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A new framework for analysis of laterally
loaded piles

Dipanjan Basua,∗, Rodrigo Salgadob and Mônica Prezzib
aDepartment of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada
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Abstract. A new analysis framework is presented for calculation of the response of laterally loaded piles in multi-layered,
heterogeneous elastic soil. The governing differential equations for the pile deflections in different soil layers are obtained using
the principle of minimum potential energy after assuming a rational soil displacement field. Solutions for the pile deflection are
obtained analytically, while those for the soil displacements are obtained using the finite difference method. The input parameters
needed for the analysis are the pile geometry, soil profile and the elastic constants of the soil and pile. The method produces
results with accuracy comparable to that of a three-dimensional finite element analysis but requires much less computation time.
The analysis can take into account the spatial variation of soil properties along vertical, radial and tangential directions.

Keywords: Pile, analytical solution, lateral load, continuum approach, elastic analysis

1. Introduction

Piles are often subjected to lateral forces and moments arising due to wind, wave, traffic or seismic events. These
external forces and moments are assumed to act at the pile head and the analysis is performed either by using the p-y
method or by a continuum-based numerical method. In the p-y method, the lateral soil resistance is represented by a
series of horizontal springs, which are attached to the pile segments into which the pile is discretized, and numerical
methods are used to obtain the lateral displacements of the pile, which is assumed to behave as an Euler-Bernoulli
beam [1–5]. The soil springs are characterized by the p-y curves, in which the resistive spring force p per unit
pile length is given as a function of the lateral pile displacement y. Different p-y curves have been developed for
different types of soils based mostly on field lateral pile load tests. The advantage of the p-y method is that the results
are produced quickly, but available p-y curves are based on ad hoc assumptions and do not necessarily represent
the actual soil resistance at a particular site. The continuum approach for the analysis of laterally-loaded piles is
conceptually more robust than the p-y method. However, the complexity of a three-dimensional soil continuum
often requires computationally expensive numerical techniques, such as the boundary element method or three-
dimensional finite element analysis [6–11]. Consequently, continuum-based analyses are not typically used for
design calculations.

In this paper, a continuum-based analysis framework is presented that produces results within a time frame
comparable with that of the p-y method. Based on the assumption of a rational displacement field surrounding the
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pile, the framework integrates the three-dimensional soil resistance using the variational principles of mechanics.
The three-dimensional soil resistance is then given as input to a one-dimensional pile analysis, and iterations are
performed until equilibrium between the pile and soil are satisfied. The framework has several attractive features,
which are demonstrated in this paper.

2. Analysis

2.1. Problem definition and scope

A single pile of circular cross section with radius rp and length Lp is assumed to be embedded in a layered soil
medium containing n layers (Fig. 1). The pile is elastic and behaves as an Euler-Bernoulli beam with a constant
flexural rigidity EpIp . The layered continuum extends to infinity in all radial directions, and the bottom (nth) layer
extends to infinity downwards. The vertical depth to the base of any intermediate layer i is Hi , which implies that
the thickness of the ith layer is Hi−Hi−1 with H0 = 0. The top (head) of the pile is at the level of the ground surface.
The bottom (base) of the pile is embedded in the nth layer. The soil layers are assumed to be elastic with Lame’s
constants λsi and Gsi for the ith layer. Perfect contact between the pile and soil is assumed. A polar (r − θ − z)
coordinate system is chosen with its origin coinciding with the pile head and the positive z-axis pointing downward
and coinciding with the pile axis. The purpose of the analysis is to obtain pile deflection, bending moment and shear
force as a function of the applied horizontal force Fa and moment Ma acting at the pile head.

2.2. Soil displacement, strain and stress

Each component of the displacement at any point within the soil continuum (Fig. 2) is assumed to be a product
of separable functions [12]:

ur = w(z) φr(r) cos θ (1a)

uθ = −w(z) φθ(r) sin θ (1b)

uz = 0 (1c)

Fig. 1. Laterally loaded pile in layered soil media.
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Fig. 2. (a) Displacements and (b) stresses within soil mass.

where w(z) is a displacement function varying with depth z that describes the lateral deflection of the pile, φr (r) and
φθ(r) are dimensionless displacement functions varying with the radial coordinate r, and θ is measured counter-
clockwise from a vertical reference section (r = r0) that contains the applied force vector Fa . It is reasonable to
assume that the vertical displacement of the soil due to the lateral load and moment applied at the head of the pile
is negligible; this justifies Equation (1c). The functions φr (r) and φθ(r) describe how the displacements within the
soil mass (due to pile deflection) decrease with increase in radial distance from the pile axis. It is assumed that
φr (r) = 1 and φθ(r) = 1 at r = rp , which ensures perfect contact between the pile and soil at the interface, and that
φr (r) = 0 and φθ(r) = 0 as r −→ ∞, which ensures that the soil displacement due to pile movement decreases with
increase in radial distance from the pile and becomes zero as the radial distance becomes large.

Using the above displacement field, the strains �ij within the soil can be expressed as:
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The strains can be related to stresses σij using the elastic constitutive relationship:

σij = λsδijεkk + 2Gsεij (3)

where δij is the Kronecker’s delta and summation is implied by repetition of indices.
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2.3. Potential energy and its minimization

The total potential energy � of the pile-soil system, including both the internal and external potential energies,
is given by

� = 1

2
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where w is the lateral pile deflection and σij and �ij are the stress and strain tensors in the soil (Fig. 2). The first integral
represents the internal potential energy of the pile. The second and the third integrals represent the internal potential
energy of the soil continuum. The remaining two terms represent the external potential energy. The potential energy is
minimized by setting its first variation equal to zero (δ� = 0) to obtain the equilibrium configuration of the pile-soil
system. Considering the stress-strain-displacement relationships expressed in Equations (2) and (3), the potential
energy density 1

2σijεij of the soil can be expressed in terms of the displacement functions and elastic constants.
Substituting the expression of the potential energy density in Equation (4) and then setting δ� = 0 gives [13]
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where the Lame’s constants vary spatially within any soil layer (i.e., λs = λs (r, θ, z) and Gs = Gs (r, θ, z)).
The above equation is of the form

δ� =
{

A (w) δw + B (w) δ

(
dw

dz

)}
+ {C (φr) δφr} + {D (φθ) δφθ} = 0 (6)

Since the variations δw(z), δ(dw/dz), δφr (r) and δφθ(r) of the functions w(z) (and its derivative), φr (r) and φθ(r) are
independent, the terms associated with each of these variations must individually be equal to zero (i.e., A (w) δw = 0,
B (w) δ

(
dw
/
dz
) = 0, C (φr) δφr = 0 and D (φθ) δφθ = 0) in order to satisfy the condition δ� = 0. The resulting

equations produce the optimal functions wopt(z), φr ,opt(r) and φθ,opt(r) that describe the equilibrium configuration
of the pile-soil system.

2.4. Soil displacement differential equations

We first consider the variation of φr (r). All the terms associated with δφr and δ
(
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are collected from Equation

(5) and their summation is equated to zero. This gives the following differential equation
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with the boundary conditions φr = 1 at r = rp and φr = 0 at r = ∞. The terms in the above equation are given by
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In Equations (8a)–(8d), the subscript i represents the ith layer of the multi-layered continuum; wi represents the
function w(z) in the ith layer with wi|z=Hi

= wi+1|z=Hi
; and Hn = ∞.

Next, the variation on φθ(r) is considered. The terms containing δφθ and δ
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are collected from Equation

(5) and equated to zero. Following a similar procedure as that for φr , the governing differential equation for φθ is
obtained:
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with the boundary conditions that φθ = 0 at r = ∞ and φθ = 1 at r = rp , where
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The quantities ms 1, ms 2, ms 3, ns 1 and ns 2 are obtained by numerical integrations performed along the tangential
and vertical directions.

2.5. Pile displacement differential equations

Finally, the variation of w is considered. Referring back to Equation (5), the terms associated with δw and

δ
(

dw
dz

)
are collected and their sum is equated to zero. Further, the domain is split into sub-domains 0 ≤ z ≤ H1,

H1 ≤ z ≤ H2, . . . , Hn−1 ≤ z ≤ Lp and Lp ≤ z < ∞ following the natural layering present in the assumed soil profile.
As before, the nth (bottom) layer is artificially split into two parts, with the part below the pile denoted by the
subscript n + 1. The differential equation for any layer i (i = 1, 2, . . . , n) is obtained, after expressing it in terms of
normalized depth z̃ = z/Lp and normalized pile displacement w̃ = w/Lp, as:
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The soil parameters k̃i and t̃i are obtained by performing numerical integrations along the radial and tangential
directions.

The boundary conditions obtained at the pile head (z = z̃ = 0) are:

w̃1 = constant (13a)

or
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dz̃3 − 2t̃1
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− F̃a = 0 (13b)

and

dw̃1
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= constant (13c)
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or

d2w̃1

dz̃2 − M̃a = 0 (13d)

At the interface between any two layers (z = Hi or z̃ = H̃i ), the boundary conditions are:
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At the pile base (z = Lp or z̃ = 1), the boundary conditions are:
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The dimensionless terms in the above equations are defined as: F̃a = FaL
2
p
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, M̃a = MaLp
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and H̃i = Hi
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.

2.6. Solution of pile displacement differential equations

The general solution of Equation (10) is given by:

w̃i(z̃) = C
(i)
1 
1 + C

(i)
2 
2 + C

(i)
3 
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(i)
4 
4 (17)

where, C
(i)
1 , C

(i)
2 , C

(i)
3 and C

(i)
4 are integration constants (for the ith layer), and 
1, 
2, 
3 and 
4 are individual

solutions (functions of z̃) of the differential equation. The functions 
1, 
2, 
3 and 
4 are standard trigonometric or
hyperbolic functions that arise in the solution of the linear ordinary differential equations (Table 1). The integration
constants for each layer can be determined using the boundary conditions described in Equations (13)–(15) [14, 15].
Once the pile displacement is obtained, the pile bending moment and shear force can also be obtained as functions
of depth by appropriately differentiating the pile displacement with respect to depth.

2.7. Solution of soil displacement differential equations

The differential Equations (7) and (9) for φr and φθ are interdependent and are solved by the finite difference
method. Considering a radially outward one-dimensional finite difference grid and using the central-difference
scheme, Equations (7) and (9) are respectively written as:
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Table 1
Functions in Equation (17)
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where the superscript j represents the jth node of the finite difference grid that is located at a distance of rj from the
pile-soil interface, and �r is the radial distance between adjacent nodes.

Since the right-hand side of Equation (17) contains φθ , and the right-hand side of Equation (18) contains φr,
iterations are necessary to obtain their values. An initial estimate of φ

j
r is made and given as input to Equation (18),

and φ
j
θ is determined. The calculated φ

j
θ values are then given as input to Equation (17) to obtain φ

j
r . The newly

obtained values of φ
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r are again used to obtain new values of φ
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θ , and the iterations are continued until convergence
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m is the total number of nodes in the finite difference grid, are used to ensure that accurate values of φr and φθ

are obtained (a stringent value of 10−6 is used because this iterative solution scheme is central to another set of
iterations described next).

2.8. Interdependence and iterative solutions of pile and soil displacements

It is evident from Equations (11) and (12) that the functions φr(r) and φθ(r) need to be known to estimate the
parameters k̃i and t̃i. This means that pile deflection cannot be obtained unless φr(r) and φθ(r) are determined.
Determination of φr(r) and φθ(r) requires prior knowledge of the quantities ms1, ms2, ms3, ns1 and ns2, which, in
turn, depend on the pile deflection w and slope dw

dz
. Therefore, the pile-deflection and the soil-displacement equations

are coupled and must be solved simultaneously using an iterative scheme (note that this iteration is separate from
the φ-iterations described before).

In order to solve the coupled equations, trial profiles for φr and φθ are assumed and the values of t̃i and k̃i

are obtained from Equations (11) and (12) using numerical integration. Pile deflection is then obtained, and ms1,
ms2, ms3, ns1 and ns2 are determined once the pile deflections are known. Using the calculated values of ms1,
ms2, ms3, ns1 and ns2, φr and φθ are calculated by solving Equations (7) and (9) (using φ-iterations). The newly
obtained profiles of φr and φθ are then compared with the previous (trial) profiles. If the differences are within

the tolerable limits of 1
m
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∣∣∣ ≤ 10−3 then the

newly obtained φr and φθ and the corresponding w are accepted as the final solutions (note that the convergence
criterion of 10−3 is different from the convergence criterion of 10−6 used for the φ-iterations described before).
However, if the differences are greater than the tolerable limits, then the newly obtained profiles of φr and φθ are
assumed to be the new trial profiles for the next iteration and the process is repeated until convergence on both φr

and φθ is achieved.
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3. Results

In this section, we illustrate some of the attractive features of the new analysis framework. First, the accuracy of
the analysis is verified by comparing the results obtained by this analysis with those of equivalent three-dimensional
(3D) finite element (FE) analysis. For the first example, a 15-m-long drilled shaft, with a diameter of 0.6 m and pile
modulus Ep = 24 × 106 kN/m2, is considered embedded in a four-layer soil deposit with H1 = 2.0 m, H2 = 5.0 m
and H3 = 8.3 m; Es 1 = 20 MPa, Es 2 = 35 MPa, Es 3 = 50 MPa and Es 4 = 80 MPa; υs1 = 0.35, υs2 = 0.25, υs3 = 0.2 and
υs4 = 0.15 (Esi and υsi are the soil Young’s modulus and Poisson’s ratio for the ith layer; Esi and υsi are related to
λsi and Gsi by λsi = Esiυsi

/
(1 + υsi) (1 − 2υsi) and Gsi = Esi

/
2 (1 + υsi)). A horizontal force Fa = 300 kN acts

at the pile head. The pile head and base are free to deflect and rotate. Figure 3 shows the pile deflection profile
obtained using the present analysis and a 3D FE analysis. The FE analysis was performed using Abaqus with the
assumption that the pile and soil behave as linear-elastic materials. The pile response obtained from the present
analysis closely matches that of 3D FE analysis.

The second example consists of a 40-m long, 1.7-m diameter drilled shaft with Ep = 25 × 106 kPa embedded in
a four-layer soil profile with H1 = 1.5 m, H2 = 3.5 m, and H3 = 8.5 m; Es1 = 20 MPa, Es2 = 25 MPa, Es3 = 40 MPa
and Es4 = 80 MPa; υs1 = 0.35, υs2 = 0.3, υs3 = 0.25 and υs4 = 0.2. A 3000 kN force acts at the pile head, which is
free to deflect and rotate. Figure 4 shows the pile deflection profiles, as obtained from the present analysis and 3D
linear-elastic FE analysis performed using Abaqus. As before, the results from both analyses match quite closely.

The above examples not only show that the developed framework can predict pile deflection with an accuracy
comparable to that of 3D FE analysis, but also illustrate that the framework takes into account discrete soil layering
quite efficiently. In fact, a gradual variation of soil modulus with depth can also be taken into account by assuming
multiple thin soil layers. As an example, the 15-m long pile described above, subjected to a horizontal load of 300
kN, is assumed to be embedded in a two-layer soil profile with the top layer extending down to 10 m and underlain
by a stronger layer that goes down to great depth. The Young’s modulus in the top layer increases from 10 MPa at the
surface to 50 MPa at the depth of 10 m. The second layer is relatively homogeneous with Young’s modulus equal to
100 MPa. The Poisson’s ratio of the top layer can be assumed to be spatially constant at 0.4 while that of the second
layer is 0.25. The problem is analyzed by dividing the top layer into 50 sub-layers of 0.2 m thickness. Figure 5
shows the pile deflection profile. The same problem is analyzed again with an average value of Young’s modulus
equal to 30 MPa for the top layer (calculated at the center of the layer) that remains spatially constant with depth,
and the resulting pile deflection is plotted in Figure 5 as well. The figure shows that there can be significant error in
pile response if averaging of soil properties is done naively over large depths. Figure 5 also shows the flexibility of
the analysis framework in incorporating different possible variations of soil modulus, either continuous or discrete,
with depth.

Fig. 3. Comparison of pile deflection profiles obtained from the present analysis and finite element analysis for a 15-m long pile.
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Fig. 4. Comparison of pile deflection profiles obtained from the present analysis and finite element analysis for a 40-m long pile.

Fig. 5. Deflection profile for a 15-m long pile in a two-layer soil profile with modulus increasing linearly with depth in the top layer.

The analysis framework can not only incorporate variations of soil modulus with depth but also take into account
spatial variations of soil modulus in the horizontal direction. Variation of soil properties in the horizontal direction
can be due to the natural variability of a deposit, due to disturbance caused by pile installation or due to other
reasons. For driven piles, the soil surrounding the pile is severely disturbed due to pile installation effects and the
properties immediately adjacent to the pile are altered significantly from their in situ values. In some deposits,
the modulus value adjacent to the pile becomes less than the in situ value while, in other deposits, the modulus
value may increase due to soil densification. In order to demonstrate that the analysis can take into account the pile
installation effects and variation of soil modulus along radial directions, the two examples of 15-m and 40-m long
piles embedded in four-layer soil profiles, as described above, are considered again. First, it is assumed that the soil
Young’s moduli Es of all the four layers reduce to a fraction fr of their in situ values at the pile-soil interface (Case
1). Subsequently, it is assumed that the Young’s moduli of all the four layers at the pile soil interface increase to
values that are ml times their in situ values (Case 2). In both the cases, it is assumed that the Young’s moduli vary
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Fig. 6. Effect of pile installation on the lateral response of the 15-m long pile of example 1: for case 1,the soil Young’s modulus increases
radially from a fraction fr of the in situ value at the pile-soil interface to the original in situ value at a radial distance ddisturbed measured from the
pile-soil interface; for case 2, the soilYoung’s modulus decreases radially from a multiple ml of the in situ value at the pile-soil interface to the
original in situ value at a radial distance ddisturbed measured from the pile-soil interface.

linearly in the radial directions from their altered values at the pile-soil interface to their original in situ values at
a radial distance ddisturbed measured from the pile-soil interface. At radial distances greater than ddisturbed from the
pile-soil interface, the moduli remain spatially constant at their in situ values. It is further assumed that the Poisson’s
ratios of the soil layers are not altered by the pile installation and remain spatially constant.

Figures 6 and 7 show the pile head deflection wdisturbed for 15-m and 40-m piles, respectively, obtained for soil
disturbance cases 1 and 2 described above, normalized with respect to the head deflection wundisturbed obtained
for the corresponding cases without considering soil disturbance, as a function of the radial extent ddisturbed of
the disturbed soil zone normalized with respect to the pile radius rp . For case 1, fr = 0.2 and 0.5 are assumed for
the simulations with ddisturbed/rp spanning over a range 2.0–20.0. For case 2, ml = 1.2 and 1.5, and ddisturbed/rp =
2.0–20.0 are assumed. It is observed that both the magnitude of change in soil modulus and the extent of the
disturbed zone impact the lateral pile response. It is interesting to note that the ratio wdisturbed/wundisturbed for both
the piles are almost the same for identical values of fr or ml and ddisturbed/rp .

The analysis can also capture the tangential (circumferential) variation of soil modulus. In the problem of laterally
loaded piles, the soil in front of the loaded pile (i.e., the zone of soil for which 270◦ ≤ θ ≤ 90◦) is compressed as
the pile pushes against it. The soil behind the pile (i.e., the zone covered by 90◦ ≤ θ ≤ 270◦) experiences a stress
release and sometimes there is a lack of contact between the pile and the soil at the back. The change in the confining
stress in soil due to pile movement may alter the stiffness as compression may dominate over shearing. Therefore,
the soil modulus may vary as a function of θ. A simple way of taking into account this variation of soil modulus is
by assigning different values of soil modulus in front of and behind the pile. As an illustration, the same examples
of 15-m and 40-m piles described above are considered with the assumption that the Young’s modulus of soil in
front of the pile increases by 50% from the in situ value while it decreases by 50% and 100% at the back of the pile
(a 100% decrease in the modulus approximately represents the case where there is a loss of contact between the
pile and soil). This change in the circumferential variation of soil modulus is restricted to a depth of 1.5 m from the
ground surface for the 15-m long pile and to a depth of 4 m from the ground surface for the 40-m long pile within
which the effect of lateral pile movement on the soil modulus is likely to be most predominant (see Figs. 3 and 4).
The Poisson’s ratio of the soil layers are assumed to be not affected by the pile movement. Figures 8 and 9 show
the deflection profiles for the 15-m and 40-m piles, respectively. The figures illustrate the ability of the analysis to
consider the tangential variation of soil modulus and show that the change in modulus in front of and behind the
pile affects the pile response.
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Fig. 7. Effect of pile installation on the lateral response of the 40-m long pile of example 2: for case 1, the soil Young’s modulus increases
radially from a fraction fr of the in situ value at the pile-soil interface to the original in situ value at a radial distance ddisturbed measured from the
pile-soil interface; for case 2, the soil Young’s modulus decreases radially from a multiple ml of the in situ value at the pile-soil interface to the
original in situ value at a radial distance ddisturbed measured from the pile-soil interface.

Fig. 8. Effect of varying soil modulus in front and back of a 15-m long pile on its lateral response: for case 1, the soil modulus is the same in the
front and back of pile; for case 2, in the top 1.5 m, the soil modulus increases by 50% from the in situ value in the front of the pile and decreases
by 50% from the in situ value at the back of the pile; for case 3, in the top 1.5 m, the soil modulus increases by 50% from the in situ value in
front of the pile and the soil loses contact with the pile at the back.

It is important to note that the inputs required for the analysis — the pile radius and length, thicknesses of the
soil layers, Young’s modulus of the pile material, the elastic constants of the soil in the various layers, and the
magnitudes of the applied force and moment — is given to the computer code in a text file. Thus, unlike finite
element software, no specialized skills are required to run the computer code for this analysis. Further, the results
of the analysis presented in this paper were obtained in less than three minutes by running the computer code in a
Windows based laptop computer with 1.6 GHz processor and 4 GB RAM. This is significantly faster than the time
required to run an equivalent 3D FE analysis.



66 D. Basu et al. / A new framework for analysis of laterally loaded piles

Fig. 9. Effect of varying soil modulus in front and back of a 40-m long pile on its lateral response: for case 1, the soil modulus is the same in the
front and back of pile; for case 2, in the top 4 m, the soil modulus increases by 50% from the in situ value in the front of the pile and decreases
by 50% from the in situ value at the back of the pile; for case 3, in the top 4 m, the soil modulus increases by 50% from the in situ value in front
of the pile and the soil loses contact with the pile at the back.

4. Conclusions

A new method of analysis for a single, circular pile embedded in a multi-layered elastic medium and subjected
to a horizontal force and a moment at the head is presented. The solution is fast and produces results comparable to
three-dimensional finite element analysis. Using this method, pile deflection, slope of the deflection curve, bending
moment and shear force for the entire length of the pile can be obtained if the following are known: the pile radius
and length, thicknesses of the soil layers, Young’s modulus of the pile material, the elastic constants of the soil in
the various layers, and the magnitudes of the applied force and moment.

The governing differential equation for pile deflection is obtained using the principle of minimum potential
energy, and closed-form solutions are obtained for this differential equation. The differential equations for the soil
displacements also follow from the principle of minimum potential energy and are formulated through finite differ-
ence representations of the derivatives. The differential equations of pile and soil displacements are interdependent,
thus an iterative scheme was required to solve the equations simultaneously.

The analysis is quite flexible, allowing variation of soil modulus in every direction — radial, circumferential or
vertical. Illustrations of use of the analysis for layered soils show that the variation of soil properties in the horizontal
direction has a definite impact on pile response. We have illustrated this through examples in which the soil Young’s
modulus varied radially (such as could happen due to disturbance) and circumferentially. Circumferential variation
can be used to account for the impact of load direction on the state of the soil around the pile and for lack of contact
between the pile and soil behind the pile, for example.
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