers is to
reduce the computational overhead. In order to achieve the execution speed, recent works propose to limit the
amount of data screened to a few initial bytes [4]. It has been shown in the literature that keyword-based signatures
can identify only text-based protocols, while bit-level signatures can identify both binary and text-based protocols
[13,14,35]. However, bit-level signature matching is very expensive to implement in software. In this paper, we
propose HClass – a hybrid method that has both bit-level and keyword-based signatures to identify the application
traffic. Our contributions in this paper are as follows.

(1) We propose a hybrid network traffic classifier HClass, which uses both keyword-based and bit-level sig-
natures for application identification.

(2) Signatures of HClass are organized into two levels. First level contains application-specific short bit-level
signatures and second-level signatures is a collection of keyword-based and bit-level signatures used for
identifying text protocols and binary protocols respectively.

(3) We propose a very efficient signature matching technique at the bit level using word-level operations tailored
for software implementation.

(4) We experiment with a set of protocols and show that HClass accomplishes improved execution perfor-
mance over other bit-level signature matching techniques.

We structure the remainder of this paper as follows. In Section 2, we brief the related work on DPI and ma-
chine learning based traffic classification techniques. In Section 3, we describe our proposed hybrid traffic classi-
fier HClass, bit-level and keyword-based signature generation, and how signatures are used for classifying the
network flows. Experiments and evaluation done with HClass are outlined in Section 4. Finally, this paper is
concluded in Section 5 with a summary and future scope of work.

2. Related work

In this section, we describe prior works on network traffic classification techniques. These works mainly are of
two types as ones based on Deep Packet Inspection and others based on machine learning and deep learning. We
elaborate works of these two categories below.

(I) Deep Packet Inspection based Techniques: These works can be grouped into three categories as detailed
below.

(i) Using Application Keyword based Signatures: These methods identify a commonly found yet meaningful
set of keywords [28,30] from application flows. Words that are part of the application header are good candidates
for such keywords. For example, in SMTP protocol, the words like “helo”, “ehlo”, “mail”, “from”, and “to” are
good candidate keywords. These keywords are extracted considering their frequency of occurrence in the flows.
SANTaClass [30] and RDClass [28] are two methods which identify keywords after parsing the payload using a
collection of delimiters. Once the keywords are identified, they are represented in the form of a state transition
machine as signatures. A disadvantage of these methods is that they make multiple scans of payload where in the
first scan, words are extracted, and in the second scan, keywords and their ordering is verified. In order to speed up
signature matching, a single scan algorithm is described in [12,19]. There are software-based algorithms designed
[8,32] to meet the computational need of such keyword-based and regular expression based signatures. Few other
works like DPFEE [17] implement hardware-based solutions for Deep Packet Inspection. Ren et al. [25] proposed
outsourcing the DPI operations to a third party and using it as a service.

(ii) Using n-grams Extracted from Payload: These methods extract short sequences (n-grams) from the pay-
load of application flows. These short sequences of the payload portion can be used along with their sequence
for flow classification. Few works [33,37] also generate keyword-based signatures using these n-grams. ProDe-
coder [33] and Securitas [37] use the latent relationship between these n-grams to generate keywords which are
subsequently used for classification.
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(iii) Using Bit-level Signatures from Payload: Some of the recent works generate signatures using bit-level
content. These bit-level signatures can handle new application encoding and data formats. Further bit-level signa-
tures will be short compared to the other two types and hence are better for preserving users’ privacy. BitMiner
[36] and Bits Learning [35] learn the bit value at a particular position. BitCoding [13,14] identifies invariant bits as
signatures which are encoded with run-length encoding. A state transition machine based bitwise matching is done
to classify unknown flows. BitProb [15] generates probabilistic bit signatures to classify network traffic. It extracts
the first ‘n’ bits of an application flow and calculates the probability of a bit being 0 or 1 at a particular position.
A probabilistic state transition machine is generated with all bit probability values to classify the network traffic.
These methods are not computationally efficient as they compare a single bit at a time and hence require as many
comparison operations as there are bits in the signature.

II. Machine Learning based Techniques: Another major category of works use machine learning algorithms for
network traffic classification [2]. These algorithms mainly fall into supervised [6], unsupervised [38], ensemble
methods [11]. Supervised algorithms use labeled application flows or custom feature vectors for classification or
identification of applications. However, these methods can not identify new applications which are not used for
training purpose. This issue is addressed in unsupervised methods which group the flows or feature vectors based
on similarity. New or unknown applications are identified if new applications do not show similarity with existing
set of applications. Ensemble and hybrid methods claim to improve the performance by using more than one type
of classifiers. Jin et al. [16], build an accurate and robust classifier with multiple binary classifiers trained on labeled
flow level data. Some recent works also use deep learning models like transfer learning [27], multimodal learning
[1], recurrent neural networks [20], deep convolution networks [9] for traffic classification showing varied accuracy
and performance.

The work of Hussein et al. [24] highlights the limitations of machine learning methods. These limitations appear
in the form of not being able to identify few applications correctly [3] (for e.g., some methods can not distinguish
between gmail and yahoo mail traffic). Further, a large number of video streaming applications like youtube,
amazon prime, etc may have overlapping characteristics. Similarly mobile applications have very large set running
into millions in count. We believe that such scenarios prevent the machine learning based methods from scaling. To
the best of our knowledge there are no studies which have validated these algorithms on large scale experiments.
Further, machine learning methods require feature extraction which often requires entire flow to end incurring
significant delays in classification.

3. Proposed traffic classification

This section describes the proposed hybrid traffic classifier HClass. In the next four subsections, we present the
design rationale of the proposed hybrid traffic classifier HClass, a high-level description of its working, details
of how different types of signatures are generated in HClass and signature matching at run time.

3.1. Design rationale

Application Protocols are of two types, binary and text-based. Binary protocols set specific values at specific bit
positions. For example, flags in the header fields (TCP SYN flag) are examples of binary representation. Hence,
the data in binary protocols can be viewed as a series of bits with fixed values (0 or 1) at specific positions. An
example of a binary application protocol is DNS, whose header is shown in Fig. 1a. The DNS header has flags
with fixed bit values positioned at a specific offset from the beginning. For instance, the QR flag in the DNS header
is a one-bit field specifying the type of message. A value ‘0’ indicates the query, and the value ‘1’ is used for the
response. Prior works [13–15] have shown that these protocols can be identified with bit-level signatures made
up of 0’s, 1’s, and ∗’s generated from the initial few bytes of the payload. However, extracting signatures at the
bit-level granularity and performing bit-by-bit signature comparisons (methods used in the existing literature) is
computationally expensive.
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Fig. 1. Binary and text-based protocol headers.

Fig. 2. Example showing application specific bit signatures and keywords.

On the other hand, text-based protocols contain plain text data in a human-readable format. Text-based protocols
use only the values corresponding to human-readable ASCII/Unicode characters and can be classified efficiently
using keyword-based signatures [28,30]. HTTP is an example of a text-based protocol. A sample HTTP header is
Shown in Fig. 1b. It is easy to see that there are words like “GET”, “HTTP”, “Host”, and “User-Agent”. These
words can serve as candidates for identifying HTTP traffic. Keyword-based signatures use such words as part of
their signatures. Keyword-based signatures are reliable and easy to implement with software programs running on
general-purpose CPUs. However, searching keywords in the payload involves string matching, which is a compu-
tationally expensive operation that can lead to higher time complexity. The larger the payload size, the longer it
takes for the search operation and classification. Taking motivation from these, in this paper, we propose HClass,
a fast hybrid network traffic classifier that efficiently implements both bit-level and keyword-based signatures to
quickly classify both binary and text-based protocols.

3.2. Working of hybrid classifier

HClass is a hybrid network traffic classifier aimed to identify both text-based and binary protocols using a
combination of keyword-based and bit-level signatures. HClass signatures are organized into two levels. The first-
level signatures are binary signatures generated using application payloads of both text and binary protocols, and
second-level signatures are separated with keyword-based signatures for text-based protocols and binary signatures
for binary protocols. The idea here is to use the best type of signatures for identifying the respective class of
protocols. Further, the first level signatures are in binary format, as text-based signatures can also be converted to
binary signatures by converting the keyword(s) into a binary representation. Figure 2 shows the two-stage signature
structure of HClass. The first stage bit signatures are short with fixed number of bits whose purpose is to quickly
identify the probable application(s). As these signatures are binary irrespective of underlying application type,
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bit-level comparison is done in the first phase. Here the initials Bi represent the signature of a binary protocol and
Ti represents the signature of a text-based protocol. In Fig. 2 there are four protocols of each type are shown. It
is evident to note that bit level signatures are made up of a series of 0’s, 1’s, and ∗’s. Once the initial bit-level
signatures are matched, subsequently expanded/second-level signatures are matched.

The main idea of having the first-level signatures is to quickly determine potential application matches and
whether the flow belongs to a binary or a text-based protocol. First phase signature matching assigns a temporary
label to a test flow indicating the type of protocol matched (binary or text-based) and the name of the application to
which the flow belongs. Using this labeling the second phase signature matching is done. If the first level matching
identifies a test flow as a binary protocol, then the second level bit-level signatures are matched to the probable
application(s). The second level signature matching omits the first n bits already matched in the first phase. On
the other hand, if the flow is labeled as belonging to a text-based protocol, the classifier opts for a keyword-based
signature matching in the second phase for verification. If the keywords corresponding to a probable application
protocol identified in the first phase are found in the second level keyword based signature matching, then the flow
is identified to be of that application. Thus, the first-level signature matching helps narrow the potential matches
by speeding up the comparisons.

In the subsequent paragraphs, we elaborate the details of how signature matching is performed and other
heuristic-based optimizations done to speed up this operation.

3.3. Signature generation for hybrid classifier

As mentioned earlier, HClass uses two level signatures for classifying the network traffic. The signatures
are generated by analyzing the flow payload content of applications. HClass classifies both binary and text-based
protocols. It uses bit-level signatures for binary protocols, a combination of bit-level and keyword-based signatures
for text-based protocols. These signatures are arranged in three parts: a) common bit-level signature, b) extended
bit-level signature, and c) keyword-based signature. These three types of signature generation is explained in the
subsequent paragraphs. Signature generation uses flow content, and the first step is to reconstruct the flows.
1. Flow Reconstruction: HClass generates signatures using payload content extracted from specific

application flows. Thus, the first step is to reconstruct bidirectional flows from network packets. This is done by
considering five tuples, namely SrcIP, DstIP, SrcPort, DstPort, Protocol from an individual packet.
All packets sharing these common attributes will be part of the flow. HClass uses bidirectional flows, hence the
packets in either direction with SrcIP, DstIP and SrcPort, DstPort interchanged will be part of the flow.
In general, there are two ways to identify and reconstruct flows. First, by identifying the connection from start to
end, and second, is time-bound. In the first case, all packets from start to end sharing common attributes will be
part of a flow. In the time-bound case, all packets exchanged between two hosts sharing common attributes and
having inter-packet timing of not more than a threshold ζ will be part of a flow. For TCP, which is a connection-
oriented protocol, the flow involves all the packets exchanged between connection establishment with a three-way
handshake and connection closure with a four-way handshake or till the RST packet is seen. In the case of UDP,
all packets having inter-packet timing of not more than ζ and sharing common attributes will be part of the flow.
2. Common Bit-Level Signature: HClass generates common bit level application protocol signa-

tures using the first ‘n’ bits of payload. Thus it extracts first ‘n’ bits from every application flow (both binary and
text-based protocols) and identifies bits that are invariant as shown in Fig. 3. In this sample figure, three applica-

Fig. 3. Bit level signature.
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tion flows of an application are shown, each having a bit sequence of length n. Using these bit sequences, a ‘n’
bit signature sequence is generated. This signature bit sequence will have bits marked with 1, 0, and ∗s. Those bit
positions which are consistently either 0 or 1 across the flows will be marked with 1 or 0, and those bit positions
which do not have consistently either 1 or 0 will be marked with ∗. It is worth noting that bit-level signatures
can be generated for text-based protocols which use keywords as part of signatures. For example, HTTP protocol
may use ‘GET’ as a keyword as part of its signature. This can be viewed as a series of bits for initial bit signature
generation. Sometimes, it may happen that the entire keyword ‘GET’ may not appear within the ‘n’ number of bits
chosen for first-level signatures. However, this is handled as keyword matching at the second level happens from
the beginning of the payload.
3. Extended Bit-Level Signatures for Binary Protocols: For the binary protocols, ad-

ditional m bit binary signatures are generated by identifying invariant bits as in the previous case.
4. Keyword Signature for Text-based Protocol: Signatures for text-based protocols are gen-

erated by identifying unique keywords appearing in the application payloads. For identifying keywords also,
HClass uses the reconstructed flows. The keywords are selected with the following procedure

a) Parsing the Payload for Word Extraction: The payload text of the application is parsed using a set of delimiters
such as ‘blank’, ‘coma’, ‘colon’, ‘semicolon’, ‘tab’, ‘newline’, etc.

b) High-Frequency Word Identification: The words that appear most frequently will be identified as potential
candidates for keywords.

c) Word Filtering: Some of the words like ‘the’, ‘and’, date, names, etc. may appear frequently across the flows.
However, they do not make up as good candidates for signatures. These words will be filtered by having a
dictionary of bad words.

d) Final Keyword Selection: The remaining set of words is screened by an expert to select meaningful keywords
for every application.

e) Keyword Offset Calculation: Once the keywords are selected for an application, a second round of payload
search is done to identify the byte offset values of each keyword. Although offset calculation is optional, it
will help in accelerating the search operation as certain portion of the payload can be skipped from evaluation.

5. Bit Mask Generation for Bit-Level Signatures: Matching the signatures in real-time is
a very expensive operation as it involves comparing the payload of new packets against the signatures of different
applications. As mentioned earlier, bit-level signatures are not efficient if compared bit by bit [14] using general-
purpose processors with software implementations due to the following two reasons.

a) These processors do not support bit-level operations as there are no instructions to perform bit-level compar-
ison operations.

b) The signatures have ∗ bits which need to be ignored while comparing the two bit sequences (signature and
payload content). Thus we design a technique where we leverage the byte level operations to perform several
bits comparison.

We address these two problems by deriving two masks (Mask-1 and Mask-2) from the signature bit sequence
represented in Fig. 3. Mask-1 and Mask-2 bit sequences we use during signature matching. The two masks are
generated as follows.

(i) Mask-1 will have those bits which are marked as ∗s in the signature filled with ones, and remaining bits
which are consistently either 0 or 1 will be filled with zeros.

(ii) Mask-2 is a complement of Mask-1, i.e., it will have those bits which are marked as ∗s in the signature filled
with zeros, and the remaining bits which are consistently either 0 or 1 will be filled with ones.

The idea of using Mask-1 and Mask-2 is to ignore ∗ bits from comparison with word-level operations. The two
masks generated for the example bit signature sequence of Fig. 3 are shown in Fig. 4. These masks will help in
efficient signature matching, as elaborated in subsequent sections.
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Fig. 4. Bit Mask-1 and bit Mask-2 from signature.

Fig. 5. Signature′ generation with bitwise OR of signature complement and Mask-1.

Fig. 6. Input′ generation with bitwise AND of input bit sequence and Mask-2.

3.4. Signature matching for real-time traffic classification

The traffic classification phase classifies flows into different applications using both common bit signatures and
extended bit signatures or keyword-based signatures. As in the signature generation phase, flows are generated with
packets sharing common attributes, and payload data is used for signature matching. From the flow data, the first
‘n’ bits are extracted and compared with common bit signatures. Using this, the potential application signatures
are determined and subsequently matched with either an extended bit signature or a keyword-based signature.
Both bit-level signatures (common and extended) will make use of masks generated using the method described
in Section 3.3. The details of bit-level signature matching and keyword-based signature matching are described
below.
1. Bit-Level Signature Matching: Bit-level signature matching is done by comparing the bits of

payload to bit signatures. As mentioned previously, classification happens in real-time and is performance critical
operation; thus needs to be efficient with a minimum number of operations. The mask bit sequences, along with
signature bits, help in improving the operational speed by optimizing bit sequence comparisons with word-level
bitwise operations. Signature matching happens on the manipulated bit sequences of signature and test bit (input)
sequence, as detailed below.

(1) Signature′ bit-sequence Generation: Let Signature be the signature bit sequence (either common bit-
signature or extended bit signature. The signature bits are complemented (every bit is toggled) to get ∼Signa-
ture representing the complement bit sequence. This is bitwise ORed with Mask-1 bits to generate Signature′
bit sequence as shown in Fig. 5.

(2) Input′ Bit-Sequence Generation: Input bit sequence extracted from test payload is bitwise ANDed with
Mask-2 bit sequence to generate Input′ bit sequence as shown in Fig. 6.
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Fig. 7. Final bit sequence generated with bitwise XOR of Signature′ and Input′ bit sequences.

Table 1

Bitwise operations required for signature comparison

S. no Operation Details Online/offline Frequency

1 Complement Signature bits are complemented Offline Once

2 OR Bitwise OR of Mask-1 with complement of signature Offline Once

3 AND Bitwise AND of test bit sequence with Mask-2 Online Once per test flow

4 XOR Bitwise XOR of output of Step-2 with output of Step-3 Online Once per test flow

(3) Final Evaluation Bit Sequence: Final evaluation bit sequence is generated with bitwise XOR operation of
Signature′ and Input′. The input bit string matches with signature if the final evaluation bit string has all 1’s
as shown in Fig. 7; otherwise, it does not match with signature bits.1

These bitwise operations help us implement signature matching efficiently on commodity hardware architec-
tures. For example, a 64-bit word architecture can do 64-bit operations with the execution of one instruction. This
will help in verifying all invariant bits up to 64 bits in a single operation instead of checking them one by one.
Thus any signature length which is multiple of 64 can be implemented with a sequence of bitwise operations.
Table 1 lists the number of bitwise operations required to verify a one Wordlength bit signature. We can notice
that, out of the four operations required, two are offline and can be done as part of signature generation once, and
the other two are done in online mode (real-time) for every test flow. Thus Signature′ can be computed offline for
every application signature and used. For a signature that is X × Wordlength of target processor architecture, X

number of online operations are required. This linear increase in the number of bitwise operations required enables
the scaling of signature evaluation. While working with larger signature lengths divided into equal-sized bits of
Wordlength, further optimizations can be done. In this, every Wordlength number of bits can be compared sequen-
tially, and if Kth Wordlength bit sequence of test flow does not match with Kth Wordlength signature bit sequence,
all subsequent comparison operations can be skipped.
2. Keyword Signature Matching: If the common portion of bit sequences indicates that the poten-

tial protocol is a text protocol, then the keyword-based signatures are used for identifying the application. The
keywords within these signatures are ordered and are matched against the payload in the same order. Unlike the
extended bit-level signatures, here the keyword-based matching is done from the beginning of the payload (includ-
ing the first ‘n’ bits used for common bit signature) for the applications identified as potential matches in the first
stage. Keyword searching can be done with any efficient string matching algorithm. Here, we use Boyer–Moore
[5] string matching algorithm for comparing the test payload with the keywords of an application.

4. Experiments and evaluation

In this section, we describe the experiments and evaluation done to assess the performance of the proposed
bit-level and keyword-level signature matching technique HClass. Datasets used for experiments and evaluation
done are elaborated in the subsequent paragraphs.

1Mask-1 and Mask-2 values are the complements of each other at ∗ bit positions, hence result into a bit values of one with XOR operation.
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Table 2

Dataset-1 details

S. no Protocol Flows training Flows testing

Binary protocols

1 Bootp 81 86

2 DNS 25469 25850

3 NBNS 982 982

4 NTP 201 201

5 BACnet 9 11

6 BJNP 34 38

7 QUIC 106 90

Text-based protocols

8 MWBP 8 8

9 CUPS 47 45

10 HTTP 13233 17964

11 SMTP 520 521

Total 40690 45796

4.1. Dataset details and implementation

For our experiments with HClass, network traffic traces were collected from different sources with ground
truth. We collected network traffic traces from two public repositories, ‘Digital Corpora’ [10], and NETRESEC
[22], and we also generated few application traces in the network security lab at IIT Indore. The entire collection
of traces is organized into three datasets. Dataset-1 is from the Digital Corpora homepage under the link heading
“Network Packet Dumps”. Dataset-2 is collected from Research PCAP Dataset published by ‘FOI Information
Warfare Lab (FOI is The Swedish Defence Research Agency)’. This dataset is hosted by NETRESEC under the
heading Resources and subheading Uncategorized PCAPs, 21st dataset in the list. Dataset-3 contains the network
traffic generated in the network security lab at IIT Indore, and few application traffic were taken from Digital
Corpora and FOI Information Warfare Lab sources. Packets in these traces are filtered with Wireshark [34] tool
and saved as application-specific traces. Each application protocol trace is divided into two parts for training and
testing. The training part was used to generate bit-level and keyword-based signatures, and the testing part was used
to evaluate the classification performance of HClass. The statistics of flows pertaining to different applications
and their count in training and testing portions in Dataset-1, Dataset-2, and Dataset-3 are shown in Table 2, Table 3,
and Table 4, respectively. We can notice from these three tables that training and testing portions contain roughly
equal number of flows.

Implementation and Evaluation: We implemented HClass in C language using LibPcap programming li-
brary [29]. Flow reconstruction in TCP is done by aggregating all packets between SYN and FIN/RST packets
sharing five common attributes. In the case of UDP, flows are generated by aggregating all packets sharing com-
mon attributes using the threshold ζ set to six seconds. All the experiments reported in this paper are performed
on a machine with an Intel Core i7-8565U 8-core processor running at a clock speed of 1.80 GHz having 16 GB
RAM, and running Ubuntu 20.04 LTS operating system.

For the evaluation of HClass, we used flows from the training datasets to generate bit-level and keyword-based
signatures. In the Experiments, we used the first 64 bits from the labeled application flows to generate the common
bit-level signatures for each labeled application(both binary and text-based) in the training datasets. Extended
bit-level signature for binary protocols is generated considering the next 64 bits of data from the flow payload of
labeled applications. For generating keyword-based signatures, the labeled flows from each application are grouped
based on similarity, and meaningful keywords with a frequency of occurrence greater than 70% across all flows
are selected as candidates for keywords. These keywords are arranged in order and stored along with their offset
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Table 3

Dataset-2 details

S. no Protocol Flows training Flows testing

Binary protocols

1 Bootp 91 91

2 DNS 956 958

3 Kerberos 670 673

4 NBNS 289 290

5 NBSS 377 373

6 NTP 202 200

7 RPC 7 7

Text-based protocols

8 GSMIPA 9 9

9 HTTP 253 250

10 POP 56 57

Total 2903 2908

Table 4

Dataset-3 details

S. no. Protocol Flow training Flows testing

Binary protocols

1 SMB 3141 3111

2 SSH 1104 1000

3 CLDAP 910 918

Text-based protocols

4 BitTorrent 608 946

5 DropBox 788 1518

6 HTTP 44452 107428

7 POP 497 542

8 SIP 429 650

9 SMTP 1163 940

Total Flows 53092 117053

values to generate keyword-based signatures. We considered the payload up to 1024 bytes for keyword extraction.
We evaluate the performance of HClass by conducting three studies as elaborated in Section 4.2, Section 4.3 and
Section 4.4.

4.2. Classification performance comparison with other DPI based techniques

In this subsection, we describe the experiments performed to evaluate the classification performance of HClass
and compare its performance with BitCoding, a bit-level signature-based classifier, and KeyClass, a keyword-based
classifier. BitCoding performs bit-by-bit signature matching against a new test payload to identify the application to
which the flow belongs. KeyClass, on the other hand, uses a set of keyword-based signatures to classify the network
traffic. It operates in two phases. In the first phase, the potential application matches against the test payload are
identified quickly using the Aho–Corasick FSM constructed with the first keyword of each application. In the
second phase, rest of the keywords of the potential application are searched in the payload using the Boyer–Moore
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Fig. 8. Flow classification accuracy comparison for HClass, BitCoding, and KeyClass for Dataset-1.

Fig. 9. Flow classification accuracy comparison for HClass, BitCoding, and KeyClass for Dataset-2.

Fig. 10. Flow classification accuracy comparison for HClass, BitCoding, and KeyClass for Dataset-3.

string matching algorithm along with byte offsets of the keywords. We evaluated HClass for binary and text-
based protocols and compared it against BitCoding for binary protocols and KeyClass for text-based protocols for
each dataset.

Figures 8, 9 and 10 show the classification accuracy comparison between HClass, BitCoding, and KeyClass
for Dataset-1, Dataset-2, and Dataset-3, respectively. We can notice from the figures that HClass(for both bi-
nary and text-based protocols), BitCoding(for binary protocols), and KeyClass(For text-based protocols) show
equal performance in classification accuracy; however, the limitation of KeyClass is that it can only classify text
based protocols with greater accuracy but not the binary protocols, and BitCoding is computationally expensive
as it matches one bit at a time, unlike HClass that performs word-level signature matching. The details on the
execution time comparisons for all three methods are discussed in Section 4.3

For clarity on the classification performance of HClass, we also represented the Classification performance
of HClass in terms of confusion matrices as shown in Table 5, 6, and 7 on Dataset-1, Dataset-2, and Dataset-3
respectively. Confusion matrices give insights into the details of flows classified for each application and helps to
understand any misclassification and unclassified instances of test flow in the network traffic. In these matrices,
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Table 5

Flow classification confusion matrix for Dataset-1

Bootp DNS NBNS NTP BACnet BJNP QUIC MWBP CUPS HTTP SMTP

(86) (25850) (982) (201) (11) (38) (90) (8) (45) (17964) (521)

Bootp 86 0 0 0 0 0 0 0 0 0 0

DNS 0 25842 0 0 0 0 0 0 0 0 0

NBNS 0 0 967 0 0 0 0 0 0 0 0

NTP 0 0 14 198 0 0 0 0 0 0 0

BACnet 0 0 0 0 7 0 0 0 0 0 0

BJNP 0 0 0 0 0 38 0 0 0 0 0

QUIC 0 0 0 0 0 0 90 0 0 0 0

MWBP 0 0 0 0 0 0 0 8 0 0 0

CUPS 0 0 0 0 0 0 0 0 45 0 0

HTTP 0 0 0 0 0 0 0 0 0 17551 0

SMTP 0 0 0 0 0 0 0 0 0 0 521

Unclassified 0 8 1 3 4 0 0 0 0 413 0

Table 6

Flow classification confusion matrix for Dataset-2

Bootp DNS Gsmipa HTTP Kerberos NBNS NBSS NTP POP RPC

(91) (958) (9) (250) (673) (290) (373) (200) (57) (7)

Bootp 90 0 0 0 0 0 0 0 0 0

DNS 0 956 0 0 0 0 0 0 0 0

Gsmipa 0 0 9 0 0 0 0 0 0 0

HTTP 0 0 0 242 0 0 0 0 0 0

Kerberos 0 0 0 0 670 0 0 8 0 0

NBNS 0 0 0 0 0 287 0 0 0 0

NBSS 0 0 0 0 0 0 361 0 0 0

NTP 0 0 0 0 0 0 0 192 0 0

POP 0 0 0 0 0 0 0 0 57 0

RPC 0 0 0 0 0 0 0 0 0 7

Unclassified 1 2 0 8 3 3 12 0 0 0

the rows and columns header represent the protocols, and the number within the bracket in the column header
represents the number of test flows used for classification. Each entry (other than the header) in the matrix denotes
the number of flow instances classified as the protocol in the row header out of total the number of flows indicated
in the column header. For example, in Table 5, the entry in the fourth row and fourth column denotes out of 982
NBNS protocol flows 967 flows are classified as NBNS, and the entry in the fourth column and fifth row represents
14 NBNS flows misclassified as NTP and the entry at the bottom of the column represents one unclassified instance
of NBNS protocol. We can notice from the table that there are very few misclassifications and some unclassified
flows. These unclassified instances are mainly the cases where a common portion of the signature fails to generate
possible matches, or there is a mismatch during extended bit-level signature matching for binary protocols or the
desired keyword is not found for text-based protocol verification.

4.3. Execution time performance comparison with other DPI based techniques

We experimented with HClass and compared the execution time performance of HClass with BitCoding and
KeyClass on the three datasets mentioned in the Section 4.1. The time comparison results for these experiments
are shown in Table 8, 9, and 10 for Dataset-1, Dataset-2, and Dataset-3 respectively. In these tables, we reported
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Table 7

Flow classification confusion matrix for Dataset-3

BitTorrent DropBox HTTP POP SIP SMTP SMB SSH CLDAP

(946) (1518) (107428) (542) (650) (940) (3111) (1000) (918)

BitTorrent 946 0 0 0 0 0 0 0 0

DropBox 0 1518 0 0 0 0 0 0 0

HTTP 0 0 102083 0 0 0 0 0 0

POP 0 0 0 541 0 0 0 0 0

SIP 0 0 0 0 650 0 0 0 0

SMTP 0 0 0 0 0 940 0 0 0

SMB 0 0 0 0 0 0 3102 0 0

SSH 0 0 0 0 0 0 0 1000 0

CLDAP 0 0 0 0 0 0 0 0 918

Not classified 0 0 5345 1 0 0 9 0 0

Table 8

Execution time (in sec) for Dataset-1

HClass Bitcoding KeyClass

User time User time User time

Bootp 0.005 0.071 NA

DNS 4.414 4.622 NA

NBNS 0.04 0.095 NA

NTP 0.007 0.016 NA

BACnet 0.003 0.004 NA

BJNP 0.003 0.004 NA

QUIC 0.003 0.003 NA

MWBP 0.005 NA 0.009

CUPS 0.005 NA 0.006

HTTP 2.485 NA 2.486

SMTP 0.053 NA 0.053

the user time for each protocol on all three datasets. As we evaluated BitCoding only for binary protocols and Key-
Class only for the text-based protocols, the corresponding entries for binary protocols under the KeyClass column
header are not applicable(NA). Similarly, the entries corresponding to text-based protocols under Bitcoding column
headers are not relevant and hence are marked as NA. We can notice from Table 8, 9, and 10 that HClass out-
performed BitCoding and showed a significant performance improvement over the BitCoding classifier. BitCoding
performs bit-by-bit signature matching, which is computationally expensive and hence becomes the performance
bottleneck. In contrast, HClass optimizes the bit signature comparisons and aligns it to word-level operations,
thereby speeding up the signature matching. HClass also showed better performance in execution time compared
to KeyClass for most of the protocols; however, there are a few cases where they showed nearly equal execution
time, like in Table 8 for POP and SIP protocols. This is mainly due to the small number of flow instances for these
protocols. There might be cases where the first keyword for such protocols may fall under a few initial bytes of
the payload and performs as good as common bit-level signatures. For example, the keyword “GET” for HTTP
protocol appears at the beginning of the payload and can also be part of common bit-level signatures.

4.4. Performance comparison with machine learning based classification

As many of the recent works use machine learning techniques for traffic classification, we also compare the per-
formance of HClass with another recent work [24] which uses machine learning methods for traffic classification.
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Table 9

Execution time (in sec) for Dataset-2

HClass BitCoding KeyClass

User time User time User time

Bootp 0.003 0.022 NA

DNS 0.025 0.088 NA

Kerberos 0.014 0.241 NA

NBNS 0.023 0.060 NA

NBSS 0.025 0.366 NA

NTP 0.016 0.069 NA

RPC 0.003 0.038 NA

Gsmipa 0.002 NA 0.003

HTTP 0.020 NA 0.036

POP 0.003 NA 0.004

Table 10

Execution time (in sec) for Dataset-3

HClass BitCoding KeyClass

(User time) (User time) (User time)

BitTorrent 0.275 NA 0.278

DropBox 1.339 NA 1.346

HTTP 13.158 NA 13.241

POP 0.024 NA 0.025

SIP 0.598 NA 0.599

SMTP 0.125 NA 0.133

SMB 0.25 1.748 NA

SSH 0.08 0.517 NA

CLDAP 0.053 0.055 NA

Table 11

Performance comparison of HClass with Hussein et al. [24]

Method Accuracy

HClass 99.03

Hussein et al. [24] 94.35

It uses a set of statistics extracted from bursts of communication as features and subsequently feeds into a machine
learning algorithm, namely C5.0 decision tree algorithm. A burst is simply a duration within which all packets in
either direction are aggregated. A Number of features like packet count, byte count, ratio of packet count, average
burst size, and inactive/idle time for each direction are used as features. While similar features are usually used in
almost all machine learning based traffic classification methods, the selection of these statistics as features within
a burst is based on the premise that different applications exhibit different distributions of bursts and hence can be
separated.

For our experiments, we extracted the features as identified by Hussein et al. [24] from our dataset and compared
the performance in terms of accuracy. We evaluated the performance of the classifiers based on “Accuracy” metric
as defined in equation (1). Table 11 shows this performance comparison across the applications for Dataset-1.
Table 12 shows the confusion matrix for the classification performance of C5.0 algorithm. We can notice that
there are large number of misclassifications (entries shown in red color) among HTTP and DNS protocols. Similar
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Table 12

Classification performance of Hussein et al. [24] on Dataset-1

Reference(→) BACnet BJNP Bootp CUPS DNS HTTP MWBP NBNS NTP QUIC SMTP

Prediction(↓) (12) (32) (81) (31) (41087) (23904) (9) (822) (281) (106) (825)

BACnet 4 0 0 0 0 0 0 0 0 0 0

BJNP 0 32 0 0 0 0 0 0 0 1 0

Bootp 0 0 32 0 1 0 0 1 0 0 0

CUPS 0 0 0 29 0 3 1 5 0 0 0

DNS 4 0 45 1 39848 2225 2 69 21 31 2

HTTP 0 0 0 1 1078 21618 2 0 0 0 69

MWBP 0 0 0 0 2 0 4 0 0 0 0

NBNS 1 0 4 0 116 2 0 741 0 1 0

NTP 0 0 0 0 34 0 0 5 257 0 0

QUIC 0 0 0 0 0 0 0 0 0 73 0

SMTP 3 0 0 0 8 54 0 1 3 0 754

results were obtained on the other two datasets which we omit showing here.

Accuracy = Number of Correct Predictions

Total Number of Predictions
(1)

Apart from the obvious low accuracy in the classification, the work of Hussein et al. [24] also shares similar
limitations where it assumes that the applications of distinct classes can exhibit distinct burst characteristics. We
believe that, as the number of applications increase, it is hard to find such well separated characteristics. For e.g a
large number of video streaming applications like youtube, amazon prime, etc may have overlaps. Similarly mobile
applications have very large set running into millions in count. These scenarios prevent the machine learning based
methods from scaling. To the best of our knowledge there are no studies which have validated these algorithms on
large scale experiments.

5. Conclusion

In this paper, we presented HClass, a DPI-based network traffic classifier that classifies both binary and text-
based protocols. Binary protocols are classified using bit-level signatures, and text-based protocols use both bit-
level signatures for initial screening and keyword-based signatures subsequently for application detection. HClass
uses bit-level signatures with masks to perform bitwise operations on word length payload content and hence is
computationally efficient. It can be run on commodity hardware by aligning the signature length to the word
boundary. We experimented with three datasets and showed that HClass classification performance is reasonable
and has a lower execution time compared to other methods. We are currently working on using these bit-level
operations for other regular expression-based pattern matching and evaluating whether they result in performance
optimizations.
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