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Abstract. As an important part of malware detection and classification, sequence-based analysis can be integrated into dynamic
detection system for real-time detection. This work presents a novel learning method for malware detection models that lever-
ages advances in graph embedding for fusing the n-gram data into a one-hot feature space with different transmission directions.
By capturing the information flow, our method finds a better feature representation for detection tasks with rely solely on se-
quence information. To enhance the stability of feature representation, this work adopts a multi-task learning strategy which
achieves better performance in independent testing. We evaluate our method on two different realworld datasets and compare
it against four superior malware detection models. During malware detection using our method, we conducted in-depth discus-
sions on feature length, graph embedding direction, model depth, and different multi-task learning strategies. Experimental and
discussion results show that our method significantly outperforms alternative approaches across evaluation settings.
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1. Introduction

With the rapid development of computer and internet technology, malicious software (Malware) has
continued to impact cyberspace security. In recent years, due to its large profit, the scale, categories, and
qualities of malware have grown considerably. According to a report from AV-TEST,' mass malware
attacks and threats to the internet reached a new peak. Therefore, it is necessary to develop technology
for rapid malware identification.

Recently, due to the increasing number of available malicious code, machine learning methods for
malware detection have been employed. Malware detectors based on signature databases [11] or static
analysis [32] are facing increasing difficulty in separating malicious pieces from legitimate code because
of the development of malware obfuscation and variant technology. To address this issue, multiple stud-
ies on malware identification based on traditional machine learning methods have been carried out. For
example, Mirza et al. [28] used a support vector machine decision tree, and boosting on decision tree to
classify malware families. Moser et al. [26] proposed a feature extraction method based on gray-scale
images and applied the shared nearest neighbor (SNN) to detect malware.
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In the last five years, researchers have leveraged deep learning (DL) methods to distinguish malware.
For example, Ding and Zhu [43] used opcode sequences to identify malware. Vinayakumar et al. [37]
successfully provided a novel image processing technique for malware classification using raw byte
sequences from binary files. Compared to traditional machine learning techniques, DL has the advantage
of reducing the work of representing malware in digital arrays and can generate useable features during
training epochs [21]. To a certain extent, detection methods based on deep learning techniques are the
core direction of current malicious code research.

For existing features, such as file header information [24] and byte sequences [27], feature extraction
is difficult and the extracted features cannot be utilized effectively for malware classification. Conse-
quently, many researchers have focused on feature engineering [31,35]. In static detection, binary files
are typically used as the source for malware sample characterization. After disassembling a binary file,
the disassembled result will be used as the input to the model. In a recent study [25], researchers used
static analysis and Nonnegative Matrix Factorization to detect metamorphic malware, which can evade
traditional signature-based detection methods. Kumar et al. [22] have proposed a machine learning-based
solution to improve the efficiency of malware detection. Their approach involves creating an integrated
feature set that combines the portable executable header fields with various machine learning algorithms.

Dynamic behavior analysis techniques are a popular approach for extracting features from programs
for malware detection. These techniques capture the behavioral characteristics of malware, including file
system activity, registry activity, and network activity. Some studies even use machine activities, such as
energy consumption metrics [9], to detect malware. Ahmed et al. [1] proposed a non-signature-based de-
tection approach based on the effective Windows API call sequences, using supervised machine learning
techniques. Machine learning algorithms based on decision trees can then be adopted to classify malware
[14]. Kim et al. [19] proposed a malware detection and classification system based on dynamic analy-
sis using the behavioral sequence of malware (API call sequence) and sequence alignment algorithm
(MSA). Their approach analyzing the behavioral sequence of the malware and comparing it with a refer-
ence sequence using MSA. Hwang et al. [16] proposed a two-stage mixed ransomware detection model
that incorporates both a Markov model and a Random Forest machine learning model. Their approach
focuses on the Windows API call sequence pattern to capture the characteristics of ransomware and
uses the Random Forest model to control both false positive and false negative error rates. Other studies
have also utilized CNN [33] or LSTM [13] layers to construct models that use API call sequences as
features.

Some studies combine static analysis techniques to extract features of malware with dynamic analysis
techniques to capture the behavioral characteristics of malware, and then use machine learning algo-
rithms to classify malware [34]. Ndibanje et al. [29] proposed a method to de-obfuscate and unpack
malware samples, and used cross-method-based big data analysis to dynamically and statistically ex-
tract features from malware. Their approach relies on Application Programming Interface (API) call
sequences to detect behavior such as network traffic, file modification, registry value modification, and
process creation. Huang et al. [15] proposed a two-stage mixed ransomware detection model that com-
bines a Markov model and a Random Forest machine learning model. Their approach focuses on the
Windows API call sequence pattern to capture the characteristics of ransomware and uses the Random
Forest model to control both false positive and false negative error rates.

We have noticed that there has been a lack of research that uses API call sequences as features, and
the temporal characteristics of API call sequences have not been fully utilized in previous studies. Our
research aims to make a small yet significant contribution to the field of malware family classification
by presenting a novel model based on the API call sequence. The following two key techniques were
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used. (1) To improve the characterization using the API call sequence, we used graph embedding as a
representation of the sequence. Using graph embedding can fuse the context of the API call sequence
globally without additional information. (2) To enhance the prediction ability from the represented se-
quences, we adopted a multitask learning strategy to make full use of latent information and achieve a
better optimization mechanism.

In practice, first, we preprocessed the obtained API call sequence involved in the execution of malware
samples. Then, we optimized the structure of the neural network architecture by adjusting the feature
length, the number of LSTM network layers, the location of the convolutional layers, and the direction
of the graph embedding information flow. Finally, we used multitask learning [18] to optimize the pre-
diction performance. The results showed that the proposed method outperforms other methods on the
same datasets. The code for this research has been made available on GitHub.?

Our contributions are as follows:

— A single-bidirectional graph embedding framework was introduced for malware detection based on
API call sequences, bringing considerable high efficiency and accuracy.

— Different multitask learning strategies were used for malware detection, and the differences in the
prediction performance were compared and discussed.

— Many hyperparameter optimization operations of the neural network architecture were processed
and discussed separately, and the impact on the prediction performance was recorded and discussed

2. Research methodology
2.1. Overview

In this section, we will provide an introduction to the fundamental concepts and implementation pro-
cess of graph embedding. We will also discuss the essential components of our detection model, in-
cluding the multitask learning strategy and the bidirectional long short term memory (LSTM) recurrent
neural network module.

2.2. Primer on graph embedding

Graph-based data is inherently unstructured, unlike images that are neatly arranged in matrix forms.
To overcome this challenge, graph convolutional network can automatically learn discriminative latent
features from graphbased data [20]. In a graph G(V, E), V = n € N represents the set of nodes, and E
represents the set of edges. The matrix A € Z™" is the adjacency matrix of the graph G. It is important
to note that in a directed graph, A is not necessarily symmetric. To enable the attributes of a vertex to
be propagated back to the vertex itself, an augmented adjacency matrix is defined, where [ is ann X n
identity matrix:

A=A+1, (1)

Zhttps://github.com/zyZhang-clay/Malware-Detection-Using-a-Single-Bidirectional-Graph-Embedding
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To perform the normalization operation on A, we introduce the degree matrix D of the adjacency
matrix A. D is a diagonal matrix, and its defined as follows:

=> A, )
J

Let X denote the features of the nodes on graph G, where X € Z"™*? and X € Z¢ are the features of
the ith node, and X; ; represents the jth characteristic of the ith node. The matrix of learning parameters
W € Z%< ¢ € N, where ¢ € N is the number of output feature channels, with the nonlinear activation
function f : Z4*¢ — Z%< Then, the graph convolution operation can be written as follows [23]:

Z = f(D'AXW) 3)

The graph convolution operation defined by Equation (3) aggregates local substructure information
by considering the nodes’ immediate neighborhoods. Building upon Equation (3), we proposed a graph
embedding method that learns the transmission direction of the information flow within the sequence
information. Let Z, denote the propagation of the node information flow, and Z;, represent the recep-
tion of the information flow. We can then express the transmission direction of the information flow as
follows:

Zow = DT'AX (4)
Zw=D'ATX (5)

In summary, the graph embedding method comprehensively considers both the propagation and re-
ception of node information flow, which enables the full utilization of latent information from a single
data feature.

2.3. The overall process of our method

This section outlines the main technical route of our method, which is shown in Fig. 1. The method
mainly consists of four modules:

A. Data acquisition module: This module obtains the API call sequence by executing the malware
executable file in the dataset within a Cuckoo sandbox. The API call sequence obtained from the
Cuckoo sandbox is serialized.
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Fig. 1. Flow chart of our method.
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Algorithm 1: The generation of a behavior graph

Input: The API call sequence.
Output: The adjacency matrix A and the behavior graph G of the calling sequence x.
1 Let A be a new zero-initialized |N| * | N | matrix
2 Let L be the length of x
3fori < 2toL —2do
4 ‘ A[xi,xiﬂ] <~ 1
5 end

API call sequence

Graph Encoding

C
® &

® @@@@]

Behavior graph

(&1

Fig. 2. Operating principal diagram of our method (propagation direction).

B. Information encoding module: This module generates a behavior graph according to the API call
sequence and API call set. The behavior graph is then embedded using graph embedding tech-
niques.

C. Information processing module: This module processes the embedded information using a Bi-
LSTM network and an attention mechanism.

D. Model evaluation module: This module evaluates the model by calculating cross-entropy and other
indicators.

2.3.1. Generation of a behavior graph

After processing the time series of API calls involved in the malware dataset, a behavior graph is
generated. The behavior graph is a graphical representation of the malware in the attack behavior of
the target host. Algorithm 1 is used to generate the behavior graph, which combines time (API call
time series) and spatial information (adjacency and connectivity) in the behavior graph. By using the
behavior graph as input to graph convolution, effective features of the data can be more effectively and
comprehensively extracted, resulting in improved accuracy of malware detection.

2.3.2. Directional graph embedding module

An example is provided to illustrate the use of single-bidirectional graph embedding module. Software
API calls have a strong logical connection to each other, and the information flow provided by the graph
embedding method can more naturally reflect the behavior of the software. As shown in Fig. 2 and
Fig. 3, the API index table represents all the API types involved in the malware attack process, and the
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Fig. 3. Operating principal diagram of our method (receiving direction).

API call sequence represents the entire time sequence of malware sample’s execution. The involved API
index table, denoted as N = (0, 1, 2, 3, 4), and API call sequence, denoted as x = (0, 1, 3,0, 2,4, 3, 1),
are synthesized as the input to Algorithm 1, resulting in the generation of the behavior graph for this
malware.

As shown in Fig. 2 and Fig. 3, step is the graph embedding process. In the graph embedding pro-
cess, we used matrix multiplication to generate the connection environment of every API call. Different
ways of using matrix multiplication can generate environment representations in different directions of
information flow. This step has been overlooked by previous researchers. By comprehensively consid-
ering both the propagation and reception of node information flow in the behavior graph, we can more
effectively and comprehensively extract features.

The step of Fig. 2 can be represented by formula G, = AX and G;, = AT X, matrix A is the
adjacency matrix generated based on the behavior graph, and matrix X is the feature matrix generated
based on the API call sequence. The resulting products G, and Gy, are matrixes representing the API
call sequence and, for each API call, its immediate indegree or outdegree neighbors. Additionally, the
columns of X represent the behavior of the program in time given by the API call sequence x, and the
rows of G and Gy, represent ordered nodes. For example,

Gou = AX
ofo 1 1 00][1 0010000
1o oo 10|01 0000TO0:]1
—2/0 000 1/|/0000T1000
3/t 1 000[]001000T10
40100 0[/|00O0O0O0TO0O
01001001
001000T10
—00000T100 (6)
11010001
0100000 1
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Since the proposed graph embedding method can encode sequential data in two directions, we pro-
vided two models as a comparison to explore the relationship between the direction of encoding and the
prediction performance. These two models have the same structure as our method but use different train-
ing data. The models were named ‘single graph embedding-Next model’(SGENext) and ‘single graph
embedding-Pre model’ (SGEPre). SGENext represents a model that uses only graph encoding that uses
the direction to the last step, (Zoy = DAX ), and SGEPre represents using the direction to the next
step, (Zin = D'ATX ). Details of the comparison are provided in Sections 3 and 4.

2.4. The structure of built models

After extracting features from the malware sequences, we used several neural network layers for in-
formation processing and prediction. Similar to other research, we employed the LSTM and CNN layers
to generate the features for final rediction. We also used a multi-task learning strategy for loss computa-
tion. We tested multiple models using different combinations of the layers, and the details are provided
in Section 4. Below is a brief introduction of the layers and multi-task learning strategy.

2.4.1. Convolutional neural network module
The formulation of the convolution operation is as follows:

V(,',j) = (X k w)(,-,j) + b= Z (Xk % wk)(,-,j) + b (8)
k=1

where n is the number of channels in the input matrix. X, represents the kth channel of the input matrix,
and wy, represents the kth channel of the convolution kernel. The activation layer performs a nonlinear
mapping on the output of the convolution layer. In our model, we used the ReL U activation function
after the convolution layer:

X, >
ReLU(x) = o )
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Fig. 4. Bi-LSTM schematic diagram.

2.4.2. Bidirectional long short-term memory recurrent neural network module

A long short-term memory (LSTM) network is a type of recurrent neural network (RNN) [10]. LSTM
networks retain the advantages of an RNN for processing time series data by combining current calcula-
tions with historical input information and improving the memorization mechanism by integrating both
short-term memory and long-term memory. To some extent, LSTMs solve the challenge of an RNNs
only memorizing short-term historical input information and not effectively solving problems that re-
quire long-term memory.

However, because an LSTM network can process data only in a sequential sequence, when processing
the API sequence, only single-direction graph embedding information can be obtained and the other
direction information is lost. In other words, there is a two-way response dependency, and a traditional
LSTM model cannot encode information from back to front. To address this issue, a Bi-LSTM model
is used, which combines a forward LSTM with a reverse LSTM (as illustrated in Fig. 4), improving the
LSTM network and forming a two-way RNN model.

2.4.3. Attention mechanism module

In the serialization features we extracted, each portion of the behavior sequence contributes differently
to the final classification result. To determine which parts play the most important role, we constructed a
weight distribution mechanism for serialized features. An effective solution is to use an attention mecha-
nism, which can learn information across the sequence by computing the similarity between normalized
queries and keys, and then assign sequence information based on the generated similarities. In our study,
the attention layers were added after the LSTM layers for the information rearrangement.

2.4.4. Multi-task learning strategy

Compared to single-tasking learning, multitasking learning can avoid repeatedly calculating features
in shared layers and has the potential to improve performance if the associated tasks share complemen-
tary information. In our study, we applied multitasking learning to malware detection and family clas-
sification, as we believe these tasks are related. The goal of multi-task learning is to improve learning
efficiency and prediction accuracy by learning multiple objectives from a shared representation [6,36].
To implement multi-task learning, we designed different loss values. We used two different multi-task
learning strategies: (1) We used a categorical cross entropy loss for identifying all eight classes and eight
binary cross entropy losses for identifying a certain class of malware code. (2) We used a categorical
cross entropy loss for all eight classes and 28 binary cross entropy losses for all malware code class pairs
(i.e., C3).



J. Luo et al. / Sequence-based malware detection 149

3. Experiments and results

In this section, we describe the experimental datasets and evaluate the effectiveness of our model
on the malware detection task by 5-fold cross validation. The training/testing set proportion was set to
4:1. In addition to the methods provided in this work, we also collected other works that used API call
sequences as input for prediction to compare both malware detection and classification performance.

3.1. Datasets

Since malware is constantly being updated, the majority of new malware samples are polymorphic
variants of known malware [4]. Therefore, we followed the approach of Ding et al. [8] and classified
malware samples with similar malicious behaviors into the same family.

To facilitate comparison, we evaluate our method on two different real-world datasets: the Tianchi
dataset and the dataset from Catak’s work. The latter was collected using the git command-line util-
ity from various malware samples projects on Github, while the tianchi dataset was obtained from the
Alibaba—Security—Algorithm—Challenge® to test our method. In the dataset used in Catak’s work, each
data is an API call sequence, where each element is an integer representing a specific Windows API call.
These sequences can be used to represent the behavior of malicious software, such as file operations,
process creation, registry modifications, and so on. In contrast, the tianchi dataset is an API instruction
sequence extracted from a sandbox simulation of Windows executable programs. Each data point con-
tains five fields, including file ID, file label, API name called by the file, thread ID that made the API
call, and order number of the API call in the thread. All executable programs were desensitized, and
there were a total of eight category labels, including Normal, Infectious viruses, Trojan horse programs,
Mining programs, DDOS Trojan horses, Ransomware, Backdoor programs, and Worms.

The data preprocessing stage includes four concepts.

(1) According to Kolosnjaji’s [21] work, nonconsecutive repeated API calls were considered to avoid
tracking loops.

(2) Considering the complexity of the data, only sequences from the parent process were extracted.

(3) We built a list of unique API calls, considering all the samples. Each API call name was then
converted to a unique integer identifier, which was equal to the index of the API call name in the
list.

(4) The Tianchi dataset used in our study exhibited an unbalanced distribution of samples, as illus-
trated in Fig. 5. To mitigate the effect of class imbalance during training, we employed the SMOTE
[38] method to generate synthetic samples from the existing ones, resulting in a balanced dataset
with a total of 26,824 samples (referred to as the Balanced Tianchi dataset). This approach aimed
to address the issue of imbalanced datasets by generating synthetic minority samples between
existing samples and their neighbors. By increasing the representation of the minority class, the
model is better able to learn from it, ultimately enhancing its predictive performance. In contrast,
the malware analysis dataset used in Catak’s work [7] comprised 7,107 malware samples from
different classes, as depicted in Fig. 6

3https://tianchi.aliyun.com/competition/entrance/231694/information
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Fig. 5. Distribution of sample categories in tianchi dataset.
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Fig. 6. Distribution of sample categories in dataset from catak’s work.

Table 1
Evaluation metrics
Eq Metric Formula Detail
1 Accuracy % The classification accuracy score is the percentage of all categories that are correct
2 Precision TPT-&-% The ratio of the number of correctly identified malware samples to the total number
of identified samples.
3 Recall % The ratio of the number of correctly identified malware samples to the number of

samples that should be identified.

4 F1-Score 2xprecisionxrecall

recision recall The F1-score is an indicator used in statistics to measure the accuracy of the model.

At the same time, the accuracy and recall rate of the classification model are
considered.

3.2. Evaluation metrics

Like other works on classification problems, this study uses the evaluation metrics listed in Table 1 to
assess the performance of the model.

3.3. Comparison with existing methods
The purpose of this section is to benchmark the efficiency of the proposed method with existing

relevant approaches. we divide the work into two steps.
Step 1: Rapid detect malware from all samples
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Table 2
Comparison of detection results (original tianchi dataset)
Metric/model Our method LSTM RF SGENext SGEPre Oliverira et al. [30]
Precision 0.9775 0.9499 0.9148 0.9441 0.9492 0.9425
Recall 0.9622 0.9518 0.9490 0.9544 0.9585 0.9551
Accuracy 0.9467 0.9223 0.9077 0.9276 0.9374 0.9268
F1-Score 0.9698 0.9508 0.9316 0.9492 0.9538 0.9390
predict
1
1 1
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Fig. 7. Confusion matrix of malware detection.
Table 3
Comparison of detection results (balanced tianchi dataset)
Metric/model Our method LSTM RF SGENext SGEPre Oliverira et al. [30]
Precision 0.9561 0.9307 0.9396 0.9358 0.9428 0.9495
Recall 0.952 0.9398 0.9297 0.9057 0.9293 0.9519
Accuracy 0.9457 0.9391 0.9348 0.9215 0.9387 0.9277
F1-Score 0.9535 0.9352 0.9346 0.9205 0.936 0.9507

In Table 2, we compare the performance of our model with five other methods on the tianchi dataset:
a LSTM, SGENext, SGEPre, a random forest (RF) and the methods proposed by Oliverira et al. [30].
In our experiment, the LSTM-based method reaches a 92.23% accuracy rate, 95.08% F1-score, 95.18%
recall and 94.99% precision rate. Meanwhile, the RF-based method reaches a 90.77% accuracy rate,
93.16% F1-score, 94.9% recall and 91.48% precision rate. Our method outperformed these four methods
in all metrics, as shown in the confusion matrix in Fig. 7.

In Table 3, we compare the performance of our model with other methods on Balanced Tianchi dataset.
Our method outperformed the other methods in all metrics.

Step 2: Detailed classification of the malware families

We conducted a performance comparison of our method with three other methods, namely Catak
et al.’s [7] method, Ye et al.’s [41] framework, and a method based on an API call sequence using a
Random Forest (RF). Catak’s method utilizes a Long Short-Term Memory (LSTM) based model to
analyze sensitive API calls., while Ye et al. proposed a framework comprising an Autoencoder stacked
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Table 4
Comparison of classification results (tianchi dataset)
Metric/model Our method Catak et al. [7] Ye et al. [41] RF
Precision 0.8021 0.719 0.7078 0.4898
Recall 0.7957 0.7263 0.7522 0.4999
Accuracy 0.7957 0.7263 0.7522 0.6325
F1-Score 0.7896 0.7226 0.7293 0.4948
Table 5
Comparison of classification results (catak’s dataset)
Metric/model Our method Catak et al. [7] Ye et al. [41] RF
Precision 0.5388 0.5 0.5133 0.46
Recall 0.5438 0.47 0.5034 0.47
Accuracy 0.5249 0.49 0.4956 0.44
F1-Score 0.5413 0.47 0.5083 0.46
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Fig. 8. Confusion matrix of family classification detection.
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with multilayer Restricted Boltzmann Machines (RBMs) and a layer of associative memory for malware
detection. Table 4 and Table 5 present a comparison of the classification results on the two datasets
and the confusion matrix shown in Fig. 8. The Tianchi dataset has unbalanced labels, and therefore, for

evaluating the metrics’ recall, we chose to calculate the weighted-average recall value.
Table 5 presents a comparison of the classification results on dataset from catak’s work.

In our experiment, on the tianchi dataset, our method achieved a 6.94% improvement in accuracy, a
6.7% improvement in F1-score, a 6.94% improvement in recall and an 8.31% improvement in precision
compared with catak’s method. On the dataset from catak’s work, our method achieved a 6.77% im-
provement in Fl-score, a 7.38% improvement in recall, a 3.49% improvement in accuracy and a 3.88%
improvement in precision compared with Catak’s method. Similarily, our method outperformed Ye’s
methods in all metrics as well. We believe that our approach outperformed these models for two reasons.
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Firstly, our scenario is more suitable for few-shot learning as opposed to large models, which are prone
to overfitting. Secondly, we utilized multi-task learning to further enhance the classification ability of
our model.

4. Discussion

In this section, we have discussed the details of model construction and optimization, Including the se-
lection of important substructures, optimization of related hyperparameters, and the utilization of multi-
task strategies. The malware classification dataset was used as the benchmark for all the sub-sections.
Except the final models, eight models were built for optimizing the structure of the model, and four
comparisons were performed.

4.1. The distribution of the sample pairs

To represent API sequences as tensors, we used a one-hot representation, similar to natural language
processing problems. Therefore, the rationality of data preprocessing is an important part of our mal-
ware detection work. To confirm that the one-hot feature is different from random generation, we made
a comparison between one-hot representation and randomly generated samples using the mutual infor-
mation [3] of the sample pairs. Similar to the dataset, a total of 10,654 random samples were generated
to compute the mutual information, and C7,s, mutual information values were obtained. The results are
presented in Fig. 9, which shows the distribution of mutual information in two subfigures. We calculated
the average and variance of the tianchi dataset and randomly generated dataset. The average value of
tianchi dataset is 0.439356, while that of the random data is 0.950263. The variance of tianchi dataset
is 0.011523, and that of the random data is 6.38821E-05. Additionally, we performed a t-test on the
two datasets. The p-value of the t-test results of the two datasets is less than 1e-5, which means that the
tianchi dataset is significantly different from the randomly generated dataset.

4.2. Length of feature sequence

Currently, methods used to process sequential data, such as graph convolutional neural networks,
LSTM, and even random forests, require a fixed length for further computation. The length of the fixed
sequence is a crucial characteristic of the model. If the length of the API call sequence is too short,
it may lead to insufficient feature information, which can impact the detection accuracy. On the other
hand, If the duration of the API call sequence is too long, the model easily falls into a tracking loop [21].
As shown in Fig. 10, the majority of samples have an API call sequence length of less than 300 in the
histogram. Therefore, we compared our method, SGENext, SGEPre, LSTM network, and random forest
detection methods for different sequence lengths ranging from 50 to 300 (as shown in Fig. 11, Fig. 12
and Fig. 13).

As seen from Fig. 11, Fig. 12 and Fig. 13, when the length of the feature sequence of the three machine
learning methods involved changes, the range can be observed according to the plots. Figures 11, 12,
and 13 show the performance trend of five different machine learning methods for different sequence
lengths. Based on the plots, we can observe the range of performance for each method as the length of
the feature sequence changes. After analyzing the performance trends of the five methods for different
sequence lengths, we selected the optimal sequence length for each method. Our method was found to
perform best at a sequence length of 100, while SGENext and SGEPre performed best at a sequence
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length of 200. The LSTM method also performed best at a sequence length of 200. However, the RF
method performed best at the shortest sequence length of 50.
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Table 6
Classification results in different embedding directions
Metric/model Our method SGENext SGEPre
Precision 0.8021 0.7623 0.7837
Recall 0.7957 0.7762 0.7874
Accuracy 0.7957 0.7762 0.7874
F1-Score 0.7896 0.7692 0.7855
Table 7
Classification results of used number of LSTM layers
Metric/model Single layer Two layers Three layers Four layers
Precision 0.7722 0.7740 0.8021 0.6271
Recall 0.7818 0.7813 0.7957 0.590
Accuracy 0.7818 0.7813 0.7957 0.7616
F1-Score 0.7769 0.7776 0.7896 0.6079

4.3. The direction of graph embedding

As mentioned in section ‘Directional Graph Embedding Module’, we use two directional graph em-
beddings, and the direction is a hyperparameter when using graph embedding. To investigate the effect
of direction, we compared the performance of our method with SGENext and SGEPre (as shown in
Table 6). In our experiment, our method achieved an accuracy rate that is 1.95% higher, an F1-score that
is 2.04% higher, a recall that is 1.95% higher and a precision rate that is 3.98% higher than SGENext.
Furthermore, the four evaluation metrics of our method are slightly better than SGEPre. Comparing the
performance of SGENext and SGEPre reveals a certain difference between their performance. There-
fore, it is meaningful and necessary to fully consider the direction of graph embedding when building
the model.

4.4. The number of LSTM layers

A Bi-LSTM was used as the layer for feature learning and information processing. However, the out-
puts from a Bi-LSTM layer can be used as input to another Bi-LSTM layer, which means that using
multiple Bi-LSTM layers is possible for modeling sequential data. According to Wang’s research, using
multiple Bi-LSTM layers enhances the learning ability, especially for high-level sequence representation
[21]. However, too many layers can result in a large number of parameters, leading to high computing
cost and memory occupation. To determine the relation between the layer number and prediction per-
formance, we compared the different models with only one, two, three and four Bi-LSTM layers. The
hidden sizes of the LSTM layers were calculated as 128 x % where [ is the number of layers. As shown in
Table 7, the model containing three Bi-LSTM layers performed the best, while the model with four lay-
ers showed a significant reduction in the evaluation metrics. This reduction implies that the hidden size
of the fourth layer (i.e. 16) is not enough for representing the information contained in the sequences. In
conclusion, the model containing three Bi-LSTM layers outperforms other models globally in all four
metrics. Thus, the model with three Bi-LSTM layers was used in our final model.
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Fig. 14. The Architecture of Multi-Task Learning. (If an MMany model is used, X will be 8; whereas if an Mpaired model is
used, X will be 28.) The different model architectures will be discussed in Section 4.6, please refer to Fig. 15 and Fig. 16 for
more details.

4.5. The architecture of multi-task learning

Using Multi-task Learning strategy is flexible since all the related attributes can be used for generating
auxiliary loss. However, too many attributes will create unnecessary gradient due to the relation of the
major targets. After few attempts, we constructed two models according to different strategies introduced
in Section 2.4. The two models were named ‘multi-one-many model (MMany model)’ and ‘multi-paired
model (MPaired model)’. As shown in Fig. 14, MMany model used a categorical cross entropy loss
for identifying all eight classes and eight binary cross entropy losses for identifying a certain class of
malware. MPaired model used a categorical cross entropy loss for all eight classes as well, but the aux-
losses become 28 binary cross entropy losses for all malware class pairs (i.., C§).

4.6. The difference between a CNN-LSTM-CNN architecture and CNN-LSTM architecture

Technically, the order of using LSTM and CNN layers is not limited since these layers do not reduce
the dimension of the data. However, LSTM layers are designed to capture the global information from
a sequence (i.e., the cell state) and process the data using the updated hidden information, while CNN
layers capture local information surrounding a certain point every time. Therefore, it is necessary to
compare the order of using the two types of neural network structures.

In our method, we first used a CNN layer as an information fusion encoder for initial data procession,
followed by an RNN block containing three Bi-LSTM layers with a SeqSelfAttention layer after each
was implemented. After the RNN block, we compared the performance of using an additional CNN
layer or not (as shown in Fig. 15 and Fig. 16).

The result is depicted in Table 8. For our detection model, the architecture without a CNN layer after
the Bi-LSTM layer performed the best. The comparison indicated that the LSTM layers have made
the information separately of the sequences, but the additional CNN layer makes the information fuzzy
again. Thus, we used the structure without the extra CNN layer as the final architecture.
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Table 8
Result of using additional CNN layer

Metric/model CNN-LSTM CNN-LSTM-CNN
Precision 0.8021 0.7723
Recall 0.7957 0.7813
Accuracy 0.7957 0.7813
F1-Score 0.7896 0.7768

Table 9

Comparison of different multi-task models

Metric/model MMany model MPaired model Single task
Precision 0.8021 0.7688 0.7338
Recall 0.7957 0.773 0.7457
Accuracy 0.7957 0.773 0.7459
F1-Score 0.7896 0.7709 0.7397

4.7. Different multi-task learning strategies

To compare various multi-task learning strategies, we included a model that performs a single task in
Table 9 as a point of comparison. In our classification task, we compared two multi-task learning strate-
gies: the MMany model and the MPaired model, as shown in Table 9. The MMany model provided eight
extra binary classification sub-tasks by regarding the eight kinds of malware as positive labels, while
the MPaired model used 28 binary classification sub-tasks to make the classification more detailed. We
found that the first multi-task learning strategy (MMany model) performed better than the second multi-
task learning strategy (MPaired model). The comparison indicates that too detailed sub-task division
will not always make a positive contribution to the model. We speculate that the reason might be the
unbalanced dataset and similarity between the classes. However, it is clear that using multi-task learning
significantly improves the performance compared to the single-task situation. The evaluation metrics of
the two multi-task models are globally better than the single-task model.

5. Future works

We analyzed the confusion matrix shown in Fig. 8 and found that the most recognized malware cate-
gory is Ransomware, while the least recognized category is the Worm and Backdoor program. Despite
the small number of Worm samples, the model’s prediction results showed that the classification results
of backdoor programs and Trojan horse programs are not ideal, possibly due to the small number of
samples. Moreover, the classification performance of Trojan horse programs and DDoS Trojan horse
programs is poor. Therefore, in future work, we plan to carry out further research on the above three
types of malware: backdoor programs, Trojan horse programs, and DDoS Trojan horse programs.

6. Related works

The field of malware classification and detection is typically divided into two main categories: static
detection and dynamic detection. Static analysis involves extracting information from the file’s PE head-
ers, such as dynamic link libraries, import tables, and export tables, and then using rules or blacklists to
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match these features and determine if the file is malicious. Dynamic analysis focuses on analyzing the
behavior of malware by executing it in a controlled environment, such as a sandbox, and monitoring its
actions to record execution information [39].

6.1. Dynamic analysis methods

During the last several years, several researchers have proposed various methods for detecting mal-
ware. Ye et al. [41] proposed a malware detection method based on malicious API sequence mining.
This method extracted the dynamic API call sequences by simulating a real runtime environment for the
malware and then mined out the pattern of the API sequence as features to classify the malware variants.
Gupta and Rani [12] designed two methods based on ensemble learning and big data for malware detec-
tion, and they determined a set of integrated static and dynamic features based on malware classification
and the software dataset. Tobiyama et al. [35] proposed a malware detection method based on process
behavior logs, converting process behavior logs into vectors, using an RNN to convert them into feature
images, and using a CNN to classify these feature images. Baek et al. [2] proposed a two-stage hybrid
malware detection (2-MaD) scheme, which uses Opcode, API calls, and process memory as features to
detect malware. Jiang et al. [17] proposed a new method that employs two stacked denoising autoen-
coders (SDAs) for representation learning, taking into consideration computer programs’ function-call
graphs and Windows application programming interface (API) calls.

6.2. Malware detection with graph neural networks

Graph neural networks have gained popularity in recent years as a method for constructing deep
learning models for malware classification. Xiao et al. [40] visualize malware binaries as entropy graphs
based on structural entropy and present a feature extractor based on deep convolutional neural networks
to extract patterns shared by a family from entropy graphs automatically. They propose an SVM clas-
sifier to classify malware based on the extracted features. Busch et al [5] propose an approach that first
extracts flow graphs and subsequently classifies them using a novel edge feature-based graph neural
network model. In this work, they propose the first graph-based approach to network traffic-based mal-
ware detection and classification, and propose a novel method for extracting directed edge attributed
flow graphs from sets of network flows recorded in a monitored network. Some articles [42] propose us-
ing Generative Adversarial Network (GAN) combined with graph neural network to combat adversarial
attacks. They retrain the model with generated adversarial samples. This work uses Graph Neural Net-
works (GNN)-based classifiers to generate API graph embedding and demonstrate the effectiveness of
GNN in generating graph embedding. Zheng et al. [44] constructs a malware classifier by constructing
different graph isomorphic networks and uses a simulated in-the-wild dataset as the test environment.

6.3. Methods available for comparison

The mentioned methods above have various characteristics in malware detection. However, in the
method proposed in this work, only API call sequences were used for modeling, which limits compa-
rability of our results to models that use the same dataset. Therefore, we compared our model with the
models from Catak et al. [7], Oliveira et al. [30] and Ye et al. [41], the results are shown in Table 2,
Table 3, Table 4 and Table 5 for both malware detection and classification.
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7. Conclusion

In this work, we proposed a graph embedding method that uses API sequences to construct directed
graphs. We applied multitasking learning to the complex problem of malware detection and classifica-
tion, and the results showed that our proposed method outperforms other methods. We believe that using
multitasking can improve the performance of multi-label classification with proper optimization and can
be applied to related work in the field of malware detection and classification.
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