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A unified framework for calculating aggregate
commodity prices from a census dataset
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Economic data collection from commodities producers in the United States typically consists of rev-
enues and quantities. While the data collected in some sectors such as fisheries are a census of the pop-
ulation, features of the population such as prices, must be calculated. Unit values are widely used as
a price measure to impose a single price in place of dispersed ratios of revenue to quantity from indi-
vidual producers but alternatives exist. In this paper, different linear aggregation procedures are used to
calculate price measures, such as ratio-based calculations (e.g., ratio-of-means, mean-of-ratios), or esti-
mation by ordinary least squares. There are non-trivial differences in the prices calculated depending on
the procedure. This paper proposes a unified framework, including Bayesian estimation, for considering
the tradeoffs inherent in the different methods commonly employed.
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1. Introduction

Price dispersion, which represents deviations from the Law of One Price, is com-
mon in transaction data (see Kaplan and Menzio [1]). With variability in the ratio of
revenues to quantities among producers, or sellers, what is the appropriate ‘price’ of
a commodity such as frozen king crab? The answer to this specific question is impor-
tant to fishermen because fishery managers collect fees in the Bering Sea based on a
standard price, which is a unit value. In this case, data on production and revenues
are collected from every commercial fisher and processor that operates in Bering Sea
fisheries, and standard prices represent a census of commercial operators in these
fisheries. This paper develops alternatives to standard prices to examine effects of
price dispersion.

Given cross-sectional data with quantity units and dollar values for any commod-
ity, a first objective is usually to determine a price. But how should this price be
calculated? This problem is endemic to low frequency data collection over time or
space that include many transactions with dispersed prices because collection efforts
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will typically focus on aggregates which can be summed, of which two common
variables are production quantities and revenue.1 For example, import and export
data from the census bureau report only value and volume, but not prices of indi-
vidual transactions. In some cases, collecting prices over an interval of time may be
burdensome because they occur at a transaction level and would be distributed at
irregular times over the interval the data are collected. However, medium and high
frequency data face similar aggregation problems (e.g., Triplett [2]), and the problem
of price dispersion applies to the basic level of aggregation used to construct price
indices. Baye [3] formally incorporated price dispersion into price index theory, and
his numerical results show the use of mean prices in an index leads to bias.

In general, index number methods break down at some level of disaggregation.
Diewert [4] recommended unit value as a suitable price aggregate if data on quan-
tities are available. The practice of using unit values in place of observed prices is
widespread (e.g., Reinsdorf [5]; Nevo [6]), but encounters problems if conditions for
homogeneity are not met (e.g., Balk [7]).2 Deaton [8] analyzed the bias that arises
from using unit values to proxy prices in a demand system. Silver and Webb [9]
found evidence of bias in the unit value index when using scanner data to com-
pare effects of different aggregation levels on a consumer price index. According to
Bradley [10, p. 41], “Even though it is often used throughout the economics pro-
fession and statistical agencies, little research has been done on the use of the unit
value as an aggregate price measure or the use of the unit value index as a lower level
subgroup price index.” Moreover, Bradley reports on studies of scanner data that use
a unit value as a “plugged-in” price measure to impose a single price for an item on
an area-month basis, and provides evidence this practice induces specification error
and bias.

Mills [11] began his chapter on price dispersion with a description of price rela-
tives varying around a mean value. His description can easily be extended to price
levels, with dispersion around a mean price. Hence this paper starts from a related
premise where the price level can be viewed as a statistical parameter, or an equiv-
alent price aggregate, such as unit value. Viewed either as a statistical parameter, or
astatistical variable, the estimate, or aggregate, gives a scalar that relates quantities
to dollar values for the entire population.

This paper follows the example of Balk [7] in questioning when is a set of eco-
nomic transactions sufficiently homogeneous to warrant the use of unit values. We
have production data with revenues and accurate quantities collected annually, i.e.,
longer than a Hicksian week (Hicks [12, p. 122]), and considerable variability exists

1Low frequency refers to an interval of time or space over which multiple transactions take place at
significantly different prices such that the Law of One Price is plausibly violated and as a consequence
price dispersion exists.

2Balk [7] showed that the unit value index fails the identity test unless both base period and reference
period quantities are equal, and it fails the dimensionality test and can be sensitive the choice of units.
Hence the unit value index is not a true price index.
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in annual revenue to quantity ratios among producers. The methods presented in this
paper apply to this type of price dispersion by treating unit values as a type of average
price within a family of mean price estimators, with an associated price distribution.
We explore this family of estimators, and broaden it to include Bayesian estimation
with a prior based on unit value. The application in the paper is to an interesting
commodity, frozen Alaskan king crab, but methods in the paper could apply to any
commodity for which data on quantity and value are available.

Unit value is the standard method of calculating an aggregate price over an inter-
val of time which in technical terms is a linear aggregation procedure with a quantity
weighted-average of per-unit value (i.e., price) for each production unit. This method
intentionally integrates out information about the distribution of values among pro-
duction units (e.g., vessels, processors) to calculate a single number, and the standard
method is equivalent to using a ratio-of-means (RoM) (or total value divided by total
quantity) to define an aggregate price, which is equal to the unit value. Sometimes,
an alternative price is used that is an average per-unit value, which is a mean-of-
ratios (MoR).3 If quantity and value data are available for all production units in a
population, then both standard and alternative methods calculate ratios that can be
interpreted as defensible aggregators for the population of prices. However, the RoM
and MoR are not equal except if perfect symmetry prevails, and production volume
is equal for all units, which is unrealistic. Furthermore, in practice the difference
between the two means can be substantial. When the dataset is a census of the popu-
lation, what does the application of these ratio-based calculations (and others) imply
about the relationship between aggregate value and quantity? These and other esti-
mators can be compared within the context of a statistical framework to determine
what parameters are being estimated by these different aggregation methods.

This process implies price is an unknown that is calculated by dividing value by
quantity, or equivalently, value is the product of an unknown price and quantity.4 The
form of this relationship in a statistical framework suggests value is the response
variable, quantity is the explanatory variable, and price is the unknown parameter.
The use of regression analysis to estimate prices is a natural outcome of a statistical
framework for price estimation, and in this paper, we investigate regression estimates
of price relative to the RoM or the MoR within the family of linear aggregation. Un-
der linear regression, the coefficient estimate in the regression of value on quantity is
a price estimate which opens up new possibilities for alternative price estimates that
control for exogenous factors, including seasonality. However, even a simple regres-
sion poses potential problems. For example, ordinary least squares (OLS) estimates
are biased if an explanatory variable is correlated with the error term. In this paper,

3For example, see Garber-Yonts and Lee [13, Table 4.5] where both ratio-of-means (RoM) and mean-
of-ratios (MoR) statistics (including the standard deviation for the MoR as a simple measure of distribu-
tional variation) are presented.

4Depending on the data collection value and quantities may not represent a single transaction. It could
be multiple transactions within an interval of time with differing prices.
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we assume quantity variables are exogenous explanatory variables. This assumption
is potentially justifiable in resource extraction and agricultural settings where supply
changes are environmentally driven. In the paper, we present some evidence in sup-
port of this assumption for our empirical application to frozen king crab, and outline
a companion theory where revenues are the explanatory variable, and causality runs
from revenues to quantities.

In particular, the inverse demand approach of Barten and Bettendorf [14] is gener-
ally accepted for fish and other perishable commodities (e.g., Park et al. [15], Lee and
Thunberg [16]). A clear justification often exists for an inverse demand specification
that treats quantity as an independent variable in fish price-quantity relationships be-
cause the total catch is regulated. However justification for an inverse demand spec-
ification can extend beyond management constraints. For perishable goods, Barten
and Bettendorf [14, p. 1510] explain “supply is very inelastic in the short run and the
producers are virtually price takers” and “price-taking producers and price-taking
consumers are linked by traders who select a price which they expect clears the
market” from which the conclusion is “causality goes from quantity to price.” For
empirical support, Eales et al. [17] compared models of Japanese demand for fish
and found the inverse demand specification “dominated” other demand specifica-
tions based on testing and forecasting performance. In addition, Hospital and Pan
[18, Appendix A-7] describe conditions where price could be exogenous and quan-
tity endogenous. They applied exogeneity tests to price-quantity relationships in this
setting and found strong support for the inverse demand specification.

The statistical framework we propose applies to datasets that represent a cross-
sectional census of the population and where the objective is to find an accurate
measure relating value and quantity (as opposed to finding an optimal index for ex-
amining price changes over time). When the data are a census of the population the
data contain all features of the population distribution. Because there is no sampling
there is no underlying probabilistic mechanism for which population inference must
be used.5 If we want average revenues for the population then we can simply cal-
culate the average. We can also calculate the variance of the population. However,
average in this context has no variance, it is simply the average. For price, an aggre-
gate is less obvious because price is a rate variable which relates the flow from the
quantity produced to revenues of a particular market transaction. The aggregation of
the rate can depend on the importance or significance of the transaction (e.g., prices
from high volume transactions may be more important in the aggregate price) which
in turn relates to the aggregation methods used on quantities and revenue. Conceptu-
ally related is the property of factor reversal in economic indices, which is satisfied

5This also assumes that the data collection methodology itself does not introduce uncertainty (e.g., mea-
surement error) or that it is negligible. Furthermore, uncertainty arising from the data collection method-
ology should generally be addressed explicitly and may be dealt with differently than uncertainty from
sampling.
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when the same index method is used to create price and quantity indices that capture
changes in the ratio of values (see Coelli et al. [19]).

We can still conceptually impose a statistical model on census data by hypothe-
sizing a superpopulation. Within a statistical framework, a RoM and a MoR can be
compared if they are treated as two different estimators of an unknown superpop-
ulation parameter (see Godambe and Thompson [20]). Within the superpopulation
model an OLS regression of values on quantities can also be considered as an esti-
mate of the aggregate price. From a statistical standpoint, if the assumptions for OLS
are satisfied then the coefficient on quantity is an unbiased estimate of the marginal
change in revenues with respect to quantity; that is the price. In addition to OLS, this
paper proposes Bayesian linear regression which recognizes that prices have a dis-
tribution and allows the researcher to incorporate prior beliefs about the distribution
of prices.

There are critical distinctions between the aggregate price formulae discussed here
and price indices, which have been the focus of much of the price index literature.
The aggregate price formulae presented here (which relate value and quantity) are
not price indices (which relate prices over time/space). The construction of an ag-
gregate price can be thought of as analogous to the construction of an index. As with
indices there are numerous formulae available to choose from even for a basic ob-
ject such as quantity. However, an aggregate price and a price index differ in some
fundamentally important ways. The most trivial difference is that an aggregate price
retains the scale of dollars per-unit quantity while indices are unit-less by design.
More importantly, indices are designed to compare the prices in one state relative to
another (generally one time period to another), while an aggregate price summarizes
prices in a single state (i.e., at a point in, or interval of, time) for the purpose of ob-
taining an objective measure relating aggregate quantity and value. Because of this,
when the objective of analysis is price change (e.g., over time/space) then price in-
dices are the preferred metric. Moreover, price indices may rely on aggregate prices
calculated using methods in this paper.

To demonstrate the potential differences associated with alternative aggregation
procedures, we present three price estimators in a case study of the first-wholesale
price of Alaska red king crab (Paralithodes camtschaticus). This case is interesting
because the price of red king crab is historically variable, and the Alaska red king
crab fishery is a commercially important industry to both Alaska and Washington
state (Garber-Yonts and Lee [13]). The red king crab fishery is one of the largest
crab fisheries in Alaska comprising roughly 20% of the total economic value from
crab harvest. The Bristol Bay red king crab (BBRKC) stock constitutes roughly 95%
of the red king crab harvest and is the focus of the empirical analysis. In particular,
the first-wholesale price of red king crab is estimated from Alaska Department of
Fish and Game (ADFG) Commercial Operator’s Annual Reports (COAR), an annual
census of commercial fish and shellfish processors in Alaska that records annual data
on production and first-wholesale revenues.
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Although the fishery is open from October to January, the BBRKC fishery primar-
ily harvests in November of each year.6 The majority of sales occur in November in
anticipation of the holiday season. King crab is more of a seasonal specialty good
than a high volume commodity, such as whitefish fish fillets, which can contribute to
price dispersion. The main product after processing is packaged sections (e.g., whole
crab legs) of cooked and frozen king crab meat in the shell. The flavor and texture of
king crab meat cooked and frozen in the shell is reported to deteriorate after about
6 months in cold storage (Dassow [21]).

Cooked and frozen king crab sections may be exported for finishing or finished
domestically. Though the share varies annually, exports typically constitute roughly
half of the production volume. The largest importer is Japan followed by Korea,
Canada, China, and Western Europe (Dalton and Lee [22]). Smaller but steady mar-
kets exist in tourist destinations including Mexico, the Caribbean, and Southeast Asia
where in Indonesia some additional processing occurs for export back to the U.S. The
U.S. imports much more king crab than it consumes from domestic production. In
global markets, the BBRKC fishery competes mainly with Russian red king crab
fisheries in the Bering Sea, and in the Barents Sea. Historically, Russia has been the
largest global supplier of red king crab. Norway is also a global supplier.

The BBRKC fishery was closed in 1994 and 1995, but recovered before ratio-
nalization in 2005 (Kruse et al. [23]). In 2011–13, the BBRKC fishery produced an
annual average of 5.9 million pounds of finished products, and over this period, was
estimated to have generated average real first-wholesale revenues (i.e., revenues re-
ceived by processors at the first sale of finished products) of about $78.5 million per
year (Garber-Yonts and Lee [13, Table 1]). The BBRKC stock was included in the
BSAI Crab Rationalization Program.7 The fishery for BBRKC is managed coopera-
tively by the NMFS, the North Pacific Fishery Management Council (NPFMC), and
the State of Alaska. Management of BBRKC is based on a stock assessment model
that is used to estimate an Overfishing Limit (OFL), the level of catch that corre-
sponds to a proxy for the fishing mortality rate which achieves Maximum Sustain-
able Yield (MSY).8 The Acceptable Biological Catch is an OFL buffer that accounts
for uncertainty and ensures the probability of exceeding the OFL is less than 50%,
and is used as an upper bound for the total allowable catch (TAC), which in turn
determines the market supply of BBRKC.

The outline of this paper is as follows: Section 2 describes a superpopulation
model and estimation methods based on linear aggregation that relate production

6http://www.adfg.alaska.gov/static/applications/dcfnewsrelease/872196583.pdf.
7A voluntary cooperative IFQ program was implemented in 2005 to allocate BSAI crab resources

among harvesters, processors, and coastal communities (www.npfmc.org/crabrationalization).
8See Amendment 24 to the Fishery Management Plan for BSAI King and Tanner Crabs. Current guide-

lines from the National Marine Fisheries Service for National Standard 1 state “The Magnuson-Stevens
Act establishes MSY as the basis for fishery management” (50 C.F.R. §600.310(b)(2)(i)). See also def-
initions of optimum yield, overfished, and overfishing, in Magnuson-Stevens Fishery Conservation and
Management Act, 16 U.S.C. §1802.
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quantities and values. Section 3 presents a Bayesian estimation method and com-
pares its results with those based on linear aggregation. Section 4 concludes with a
discussion of results.

2. Linear aggregation and regression

In practice, ex-vessel and first-wholesale prices for fish are calculated with each
cross-sectional year treated as a separate (and independent) sample. This paper
adopts that practice, and to save notation, the subscript for time t is suppressed
in the equations presented in this section. For each t, we assume a finite popula-
tion i = 1, . . . , N . For each single observation, we take as given that price satisfies
vi = pi×qi; hence, individual prices can be calculated as the ratio of value and quan-
tity pi = vi/qi. This ratio gives rise to the ratio-based price aggregates, RoM and
the MoR. These are considered first in the case where the analyst is trying to obtain
an aggregate measure of price, which is referred to as an astatistical framework. We
then consider estimates of price under the assumption of a superpopulation, where
the estimators are considered in a statistical framework along with the regression
estimators.

2.1. Astatistical calculations of an aggregate price

Even in a framework that does not rely on a statistical foundation a calculation
must be constructed to meet some objective to be meaningful. By extension from
the observation by observation case, a natural objective is to construct an aggregate
scalar price p∗ such that the relationship between value-price-quantity is conserved
in aggregate:

f(v)− p∗ × f(q) = 0, (1)

where f is some aggregator function (e.g., summation) which should be monotoni-
cally increasing and v and q are vectors of the N value and quantity observations.
Conservation of this relationship ensures that hypothetical changes in aggregate
quantity are captured in aggregate value.

As an example, consider price calculated by using summation for the aggregator
function f . Price is calculated as∑N

i=1
vi − p∗ ×

∑N

i=1
qi = 0

p∗ =
1/N

∑N
i=1 vi

1/N
∑N
i=1 qi

.

This calculation is ratio of average value and average quantity, the RoM. The RoM
can also be written as a quantity-weighted arithmetic average price,

p∗ =
∑N

i=1

vi
qi

qi
Q

=
∑N

i=1
pi
qi
Q
, (2)
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where Q =
∑N
i=1 qi. This measure can be interpreted as using a market share ad-

justed average of price, to characterize the prevailing price in the market. Addition-
ally, it ensures that “abnormal” prices that might be associated with the sale of small
quantities of a commodity are not over-represented in the average.9 Furthermore,
the weighted average is hierarchically consistent in the sense that if the observations
in the dataset are actually an aggregate of multiple transactions, then the formula
used to construct and aggregate price from the observations will be the same as the
implicit formula over transactions calculated when creating observation level prices.

2.1.1. Generalized astatistical methods
The formulation proposed in Eq. (1) reduces the problem to choosing an aggre-

gator function for prices and quantities. The weighted generalized mean or power

mean,
(∑N

i=1 ωix
∝
i

)1/∝
, is a common function which gives a representation which

can capture common measures of aggregate price. Reducing the problem to the se-
lection of a parameter and a set of weights provides a unifying framework through
which different methods can be compared. The parameter ∝ controls the degree to
which a large observation can influence the mean. For larger values of ∝ observa-
tions which are larger in magnitude will have greater influence on the mean and will
produce larger value and quantity aggregates. Selecting ∝= 1 results in the arith-

metic mean, ∝ = 2 the quadratic mean, and lim∝→∞
(∑N

i=1 x
∝
i

)1/∝
= max(xi).

The geometric and harmonic means correspond to lim ∝→ 0 and ∝ = −1, respec-
tively. The weights, ωi, represent our preference or weight attached to observations
when aggregating value and quantity. The summation is a mean if

∑
i ωi = 1.

Conservation of the value-price-quantity relationship (Eq. (1)) under the weighted
generalized mean aggregator results in the implicit formula for price:(∑N

i=1
ωiv
∝
i

)1/∝

− p∗ ×
(∑N

i=1
ωiq
∝
i

)1/∝

= 0.

The generalized aggregate price function is the ratio of the weighted generalized
means of value and quantity,

p∗(ω,∝) =

(∑N
i=1 ωiv

∝
i

)1/∝
(∑N

i=1 ωiq
∝
i

)1/∝ . (3)

Thus, treating all observed values and quantities equally ωi = 1/n and aggregat-
ing linearly, ∝ = 1, yields the RoM calculation of aggregate price (Eq. (2)). Giving

9As an extreme example, consider two companies one with 90% of the market share and goods priced
at $0.50 and the other with 10% market share and goods priced at $1.00. The weighted average of prices
is $0.55, and the simple average is $0.75.
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preference to observations with smaller quantities by using ωi = 1/qi and aggre-
gating linearly gives the common arithmetic average of prices or MoR,10 Eq. (3) is
similar to a productivity index, the generalized pricing function is a ratio of (quasi-)
distance functions which characterizes industries’ ability to transform inputs (pro-
duction) into outputs (revenues).

p∗
(

1

qi
, 1

)
=

1

N

∑N

i=1

vi
qi

=
1

N

∑N

i=1
pi (4)

Alternatively, giving preference to observations with smaller values by using ωi =
1/vi and aggregating linearly gives the (unweighted) harmonic average of prices,

p∗
(

1

vi
, 1

)
=

N∑N
i=1

qi
vi

=
N∑N
i=1

1
pi

Taking the unweighted geometric mean of value and quantity, ωi = 1/n and
∝= 0, produces a geometric mean of prices,11

p∗
(

1

n
, 0

)
=
∏N

i=1
p
1/N
i ,

which is sometimes used in productivity analysis and instances where the log-linear
arithmetic average of prices might be the preferred.

Arranging the generalized aggregate price function to isolate observation level
prices shows that it can be generically cast as either a quantity-weighted generalized
mean or a value-weighted generalized harmonic mean,

p∗ (ω,∝) =

(∑N

i=1
p∝i

ωiq
∝
i∑N

i=1 ωiq
∝
i

)1/∝

=

∑N

i=1

(
p∝i

ωiv
∝
i∑N

i=1 ωiv
∝
i

)−1−1/∝ . (5)

The quantity-weighted generalized mean representation is a more economically
intuitive functional form than the harmonic mean. Furthermore, value is typically
viewed as the result of an interaction between price and quantity. Because of this,
if weights are constructed as functions, then basing weights on quantity should be
preferred to value. In practice, weights can be based on anything that can be reason-
ably justified to meet the objectives of the analysis for which the price is being con-
structed. However, for all but the most common calculations of an aggregate mean
the choice of weights should be made explicit.

10Note that because the weights appear in both the numerator and denominator and the generalized
mean is homogenous of degree 1, normalization of the weights so that

∑
i ωi = 1 is unnecessary.

11The geometric mean is obtained from Eq. (3) in the limit as ∝→ 0.
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The generalized aggregate price function and consideration of its parameters
shows that the most objective calculation of the price is the ratio of means,
p∗
(

1
N , 1

)
=

∑N
i=1 vi∑N
i=1 qi

, where observations are weighted equally ωi = 1/n and where
the influence of the magnitude of the variables is determined by their natural scale
∝= 1.

2.2. Statistical estimation of an aggregate price

A statistical framework is used when there is some underlying probability mech-
anism that is producing the observed data. When calculating population parameters
sampling is often the probabilistic mechanism. There are many tools within statistics
that allow all researchers to ask interesting hypothetical questions about the popula-
tion. When the data are a census of the population, statistics can still be employed by
assuming that the observed population is a sample of some larger superpopulation.
The statistical methods employed can depend upon the assumed source of random
variation and the framework under which the problem is approached.

2.2.1. Direct estimation
If we take as given that pi = vi/qi is the actual observed price, then conceptually

we might view price as random as opposed to constant. This would also seem natural
from the perspective of the agents (e.g., processors) that negotiate the price within
the market.

Consider the model for price where pi is an independent observation from the
random variable P ∼ F (γ, σ), with a continuous distribution F (·) whose support
is R+and has constant mean and variance, E(P ) = γ and Var(P ) = σ2. Like any
random variable, under most reasonable assumed distributions (e.g., lognormal), if
the variance is finite and constant then the optimal unbiased estimator of γ will be the
sample mean, p̄ = 1

N

∑
i=1

pi, which is the MoR. This is true for both quadratic loss

and maximum-likelihood estimators of the mean. Under absolute loss the median is
the optimal estimator.

When the variance is heteroskedastic, a weighted average is the optimal (minimum
variance and MLE) unbiased estimator of the mean of the price distribution. The
weights are the inverse of the variances,

p̄w =
∑N

i
ωipi where ωi =

1

σ2
i

/
∑

j

1

σ2
j

. (6)

This may be justified in the case where smaller trades may be associated with a
higher variance as in a commodities market. One way of capturing this relationship
is by hypothesizing that the variance is proportional to inverse powers of quantity,
σ2
i (x) ∝ q−xi , where the x is chosen by the analyst to control the influence of quan-

tity on the variance. When values of x are large then larger quantities will have a
greater influence (i.e., larger weight) than smaller quantities,
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ωi =
1

σ2
i

/
∑

j

1

σ2
j

= qxi /
∑

j
qxj .

Thus, in the statistical case the choice estimator can be represented as the ana-
lyst’s belief about the relationship between the variance and the quantity. When the
variance is constant, x = 0, then the unweighted sample mean is the best unbiased
estimate. If the analyst believes that the variance is related to quantity by the simple
inverse, x = 1, then the estimator of price is the simple quantity-weighted average
of prices, which is the RoM,

p̄w =
∑N

i
ωipi =

∑N

i
piqi/

∑
j
qj =

∑
i vi∑
j qj

. (7)

Other estimators can be devised as well through different choices of x. Another
alternative is that variance could be made to functionally depend on quantity (or
value) in a different way to support some of the more esoteric estimators of the
mean like the harmonic mean. In general though there is little support for alternative
estimators like the harmonic mean.

2.2.2. Estimation by regression
When the object of analysis is the prediction of value for hypothetical quantities,

regression is a more appropriate statistical tool. The notion that the actual price paid
in the market is random with a distribution is more consistent with Bayesian frame-
work (in contrast to classical regression where quantity is related to value through a
constant but unknown price),

vi = pqi + εi

P (v|q, p, τ2, σ2)

π(p|τ2, σ2),

where P (·) is likelihood function for value, τ2 is the variance of the likelihood dis-
tribution, and π(·) is the prior distribution for price with variance σ2. For simplicity
we assume here that the error εi is independent across production units, i, and that
it’s exogenous, ε⊥q. The assumption of ε⊥q is consistent with the microeconomic
principle that production units are price-takers and that the quantity of production is
fixed prior to determining price in the market. In many plausible scenarios the as-
sumption that quantity is independent of shocks to value could be violated, in which
case a suitable instrument for quantity is needed for identification (Kleinbergen and
Zivot [24]). The exogeneity assumption, explained in Section 3, is maintained in this
paper to keep focus on the price calculation formulas. In the unified framework of
this paper a dual theory exists where a regression coefficient on value vi, call it r,
is estimated by OLS which extends to dual astatistical versions of the RoM, which
is simply one over the original RoM for prices, and the MoR with value-weights,
which is the unweighted harmonic average of prices.
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When the normal distribution is used for the likelihood and prior distributions have
a known variance and a diffuse prior, or the sample size is sufficiently large, then the
estimate of the posterior mean of the price is the OLS estimator,12

p̂OLS = E
(
p|v, q, τ2, σ2

)
=

∑
i viqi∑
j q

2
j

=
∑N

i
piq

2
i /
∑

j
q2j .

Interestingly, the OLS estimator itself is also a quantity-weighted average of price
with quadratic weight on quantity. Equation (8) shows a connection between the
direct statistical estimation of price in Section 2.2.1 and the regression estimator. A
general representation of the statistical estimators is the power weighted average:

p̂ =
∑N

i
piq

x
i /
∑

j
qxj . (8)

By analogy to the weighted average, heteroskedasticity (e.g., σ2
i ∝ q−1i ) can also

be accommodated in the regression model. In Bayesian analysis a posterior simu-
lator must be used if heteroskedasticity is introduced into the model. There is no
analog in the classical regression context because price is modeled as constant (but
unknown) and hence has no variance. However, in classical regression the price can
be efficiently estimated in the presence of heteroskedasticity of the regression error,
Var(εi) = τ2i , through weighted or generalized least squares.

3. Empirical comparisons of aggregate price estimates

Each year the National Marine Fisheries Service (NMFS) is responsible for pub-
lishing standard prices to determine ex-vessel value for the assessment of cost-
recovery fees in various catch share programs.13 For example, NMFS standard prices
are used to assess fees for observer coverage in North Pacific groundfish fisheries (77
FR 70062), and these standard prices are based on the RoM using 3-year moving av-
erages of volume and value (80 FR 77606). The use of 3-year moving averages is
intended to dampen inter-annual variability in standard prices. As stated in the in-
troduction, our empirical application uses data for red king crab from the BBRKC
fishery. Although NMFS does not currently publish standard prices for Alaska crab
stocks, the question posed at the beginning of the paper about which price estimate
to use for the standard price is relevant and informed by comparing price estimates
in this paper.

12The variance can also be given a distribution and estimated like the mean. Under similar assumptions
the same results hold. The current setup maintains the focus on the formula for the mean.

13For example, see §50 CFR 679.45(c)(2)(i) for halibut and sablefish programs, 70 FR 10174 for the
Bering Sea Aleutian Islands Crab Rationalization Program, and other programs (https://alaskafisheries.
noaa.gov/fisheries/cost-recovery-fee-programs).
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Table 1
Comparison of price estimates by ratio-of-means (RoM), mean-of-ratios (MoR), and ordinary least
squares (OLS), for Alaskan Red king Crab 2010–2014

YEAR RoM MoR OLS
2010 13.58 13.53 13.27
2011 17.62 17.72 15.84
2012 14.88 13.84 15.51
2013 12.59 12.02 13.06
2014 11.59 11.14 12.34

First-wholesale data on aggregate annual production quantity and revenue for the
BBRKC fishery were obtained from the Alaska Department of Fish and Game Com-
mercial Operator’s Annual Reports (COAR). The COAR is collected annually from
processors in Alaska. These annual data comprise sales from between 15 and 21 pro-
cessors processing crab between 2010 and 2014. Using these data we compare nine
different price estimates in five cross-sections (across processor) of wholesale value
and production data within the years 2010–14. As explained in the introduction, we
assume quantity variables are exogenous explanatory variables, and follow Hospital
and Pan [17] by applying exogeneity tests to price-quantity relationships.14

The first three estimates are the ratio estimators and OLS (Table 1). The differ-
ences among these price estimators are larger in some years than others. In 2011, the
MoR and OLS differed by less than 1%, and slightly more than 10%, respectively,
relative to the standard RoM. In addition, OLS differed by more than 6% in 2014.
Relative differences are less than 5% for OLS in other years. The largest relative
difference for MoR is 7% in 2012, with relative differences of less than 5% in other
years.

The other six price estimators come from Bayesian estimation, three from the nor-
mal regression model, and the other three from the lognormal model. The three are
maximum likelihood, mode of the pdfs, and posterior mean. Bayesian price estimates
treat the error variance as a nuisance parameter to concentrate on a Bayesian analysis
of price estimates. The maximum prior probability density function (pdf) was set to
the RoM for all estimates. The first model is the linear model vi = pqi + εi with
a prior on prices g(p) which has a normal distributionN(α, β). The parameter α is
set equal to the RoM for a dataset that consists of pairs x = {qi, vi}ni=1. In practice,

14The endogeneity test in Wooldridge [25, Ch.15], which is based on the t-statistic for an estimated
coefficient on residuals from an auxiliary regression with lagged quantity as the instrument, was applied
to data used in this paper. This test was applied to the specification used in this paper, with quantity as
the explanatory variable and value as the response, and also applied to the inverse specification that treats
value as the explanatory variable and quantity as the response. Test results for 2010–2014 reject (5%
significance level) the null of exogeneity for quantity in 2011 and 2012. For data used in this paper, the
conclusion from these tests is endogeneity in quantity variables is not a problem in most years. With these
mixed empirical results in mind, microeconomic theory favors the inverse demand approach of Barten
and Bettendorf [14] where producers and consumers are price takers and traders choose prices to clear the
market so that causality runs from quantity to price.
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we assume a value for β that is concentrated on the RoM. The error process for each
data point is independent and identically distributed with εi ∼ N(0, σ2). Therefore,
the likelihood function for the sampling distribution is

L(p, σ|x) =

n∏
i=1

1

σ
√

2π
e

1
2σ2

(vi−pqi)2 . (9)

Inserting the maximum likelihood estimate of the error variance σMLE using the

formula σ̂i(p|x) =

√
1
n

n∑
i=1

(vi − pqi)2 produces a concentrated likelihood function

with sampling distribution L̂(p|x) = f(x|p).
Extending the estimation method to a fuller treatment of uncertainty in the error

variance can be simple depending on the nature of the data and assumptions. The pos-
terior distribution is proportional to the concentrated likelihood times the prior pdf,
f(x|p)g(p), which may also be seen as a likelihood function, h(p|x) = f(x|p)g(p).
The mode of h(p|x) is a Bayesian estimate from the posterior distribution that is
directly comparable to the MLE at the mode of L̂(p|x). The mean of the posterior
distributionE(p|x) =

∫
p h(p|x) dp is another Bayesian estimate. The second model

uses individual ratios pi = vi/qi, and is log-linear pi = eµ+εi with εi ∼ N(0, σ2).
The likelihood function for the lognormal model is

L(µ, σ|x) =

n∏
i=1

1

piσ
√

2π
e

1
2σ2

(ln(pi)−µ)2 . (10)

The error variance formula in the concentrated likelihood is σ̂i(µ|x) =√
1
n

n∑
i=1

(ln(pi)− µ)2. A prior on prices in the second model is distributed N(α, β)

with α set equal to the natural log of RoM.15

Table 2 presents point estimates from the regressions with normal and lognormal
models. Attention is focused on the point estimates in Table 2 for direct comparison
with the astatistical interpretation of unit value calculations for a census dataset in
Table 1.

Figure 1 summarizes results of the Bayesian estimation by showing probability-
normalized histograms of the cross-section for each year, and presents uncertainty
with plots of pdfs for the likelihoods, priors, and posteriors. Results of the Bayesian
estimation, and other numerical results in the paper, such as the OLS regressions and
endogeneity tests in Wooldridge [25, Ch.15], were computed in Mathematica 8 for
Microsoft Windows (64-bit) running on an Intel core i7 CPU at 2.67 GHz and 6 GB

15A lognormal prior LN(α, β) could be useful in some cases. In this case, α is set equal to the natural
log of RoM plus an adjustment for the assumed value of β because the maximum (i.e., mode) of the pdf
occurs at eα−β

2
. However we encountered numerical problems trying to implement that approach.
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Table 2
Comparison of price estimates by normal and lognormal regression models based on the maximum prior
(= RoM) (MAXPRI), maximum likelihood (MAXLIKE), maximum posterior (MAXPOST), and the pos-
terior mean (EXPOST), for Alaskan red king crab 2010–2014

YEAR MAXPRI MAXLIKE MAXPOST EXPOST
Normal

2010 13.58 14.32 13.74 13.73
2011 17.62 17.53 17.60 17.60
2012 14.88 16.27 15.14 15.14
2013 12.59 13.73 12.89 12.88
2014 11.59 12.82 11.92 11.91

Lognormal
2010 13.58 13.15 13.23 13.24
2011 17.62 17.40 17.43 17.48
2012 14.88 13.60 13.76 13.78
2013 12.59 11.70 11.84 11.86
2014 11.59 10.78 10.95 10.97

Table 3
Summary statistics of the price estimates, for Alaskan red king crab 2010–2014

Year Processor Min Max Average Range Standard Coefficient
count deviation of variation

2010 15 13.15 14.32 13.53 1.17 0.370 0.027
2011 21 15.84 17.72 17.36 1.88 0.578 0.033
2012 17 13.6 16.27 14.66 2.67 0.949 0.065
2013 19 11.7 13.73 12.51 2.03 0.693 0.055
2014 17 10.78 12.82 11.60 2.04 0.702 0.060

of RAM. Mathematica’s NMinimize and NMaximize functions were used for least-
squares and maximum likelihood operations, respectively, and NIntegrate was used
to evaluate integrals that form the mean of the Bayesian posterior distributions.

In all cases, differences between the maximum posterior and posterior mean are
relatively small and almost negligible for the normal regression model. The OLS and
maximum likelihood estimates are not equal because of the concentrated likelihood.
The maximum likelihood price estimates for the normal regression model are larger
than the other estimates in most years. The biggest discrepancy in price estimates is
OLS in 2011 which is substantially less than the other estimates that are relatively
close together. The low OLS price estimate in 2011 is due to the bi-modal mass
(evident in the histograms presented in Fig. 1) amplified by the quadratic weight on
quantity in the OLS formula.

In general, differences between the maximum likelihood and maximum posterior
estimates were larger for the normal regression model than the lognormal model. An
interesting result is that the maximum posterior for the normal regression model is
closest to the RoM, and the maximum posterior for the lognormal model is closest
to the MoR. This relationship provides an interpretation for each (i.e., normal and
lognormal) Bayesian estimate. For this particular dataset, it is never the case that
the choice of method results in a change in sign for the year-over-year changes in
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Fig. 1. Normalized histograms and estimated pdfs for normal and lognormal models of red king crab price
estimates 2010–2014 (prior = dashed; likelihood = dotted; posterior = solid).
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Fig. 2. Comparison of price estimates by RoM, MoR, and OLS, with normal and lognormal regression
model estimators MAXLIKE, MAXPOST, and EXPOST, for Alaskan red king crab 2010–2014.

price (Fig. 2). In theory, choice of weights associated with different methods could
produce this result. Tables 1 and 2 show the range of estimates for price is quite large.

Summary statistics for the price estimates are presented in Table 3. For example in
2010, the difference between the smallest and largest price estimates was $1.17/lb (a
9% change), and in 2012, it was $2.67/lb (a 20% change). Dispersion across the nine
estimated prices, measured by the coefficient of variation, was largest in 2012. The
maximum likelihood methods tended to produce estimates of the extremes, with the
normal tending to produce the largest price estimate and the log-normal the smallest.
Excluding these, the range of price estimates in 2010 is $0.31/lb (a 2% change) and
in 2012 is $1.67/lb (an 11% change) (Table 1).

4. Conclusion

The method used to calculate an aggregate price from quantity and value data of a
cross section is not trivial. Different methods, each defensible based on context, can
lead to substantially different estimates of the price. Aggregate price differences such
as these can potentially have considerable impact on estimated welfare effects and
or price induced incentives, and could affect cost recovery fees collected by NMFS
for observer coverage. This paper has considered unifying frameworks for astatisti-
cal and statistical calculation of an aggregate price which make explicit the choices
made when selecting a method. Select methods for calculating price are compared
empirically displaying the marked differences in price the different methods yield
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which highlights the importance of thinking through the method used for calculating
an aggregate price.

Within the astatistical framework (when the data are a census of the population
considered) for calculating an aggregate price, a generalized unified pricing function
is used to reduce the problem of selecting a method to that of selecting a set of
weights on value and quantity and an aggregation parameter. The unified framework
shows that the most objective method for calculating a price is RoM (unit value) in
the sense that quantity and value are weighted equally and aggregation is linear. The
choice of weights and whether to use a ratio of means, mean of ratios, geometric
mean, or some other alternative are ultimately a decision for an analyst and can be
justified based on context. The unified framework in this paper facilitates comparison
among standard and alternative price estimates making these decisions explicit by
deriving everything from first principles.

The statistical framework is appropriate when a probability distribution is a real
(e.g., data are sampled) or imposed (e.g., hypotheses are being tested) feature of
the data. A unified analysis of statistical methods for aggregating prices shows there
are potentially important differences among the statistical averages and regression-
based price estimates. The quadratic weight on quantity in the OLS price estimates
is a potentially unappealing property because of the influence of outliers which can
occur for non-informative reasons (e.g., database errors). Furthermore, OLS does
not explicitly account for the distribution of individual prices within a dataset. The
Bayesian estimation method explicitly models the distribution of prices and can
therefore better represent uncertainty. Bayesian estimation delivers pdfs that sum-
marize the individual prices, and these pdfs can be used to derive probabilistic inter-
pretations for the utility or loss associated with different outcomes.

Fundamentally, the purpose of this paper is to recognize that the calculation of a
seemingly elementary aggregate price is not a priori elementary, that different ag-
gregation methods can produce substantially different results, and to motivate a mo-
ment’s pause before calculating an aggregate price. Furthermore, we seek to inform
the questions that served as the impetus for some of the comments by Diewert [4]
and Balk [7], which we summarize as, “What aggregation formula should we use to
calculate an aggregate price?” While certain estimates of an aggregate price may be
justified based on context, defensible methods can differ depending on whether the
aggregate price sought is a summary statistic of the data, a parameter of a probability
distribution, or the marginal effect on value from quantity. There will arise contexts
where it is not clear which aggregation is appropriate, leaving the researcher consid-
erable liberty to consider and defend the use of a given estimator. A purpose of this
article has been to provide a framework that lays bare the tradeoffs made by different
estimators to help inform their choice.
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