
Journal of Computer Security 28 (2020) 35–70 35
DOI 10.3233/JCS-191362
IOS Press

Overfitting, robustness, and malicious
algorithms: A study of potential causes of
privacy risk in machine learning

Samuel Yeom a,∗, Irene Giacomelli b,c, Alan Menaged a, Matt Fredrikson a and Somesh Jha b

a Carnegie Mellon University, Pittsburgh, PA, USA
E-mails: syeom@cs.cmu.edu, amenaged1@gmail.com, mfredrik@cs.cmu.edu
b University of Wisconsin–Madison, Madison, WI, USA
E-mails: irene.giacomelli29@gmail.com, jha@cs.wisc.edu
c Protocol Labs, San Francisco, CA, USA

Abstract. Machine learning algorithms, when applied to sensitive data, pose a distinct threat to privacy. A growing body of
prior work demonstrates that models produced by these algorithms may leak specific private information in the training data to
an attacker, either through the models’ structure or their observable behavior. This article examines the factors that can allow a
training set membership inference attacker or an attribute inference attacker to learn such information. Using both formal and
empirical analyses, we illustrate a clear relationship between these factors and the privacy risk that arises in several popular
machine learning algorithms.

We find that overfitting is sufficient to allow an attacker to perform membership inference and, when the target attribute
meets certain conditions about its influence, attribute inference attacks. We also explore the connection between membership
inference and attribute inference, showing that there are deep connections between the two that lead to effective new attacks. We
show that overfitting is not necessary for these attacks, demonstrating that other factors, such as robustness to norm-bounded
input perturbations and malicious training algorithms, can also significantly increase the privacy risk. Notably, as robustness is
intended to be a defense against attacks on the integrity of model predictions, these results suggest it may be difficult in some
cases to simultaneously defend against privacy and integrity attacks.
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1. Introduction

Machine learning has emerged as an important technology, enabling a wide range of applications
including computer vision, machine translation, health analytics, and advertising, among others. The fact
that many compelling applications of this technology involve the collection and processing of sensitive
personal data has given rise to concerns about privacy [3,9,14,22,23,39,54,66,67]. In particular, when
machine learning algorithms are applied to private training data, the resulting models might unwittingly
leak information about that data through either their behavior (i.e., black-box attack) or the details of
their structure (i.e., white-box attack).

Although there has been a significant amount of work aimed at developing machine learning algo-
rithms that satisfy definitions such as differential privacy [18,19,38,60,67,71], the factors that bring
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about specific types of privacy risk in applications of standard machine learning algorithms are not well
understood. Following the connection between differential privacy and stability from statistical learning
theory [5,11,18,19,60,63], one such factor that has started to emerge [23,54] as a likely culprit is over-
fitting. A machine learning model is said to overfit to its training data when its performance on unseen
test data diverges from the performance observed during training, i.e., its generalization error is large.
The relationship between privacy risk and overfitting is further supported by recent results that suggest
the contrapositive, i.e., under certain reasonable assumptions, differential privacy [19] and related no-
tions of privacy [4,64] imply good generalization. However, a precise account of the connection between
overfitting and the risk posed by different types of attack remains unknown.

In this article, we characterize the effect that overfitting has on the advantage of adversaries who
attempt to infer specific facts about the data used to train machine learning models. We formalize quan-
titative advantage measures that capture the privacy risk to training data posed by two types of attack,
namely membership inference [39,54] and attribute inference [22,23,66,67]. For each type of attack,
we analyze the advantage in terms of generalization error (overfitting) for several concrete black-box
adversaries. While our analysis necessarily makes formal assumptions about the learning setting, we
show that our analytic results hold on several real-world datasets by controlling for overfitting through
regularization and model structure.

In addition, we explore other factors that can also aid the attacker. Previously, it has been shown that,
for Boolean functions, the Boolean influence [44,66], which measures the extent to which a particular
input to a function can cause changes to its output, is also relevant to privacy risk. Our analysis in the
regression setting is consistent with this result, showing that the influence of the target attribute is also
a key factor that determines the effectiveness of attribute inference. Furthermore, we demonstrate that
privacy risk can arise even when the model does not overfit, and surprisingly, that black-box adversaries
can recover substantial information about the training data. To illustrate this point, we show how to
construct a malicious training algorithm that colludes with an attacker to surreptitiously leak information
about the training data, while imposing minimal changes on the model’s normal behavior.

Finally, we identify robustness to norm-bounded input perturbations, which has been proposed as a
defense against attacks on the integrity of model predictions [40,65], as a possible vulnerability against
privacy attacks. In particular, we show that when robustness is achieved through adversarial training [40],
there exist membership adversaries with significantly greater advantage than when training a corre-
sponding model using conventional methods. This analysis of robust models is a major addition to the
conference version [68] of this article.

1.1. Membership inference

Training data membership inference attacks aim to determine whether a given data point was present
in the training data used to build a model. Although this may not at first seem to pose a serious privacy
risk, the threat is clear in settings such as health analytics where the distinction between case and control
groups could reveal an individual’s sensitive conditions. This type of attack has been extensively studied
in the adjacent area of genomics [28,50], and more recently in the context of machine learning [39,54].

Our analysis shows a clear dependence of membership advantage on generalization error (Section 3.2),
and in some cases the relationship is directly proportional (Theorem 2). Our experiments on real data
confirm that this connection matters in practice (Section 7.2), even for models that do not conform to the
formal assumptions of our analysis. In one set of experiments, we apply a particularly straightforward
attack to deep convolutional neural networks (CNNs) using several datasets examined in prior work
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on membership inference. Despite requiring significantly less computation and adversarial background
knowledge, our attack performs almost as well as a recently published attack [54].

Our results illustrate that overfitting is a sufficient condition for membership vulnerability in popular
machine learning algorithms. However, it is not a necessary condition (Theorem 4). In fact, under certain
assumptions that are commonly satisfied in practice, we show that a stable training algorithm (i.e.,
one that does not overfit) can be subverted so that the resulting model is nearly as stable but reveals
exact membership information through its black-box behavior. This attack is suggestive of algorithm
substitution attacks from cryptography [7] and makes adversarial assumptions similar to those of other
recent privacy attacks [57]. We implement this construction to train deep CNNs (Section 7.4) and observe
that, regardless of the model’s generalization behavior, the attacker can recover membership information
while incurring very little penalty to predictive accuracy.

1.2. Attribute inference

In an attribute inference attack, the adversary uses a machine learning model and incomplete informa-
tion about a data point to infer the missing information for that point. For example, in work by Fredrikson
et al. [23], the adversary is given partial information about an individual’s medical record and attempts
to infer the individual’s genotype by using a model trained on similar medical records.

We formally characterize the advantage of an attribute inference adversary as its ability to infer a target
feature given an incomplete point from the training data, relative to its ability to do so for points from
the general population (Section 4). This approach is distinct from the way that attribute advantage has
largely been characterized in prior work [22,23,66], which prioritized empirically measuring advantage
relative to a simulator who is not given access to the model. We offer an alternative definition of attribute
advantage (Definition 6) that corresponds to this characterization and argue that it does not isolate the
risk that the model poses specifically to individuals in the training data.

Our formal analysis shows that attribute inference, like membership inference, is indeed sensitive to
overfitting. However, we find that influence must be factored in as well to understand when overfitting
will lead to privacy risk (Section 4.1). Interestingly, the risk to individuals in the training data is greatest
when these two factors are “in balance”. Regardless of how large the generalization error becomes, the
attacker’s ability to learn more about the training data than the general population vanishes as influence
increases.

1.3. Connection between membership and attribute inference

The two types of attack that we examine are deeply related. We build reductions between the two by
assuming oracle access to either type of adversary. Then, we characterize each reduction’s advantage in
terms of the oracle’s assumed advantage. Our results suggest that attribute inference may be “harder”
than membership inference: attribute advantage implies membership advantage (Theorem 6), but there
is currently no similar result in the opposite direction.

Our reductions are not merely of theoretical interest. Rather, they function as practical attacks as well.
We implemented a reduction for attribute inference and evaluated it on real data (Section 7.3). Our
results show that when generalization error is high, the reduction adversary can outperform an attribute
inference attack given in [23] by a significant margin.
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1.4. Membership inference on robust models

Beyond privacy, another well-known type of attack in the context of machine learning seeks to induce
errant predictions from the model. Prior work on these attacks [26,46,47,59] has shown that it is often
possible to make small, visually imperceptible changes to image features such that a deep convolutional
neural network (CNN) classifier is “tricked” into labeling the resulting image as something completely
different from the true label, and in many cases to do so arbitrarily at the attacker’s discretion. This
has motivated a growing body of subsequent work on methods for training robust models [13,40,65],
especially for the case of CNNs, which resist these attacks by remaining insensitive to norm-bounded
input perturbations.

Intuitively, robust training methods produce models with decision boundaries that are located suitably
far from each of the training points. If the distances between decision boundaries and training points are
often minimal, and the model fits the training points closely in at least one direction, then the model will
be less likely to make comparably robust predictions on test points. We observe that an attacker might be
able to evaluate the model’s level of robustness on a given input to draw inferences about membership.

Building from this intuition, we argue both analytically and experimentally that robustness can be
another source of membership advantage. Applying a general result (Theorem 2) that leverages classi-
fication error for membership inference, we show that an adversary can use a model’s robust general-
ization error, which is a measure of overfitting that takes robustness into account, to gain membership
advantage (Section 6). Our experimental results show that when adversarial training with projected gra-
dient descent [40] is used to achieve robustness, the robust generalization error is often greater than the
standard generalization error (Section 7.5), thus indicating that attacks on robust models can be more
effective than those based on overfitting alone. We then present an attack that operationalizes the above
intuition in greater detail by estimating the distance to the nearest decision boundary, and show experi-
mentally that this can leak significantly more information than the robust generalization error alone. In
particular, this attack predicts membership with up to 90% accuracy on a benchmark image classification
dataset.

These results suggest that in some cases, robustness and training set privacy may conflict with each
other, so that resistance to one type of attack may make a model more vulnerable to a different type of
attack. Finding a way to resolve this tension is an important direction for future work.

1.5. Summary

This article explores the factors that contribute to privacy risk in machine learning models. We present
new formalizations of membership inference attacks (Section 3) and attribute inference attacks (Sec-
tion 4), which allow us to analyze the privacy risk that black-box variants of these attacks pose to in-
dividuals in the training data. We give analytic quantities for the attacker’s performance in terms of
generalization error and influence and conclude that certain configurations imply privacy risk. We then
study the underlying connections between membership and attribute inference attacks (Section 5), find-
ing surprising relationships that give insight into the relative difficulty of the attacks and lead to new
attacks that work well on real data. We also show that overfitting is not the only source of privacy risk by
constructing adversaries that leverage a malicious training algorithm (Section 3.4) or robustness (Sec-
tion 6) to infer membership information. Finally, we present our empirical results (Section 7), which
mostly align with the analytical results in Sections 3–6 and show that our attacks are effective on real-
world datasets.



S. Yeom et al. / Overfitting, robustness, and malicious algorithms 39

2. Background

Throughout the article we focus on privacy risks related to machine learning algorithms. We begin by
introducing basic notation and concepts from learning theory.

2.1. Notation and preliminaries

Let z = (x, y) ∈ X × Y be a data point, where x represents a set of features or attributes and y a
response. In a typical machine learning setting, and thus throughout this article, it is assumed that the
features x are given as input to the model, and the response y is returned. Let D represent a distribution
of data points, and let S ∼ Dn be an ordered list of n points, which we will refer to as a dataset,
training set, or training data interchangeably, sampled i.i.d. from D. We will frequently make use of the
following methods of sampling a data point z:

• z ∼ S: i is picked uniformly at random from [n], and z is set equal to the i-th element of S.
• z ∼ D: z is chosen according to the distribution D.

When it is clear from the context, we will refer to these sampling methods as sampling from the dataset
and sampling from the distribution, respectively.

Unless stated otherwise, our results pertain to the standard machine learning setting, wherein a model
AS is obtained by applying a machine learning algorithm A to a dataset S. Models reside in the set
X → Y and are assumed to approximately minimize the expected value of a loss function � over
S. If z = (x, y), the loss function �(AS, z) measures how much AS(x) differs from y. When the re-
sponse domain is discrete, it is common to use the 0–1 loss function, which satisfies �(AS, z) = 0
if y = AS(x) and �(AS, z) = 1 otherwise. When the response is continuous, we use the squared-
error loss �(AS, z) = (y − AS(x))2. Additionally, it is common for many types of models to assume
that y is normally distributed in some way. For example, linear regression assumes that y is normally
distributed given x [41]. To analyze these cases, we use the error function erf, which is defined in Equa-
tion (1).

erf(x) = 1√
π

∫ x

−x

e−t2
dt (1)

Intuitively, if a random variable ε is normally distributed and x � 0, then erf(x/
√

2) represents the
probability that ε is within x standard deviations of the mean.

2.2. Stability and generalization

An algorithm is stable if a small change to its input causes limited change in its output. In the con-
text of machine learning, the algorithm in question is typically a training algorithm A, and the “small
change” corresponds to the replacement of a single data point in S. This is made precise in Defini-
tion 1.

Definition 1 (On-Average-Replace-One (ARO) Stability). Given S = (z1, . . . , zn) ∼ Dn and an addi-
tional point z′ ∼ D, define S(i) = (z1, . . . , zi−1, z

′, zi+1, . . . , zn). Let εstable : N → R be a monotonically
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decreasing function. Then a training algorithm A is on-average-replace-one-stable (or ARO-stable) on
loss function � with rate εstable(n) if

E
S∼Dn,z′∼D
i∼U(n),A

[
�(AS(i) , zi) − �(AS, zi)

]
� εstable(n),

where A in the expectation refers to the randomness used by the training algorithm.

Stability is closely related to the popular notion of differential privacy [17] given in Definition 2.

Definition 2 (Differential privacy). An algorithm A : Xn → Y satisfies ε-differential privacy if for all
S, S ′ ∈ Xn that differ in the value at a single index i ∈ [n] and all Y ⊆ Y, the following holds:

Pr
[
A(S) ∈ Y

]
� eε Pr

[
A

(
S ′) ∈ Y

]
.

When a learning algorithm is not stable, the models that it produces might overfit to the training data.
Overfitting is characterized by large generalization error, which is defined below.

Definition 3 (Average generalization error). The average generalization error of a machine learning
algorithm A on D is defined as

Rgen(A, n,D, �) = E
S∼Dn

z∼D

[
�(AS, z)

] − E
S∼Dn

z∼S

[
�(AS, z)

]
.

In other words, AS overfits if its expected loss on samples drawn from D is much greater than its
expected loss on its training set. For brevity, when n, D, and � are unambiguous from the context, we
will write Rgen(A) instead.

It is important to note that Definition 3 describes the average generalization error over all training sets,
as contrasted with another common definition of generalization error Ez∼D[�(AS, z)]− 1

n

∑
z∈S �(AS, z),

which holds the training set fixed. The connection between average generalization and stability is formal-
ized by Shalev-Shwartz et al. [53], who show that an algorithm’s ability to achieve a given generalization
error (as a function of n) is equivalent to its ARO-stability rate.

3. Membership inference attacks

In a membership inference attack, the adversary attempts to infer whether a specific point was included
in the dataset used to train a given model. The adversary is given a data point z = (x, y), access to a
model AS , the size of the model’s training set |S| = n, and the distribution D that the training set was
drawn from. With this information the adversary must decide whether z ∈ S. For the purposes of this
discussion, we do not distinguish whether the adversary A’s access to AS is “black-box”, i.e., consisting
only of input/output queries, or “white-box”, i.e., involving the internal structure of the model itself.
However, all of the attacks presented in this section assume black-box access.

Experiment 1 below formalizes membership inference attacks. The experiment first samples a fresh
dataset from D and then flips a coin b to decide whether to draw the adversary’s challenge point z from
the training set or the original distribution. A is then given the challenge, along with the additional
information described above, and must guess the value of b.
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Experiment 1 (Membership experiment ExpM(A, A, n,D)). Let A be an adversary, A be a learning
algorithm, n be a positive integer, and D be a distribution over data points (x, y). The membership
experiment proceeds as follows:

(1) Sample S ∼ Dn, and let AS = A(S).
(2) Choose b ← {0, 1} uniformly at random.
(3) Draw z ∼ S if b = 0, or z ∼ D if b = 1
(4) ExpM(A, A, n,D) is 1 if A(z, AS, n,D) = b and 0 otherwise. A must output either 0 or 1.

Definition 4 (Membership advantage). The membership advantage of A is defined as

AdvM(A, A, n,D) = 2 Pr
[
ExpM(A, A, n,D) = 1

] − 1,

where the probabilities are taken over the coin flips of A, the random choices of S and b, and the random
data point z ∼ S or z ∼ D.

Equivalently, the right-hand side can be expressed as the difference between A’s true and false positive
rates

AdvM = Pr[A = 0 | b = 0] − Pr[A = 0 | b = 1], (2)

where AdvM is a shortcut for AdvM(A, A, n,D).
Using Experiment 1, Definition 4 gives an advantage measure that characterizes how well an adversary

can distinguish between z ∼ S and z ∼ D after being given the model. This is slightly different from the
sort of membership inference described in some prior work [39,54], which distinguishes between z ∼ S

and z ∼ D \S. We are interested in measuring the degree to which AS reveals membership to A, and not
in the degree to which any background knowledge of S or D does. If we sample z from D \ S instead of
D, the adversary could gain advantage by noting which data points are more likely to have been sampled
into S ∼ Dn. This does not reflect how leaky the model is, and Definition 4 rules it out.

In fact, the only way to gain advantage is through access to the model. In the membership experiment
ExpM(A, A, n,D), the adversary A must determine the value of b by using z, AS , n, and D. Of these
inputs, n and D do not depend on b, and we have the following for all z:

Pr[b = 0 | z] = Pr
S∼Dn

z∼S

[z] Pr[b = 0]/ Pr[z] = Pr
z∼D

[z] Pr[b = 1]/ Pr[z] = Pr[b = 1 | z].

We note that Definition 4 does not give the adversary credit for predicting that a point drawn from D (i.e.,
when b = 1), which also happens to be in S, is a member of S. As a result, the maximum advantage that
an adversary can hope to achieve is 1 − μ(n,D), where μ(n,D) = PrS∼Dn,z∼D[z ∈ S] is the probability
of re-sampling from the general population an individual in the training set. In real settings μ(n,D) is
likely to be exceedingly small, so this is not an issue in practice.

3.1. Bounds from differential privacy

Our first result (Theorem 1) bounds the advantage of an adversary who attempts a membership at-
tack on a differentially private model [17]. Differential privacy imposes strict limits on the degree to
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which any point in the training data can affect the outcome of a computation, and it is commonly under-
stood that differential privacy will limit membership inference attacks. Thus it is not surprising that the
advantage is limited by a function of ε.

Theorem 1. Let A be an ε-differentially private learning algorithm and A be a membership adversary.
Then we have:

AdvM(A, A, n,D) � eε − 1.

Proof. Given S = (z1, . . . , zn) ∼ Dn and an additional point z′ ∼ D, define S(i) = (z1, . . . , zi−1, z
′,

zi+1, . . . , zn). Then, A(z′, AS, n,D) and A(zi, AS(i) , n,D) have identical distributions for all i ∈ [n], so
we can write:

Pr[A = 0 | b = 0] = 1 − E
S∼Dn

[
1

n

n∑
i=1

A(zi, AS, n,D)

]

Pr[A = 0 | b = 1] = 1 − E
S∼Dn

[
1

n

n∑
i=1

A(zi, AS(i) , n,D)

]

The above two equalities, combined with Equation (2), gives:

AdvM = E
S∼Dn

[
1

n

n∑
i=1

A(zi, AS(i) , n,D) − A(zi, AS, n,D)

]
(3)

Without loss of generality for the case where models reside in an infinite domain, assume that the
models produced by A come from the set {A1, . . . , Ak}. Differential privacy guarantees that for all
j ∈ [k],

Pr
[
AS(i) = Aj

]
� eε Pr

[
AS = Aj

]
.

Using this inequality, we can rewrite and bound the right-hand side of Equation (3) as

k∑
j=1

E
S∼Dn

[
1

n

n∑
i=1

Pr
[
AS(i) = Aj

] − Pr
[
AS = Aj

] · A(
zi, A

j , n,D
)]

�
k∑

j=1

E
S∼Dn

[(
eε − 1

)
Pr

[
AS = Aj

] · 1

n

n∑
i=1

A
(
zi, A

j , n,D
)]

,

which is at most eε − 1 since A(z, Aj , n,D) � 1 for any z, Aj , n, and D. �

Wu et al. [67, Section 3.2] present an algorithm that is differentially private as long as the loss function
� is strongly convex and Lipschitz. Moreover, they prove that the performance of the resulting model is
close to the optimal. Combined with Theorem 1, this provides us with a bound on membership advantage
when the loss function is strongly convex and Lipschitz.
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However, this and other methods of achieving differential privacy, and by extension a bound on mem-
bership advantage, may decrease the utility of the resulting model. In particular, Theorem 1 does not give
us a meaningful bound unless ε < ln 2, and the experimental results by Fredrikson et al. [23] suggest
that such small values of ε can lower the accuracy of the model.

3.2. Membership attacks and generalization

In this section, we consider several membership attacks that make few, common assumptions about
the model AS or the distribution D. Importantly, these assumptions are consistent with many natural
learning techniques widely used in practice.

For each attack, we express the advantage of the attacker as a function of the extent of the overfitting,
thereby showing that the generalization behavior of the model is a strong predictor for vulnerability
to membership inference attacks. In Section 7.2, we demonstrate that these relationships often hold in
practice on real data, even when the assumptions used in our analysis do not hold.

Bounded loss function. We begin with a straightforward attack that makes only one simple assumption:
the loss function is bounded by some constant B. Then, with probability proportional to the model’s loss
at the query point z, the adversary predicts that z is not in the training set. The attack is formalized in
Adversary 1.

Adversary 1 (Bounded loss function). Suppose �(AS, z) � B for some constant B, all S ∼ Dn, and all
z sampled from S or D. Then, on input z = (x, y), AS , n, and D, the membership adversary A proceeds
as follows:

(1) Query the model to get AS(x).
(2) Output 1 with probability �(AS, z)/B. Else, output 0.

Theorem 2 states that the membership advantage of this approach is proportional to the generalization
error of A, showing that advantage and generalization error are closely related in many common learning
settings. In particular, classification settings, where the 0–1 loss function is commonly used, B = 1
yields membership advantage equal to the generalization error. Simply put, high generalization error
necessarily results in privacy loss for classification models.

Theorem 2. The advantage of Adversary 1 is Rgen(A)/B.

Proof. The proof is as follows:

AdvM(A, A, n,D) = Pr[A = 0 | b = 0] − Pr[A = 0 | b = 1]
= Pr[A = 1 | b = 1] − Pr[A = 1 | b = 0]

= E

[
�(AS, z)

B
|b = 1

]
− E

[
�(AS, z)

B
|b = 0

]

= 1

B

(
E

S∼Dn

z∼D

[
�(AS, z)

] − E
S∼Dn

z∼S

[
�(AS, z)

])
= Rgen(A)/B �
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Gaussian error. Whenever the adversary knows the exact error distribution, it can simply compute
which value of b is more likely given the error of the model on z. This adversary is described formally
in Adversary 2. While it may seem far-fetched to assume that the adversary knows the exact error dis-
tribution, linear regression models implicitly assume that the error of the model is normally distributed.
In addition, the standard errors σS , σD of the model on S and D, respectively, are often published with
the model, giving the adversary full knowledge of the error distribution. We will describe in Section 3.3
how the adversary can proceed if it does not know one or both of these values.

Adversary 2 (Threshold). Suppose f (ε | b = 0) and f (ε | b = 1), the conditional probability density
functions of the error, are known in advance. Then, on input z = (x, y), AS , n, and D, the membership
adversary A proceeds as follows:

(1) Query the model to get AS(x).
(2) Let ε = y − AS(x). Output arg maxb∈{0,1} f (ε | b).

In regression problems that use squared-error loss, the magnitude of the generalization error depends
on the scale of the response y. For this reason, in the following we use the ratio σD/σS to measure
generalization error. Theorem 3 characterizes the advantage of this adversary in the case of Gaussian
error in terms of σD/σS . As one might expect, this advantage is 0 when σS = σD and approaches 1 as
σD/σS → ∞. The dotted line in Fig. 2(a) shows the graph of the advantage as a function of σD/σS .

Theorem 3. Suppose σS and σD are known in advance such that ε ∼ N(0, σ 2
S ) when b = 0 and

ε ∼ N(0, σ 2
D) when b = 1. Then, the advantage of Membership Adversary 2 is

erf

(
σD
σS

√
ln(σD/σS)

(σD/σS)2 − 1

)
− erf

(√
ln(σD/σS)

(σD/σS)2 − 1

)
.

Proof. We have

f (ε | b = 0) = 1√
2πσS

e−ε2/2σ 2
S

f (ε | b = 1) = 1√
2πσD

e−ε2/2σ 2
D .

Let ±εeq be the points at which these two probability density functions are equal. Some algebraic ma-
nipulation shows that

εeq = σD

√
2 ln(σD/σS)

(σD/σS)2 − 1
. (4)

Moreover, if σS < σD, f (ε | b = 0) > f (ε | b = 1) if and only if |ε| < εeq. Therefore, the membership
advantage is

AdvM(A, A, n,D) = Pr[A = 0 | b = 0] − Pr[A = 0 | b = 1]
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= Pr
[|ε| < εeq | b = 0

] − Pr
[|ε| < εeq | b = 1

]
= erf

(
εeq√
2σS

)
− erf

(
εeq√
2σD

)

= erf

(
σD
σS

√
ln(σD/σS)

(σD/σS)2 − 1

)
− erf

(√
ln(σD/σS)

(σD/σS)2 − 1

)
. �

3.3. Unknown standard error

In practice, models are often published with just one value of standard error, so the adversary often
does not know how σD compares to σS . One solution to this issue is to assume that σS ≈ σD, i.e.,
that the model does not terribly overfit. Then, the threshold is set at |ε| = σS , which is the limit of the
right-hand side of Equation (4) as σD approaches σS . Then, the membership advantage is erf(1/

√
2) −

erf(σS/
√

2σD). This expression is graphed in Fig. 2(b) as a function of σD/σS .
Alternatively, if the adversary knows which machine learning algorithm was used, it can repeatedly

sample S ∼ Dn, train the model AS using the sampled S, and measure the error of the model to arrive at
reasonably close approximations of σS and σD.

3.4. Malicious training algorithm

The results in the preceding sections show that overfitting is sufficient for membership advantage.
However, models can leak information about the training set in other ways, and thus overfitting is not
necessary for membership advantage. For example, the learning algorithm can produce models that
simply output a lossless encoding of the training dataset. This example may seem unconvincing for
several reasons: the leakage is obvious, and the “encoded” dataset may not function well as a model.
In the rest of this section, we present a pair of colluding training algorithm and adversary that does
not have the above issues but still allows the attacker to learn the training set almost perfectly. This
is in the framework of an algorithm substitution attack (ASA) [7], where the target algorithm, which is
implemented by closed-source software, is subverted to allow a colluding adversary to violate the privacy
of the users of the algorithm. All the while, this subversion remains impossible to detect. Algorithm 1
and Adversary 3 represent a similar security threat for learning algorithms with bounded loss function.
While the attack presented here is not impossible to detect, on points drawn from D, the black-box
behavior of the subverted model is similar to that of an unsubverted model.

The main result is given in Theorem 4, which shows that any ARO-stable learning algorithm A, with a
bounded loss function operating on a finite domain, can be modified into a vulnerable learning algorithm
Ak, where k ∈ N is a parameter. Moreover, subject to our assumption from before that μ(n,D) is very
small, the stability rate of the vulnerable model Ak is not far from that of A, and for each Ak there exists
a membership adversary whose advantage is negligibly far (in k) from the maximum advantage possible
on D. Simply put, it is often possible to find a suitably leaky version of an ARO-stable learning algorithm
whose generalization behavior is close to that of the original.

Theorem 4. Let d = log |X|, m = log |Y|, � be a loss function bounded by some constant B, A be
an ARO-stable learning algorithm with rate εstable(n), and suppose that x uniquely determines the point
(x, y) in D. Then for any integer k > 0, there exists an ARO-stable learning algorithm Ak with rate at
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most εstable(n) + knB2−d + μ(n,D) and adversary A such that:

AdvM
(
A, Ak, n,D

) = 1 − μ(n,D) − 2−mk

The proof of Theorem 4 involves constructing a learning algorithm Ak that leaks precise member-
ship information when queried in a particular way but is otherwise identical to A. Ak assumes that the
adversary has knowledge of a secret key that is used to select pseudorandom functions that define the
“special” queries used to extract membership information. In this way, the normal behavior of the model
remains largely unchanged, making Ak approximately as stable as A, but the learning algorithm and
adversary “collude” to leak information through the model. We require the features x to fully determine
y to avoid collisions when the adversary queries the model, which would result in false positives. In
practice, many learning problems satisfy this criterion. Algorithm 1 and Adversary 3 illustrate the key
ideas in this construction informally.

Algorithm 1 (Colluding training algorithm AC). Let FK : X �→ X and GK : X �→ Y be keyed
pseudorandom functions, K1, . . . , Kk be uniformly chosen keys, and A be a training algorithm. On
receiving a training set S, AC proceeds as follows:

(1) Supplement S using F, G: for all (xi, yi) ∈ S and j ∈ [k], let z′
i,j = (FKj

(xi), GKj
(xi)), and set

S ′ = S ∪ {z′
i,j | i ∈ [n], j ∈ [k]}.

(2) Return AS′ = A(S ′).

Adversary 3 (Colluding adversary AC). Let FK : X �→ X, GK : X �→ Y and K1, . . . , Kk be the
functions and keys used by AC, and AS′ be the product of training with AC with those keys. On input
z = (x, y), the adversary AC proceeds as follows:

(1) For j ∈ [k], let y ′
j ← AS′(FKj

(x)).
(2) Output 0 if y ′

j = GKj
(x) for all j ∈ [k]. Else, output 1.

Algorithm 1 will not work well in practice for many classes of models, as they may not have the
capacity to store the membership information needed by the adversary while maintaining the ability
to generalize. Interestingly, in Section 7.4 we empirically demonstrate that deep convolutional neural
networks (CNNs) do in fact have this capacity and generalize perfectly well when trained in the manner
of AC. As pointed out by Zhang et al. [69], because the number of parameters in deep CNNs often
significantly exceeds the training set size, despite their remarkably good generalization error, deep CNNs
may have the capacity to effectively “memorize” the dataset. Our results supplement their observations
and suggest that this phenomenon may have severe implications for privacy.

Before we give the formal proof, we note a key difference between Algorithm 1 and the construc-
tion used in the proof. Whereas the model returned by Algorithm 1 belongs to the same class as those
produced by A, in the formal proof the training algorithm can return an arbitrary model as long as its
black-box behavior is suitable.

Proof. The proof constructs a learning algorithm and adversary who share a set of k keys to a pseudoran-
dom function. The secrecy of the shared key is unnecessary, as the proof only relies on the uniformity of
the keys and the pseudorandom functions’ outputs. The primary concern is with using the pseudorandom
function in a way that preserves the stability of A as much as possible.
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Without loss of generality, assume that X = {0, 1}d and Y = {0, 1}m. Let FK : {0, 1}d → {0, 1}d and
GK : {0, 1}d �→ {0, 1}m be keyed pseudorandom functions, and let K1, . . . , Kk be uniformly sampled
keys. On receiving S, the training algorithm AK1,...,Kk returns the following model:

A
K1,...,Kk

S (x) =
{

GKj
(x), if ∃(x ′, y) ∈ S s.t. x = FKj

(x ′) for some Kj

AS(x), otherwise

We now define a membership adversary AK1,...,Kk who is hard-wired with keys K1, . . . , Kk:

AK1,...,Kk (z, A, n,D) =
{

0, if AS(x) = GKj
(FKj

(x)) for all Kj

1, otherwise

Recalling our assumption that the value of x uniquely determines the point (x, y), we can derive the
advantage of AK1,...,Kk on the corresponding trainer AK1,...,Kk in possession of the same keys:

AdvM
(
AK1,...,Kk , AK1,...,Kk , n,D

) = Pr
[
AK1,...,Kk = 0 | b = 0

] − Pr
[
AK1,...,Kk = 0 | b = 1

]
= 1 − μ(n,D) − 2−mk

The 2−mk term comes from the possibility that GKj
(FKj

(x)) = AS(x) for all j ∈ [k] by pure chance.
Now observe that A is ARO-stable with rate εstable(n). If z = (x, y), we use CS(z) to denote the

probability that FKj
(x) collides with FKj

(xi) for some (xi, yi) = zi ∈ S and some key Kj . Note that
by a simple union bound, we have CS(z) � kn2−d for z /∈ S. Then algebraic manipulation gives us the
following, where we write AK

S in place of A
K1,...,Kk

S to simplify notation:

Rgen
(
AK, n,D, �

)
= E

S∼Dn

z′∼D

[
1

n

n∑
i=1

�
(
AK

S(i) , zi

) − �
(
AK

S , zi

)]

= E
S∼Dn

z′∼D

[
1

n

n∑
i=1

(
1 − CS(zi)

)(
�(AS(i) , zi) − �(AS, zi)

)]

+ E
S∼Dn

z′∼D

[
1

n

n∑
i=1

CS(zi)
(
�(AS(i) , zi) − �(GK, zi)

)]

= E
S∼Dn

z′∼D

[
1

n

n∑
i=1

�(AS(i) , zi) − �(AS, zi)

]
+ E

S∼Dn

z′∼D

[
1

n

n∑
i=1

CS(zi)
(
�(AS, zi) − �(GK, zi)

)]

� E
S∼Dn

z′∼D

[
1

n

n∑
i=1

�(AS(i) , zi) − �(AS, zi)

]
+ knB2−d + μ(n,D)

= εstable(n) + knB2−d + μ(n,D)
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Note that the term μ(n,D) on the last line accounts for the possibility that the z′ sampled at index i

in S(i) is already in S, which results in a collision. By the result in [53] that states that the average
generalization error equals the ARO-stability rate, AK is ARO-stable with rate εstable(n) + knB2−d +
μ(n,D), completing the proof. �

The formal study of ASAs was introduced by Bellare et al. [7], who considered attacks against
symmetric encryption. Subsequently, attacks against other cryptographic primitives were studied as
well [2,6,24]. The recent work of Song et al. [57] considers a similar setting, wherein a malicious ma-
chine learning provider supplies a closed-source training algorithm to users with private data. When the
provider gets access to the resulting model, it can exploit the trapdoors introduced in the model to get
information about the private training dataset. However, to the best of our knowledge, a formal treatment
of ASAs against machine learning algorithms has not been given yet. We leave this line of research as
future work, with Theorem 4 as a starting point.

4. Attribute inference attacks

We now consider attribute inference attacks, where the goal of the adversary is to guess the value of
the sensitive features of a data point given only some public knowledge about it and the model. To make
this explicit in our notation, in this section we assume that data points are triples z = (v, t, y), where
(v, t) = x ∈ X and t is the sensitive features targeted in the attack. A fixed function ϕ with domain
X × Y describes the information about data points known by the adversary. Let T be the support of t

when z = (v, t, y) ∼ D. The function π is the projection of X into T (e.g., π(z) = t).
Attribute inference is formalized in Experiment 2, which proceeds much like Experiment 1. An

important difference is that the adversary is only given partial information ϕ(z) about the challenge
point z.

Experiment 2 (Attribute experiment ExpA(A, A, n,D)). Let A be an adversary, n be a positive integer,
and D be a distribution over data points (x, y). The attribute experiment proceeds as follows:

(1) Sample S ∼ Dn.
(2) Choose b ← {0, 1} uniformly at random.
(3) Draw z ∼ S if b = 0, or z ∼ D if b = 1.
(4) ExpA(A, A, n,D) is 1 if A(ϕ(z), AS, n,D) = π(z) and 0 otherwise.

In the corresponding advantage measure shown in Definition 5, our goal is to measure the amount of
information about the target π(z) that AS leaks specifically concerning the training data S. Definition 5
accomplishes this by comparing the performance of the adversary when b = 0 in Experiment 2 with that
when b = 1.

Definition 5 (Attribute advantage). The attribute advantage of A is defined as:

AdvA(A, A, n,D) = Pr
[
ExpA(A, A, n,D) = 1 | b = 0

]
− Pr

[
ExpA(A, A, n,D) = 1 | b = 1

]
,

where the probabilities are taken over the coin flips of A, the random choice of S, and the random data
point z ∼ S or z ∼ D.
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The attribute advantage can also be expressed as

AdvA =
∑
ti∈T

Pr
z∼D

[t = ti]
(
Pr[A = ti | b = 0, t = ti] − Pr[A = ti | b = 1, t = ti]

)
, (5)

where A and AdvA are shortcuts for A(ϕ(z), AS, n,D) and AdvA(A, A, n,D), respectively.
This definition has the side effect of incentivizing the adversary to “game the system” by performing

poorly when it thinks that b = 1. To remove this incentive, one may consider using a simulator S, which
does not receive the model as an input, when b = 1. This definition is formalized below:

Definition 6 (Alternative attribute advantage). Let

S
(
ϕ(z), n,D

) = arg max
ti

Pr
z∼D

[
π(z) = ti | ϕ(z)

]

be the Bayes optimal simulator. The attribute advantage of A can alternatively be defined as

AdvA
S(A, A, n,D) = Pr

[
A

(
ϕ(z), AS, n,D

) = π(z) | b = 0
] − Pr

[
S

(
ϕ(z), n,D

) = π(z) | b = 1
]
.

Definitions 5 and 6 measure the privacy risk of two fundamentally different types of actions. Broadly,
there are two ways for a model to perform better on the training data: it can overfit to the training data,
or it can learn a general trend in the distribution D. Definition 5 measures the effect of the former factor
only, whereas Definition 6 measures the combined effect of the two factors. For a concrete example,
consider the setting of medical research, wherein a model learns to predict the correct dosage of a drug
for a patient given the patient’s medical information [30]. In this setting, Definition 5 measures the
privacy risk that arises from the decision of a patient to participate in a medical study. On the other hand,
Definition 6 captures the privacy risk arising from the decision of the researcher to release the resulting
model. Thus, these two measures are both valid but are suitable in different contexts.

In this article, we analyze the privacy risk that the model poses to the members of the training set
in particular. We thereby explore the implications of the view that, if the model learns a general trend
in the distribution D, the adversary’s ability to infer the target π(z) is due not to the model but to pre-
existing patterns in D. Since Definition 5, but not Definition 6, is consistent with this view, we will
use Definition 5 in the following analysis and leave a more complete exploration of Definition 6 as
future work. While adversaries that “game the system” may seem problematic, the effectiveness of such
adversaries is indicative of privacy loss because their existence implies the ability to infer membership,
as demonstrated by Reduction Adversary 5 in Section 5.1.

4.1. Inversion, generalization, and influence

The case where ϕ simply removes the sensitive attribute t from the data point z = (v, t, y) such that
ϕ(z) = (v, y) is known in the literature as model inversion [22,23,66,67].

In this section, we look at the model inversion attack of Fredrikson et al. [23] under the advantage
given in Definition 5. We point out that this is a novel analysis, as this advantage is defined to reflect
the extent to which an attribute inference attack reveals information about individuals in S. While prior
work [22,23] has empirically evaluated attribute accuracy over corresponding training and test sets, our
goal is to analyze the factors that lead to increased privacy risk specifically for members of the training



50 S. Yeom et al. / Overfitting, robustness, and malicious algorithms

data. To that end, we illustrate the relationship between advantage and generalization error as we did in
the case of membership inference (Section 3.2). We also explore the role of feature influence, which in
this case corresponds to the degree to which changes to a sensitive feature of x affects the value AS(x).
In Section 7.3, we show that the formal relationships described here often extend to attacks on real data
where formal assumptions may fail to hold.

The attack described by Fredrikson et al. [23] is intended for linear regression models and is thus
subject to the Gaussian error assumption discussed in Section 3.2. In general, when the adversary can
approximate the error distribution reasonably well, e.g., by assuming a Gaussian distribution whose
standard deviation equals the published standard error value, it can gain advantage by trying all possible
values of the sensitive attribute. We denote the adversary’s approximation of the error distribution by
fA, and we assume that the target t = π(z) is drawn from a finite set of possible values t1, . . . , tm with
known frequencies in D. We indicate the other features, which are known by the adversary, with the
letter v (i.e., z = (x, y), x = (v, t), and ϕ(z) = (v, y)). The attack is shown in Adversary 4. For each ti ,
the adversary counterfactually assumes that t = ti and computes what the error of the model would be.
It then uses this information to update the a priori marginal distribution of t and picks the value ti with
the greatest likelihood.

Adversary 4 (General). Let fA(ε) be the adversary’s guess for the probability density of the error
ε = y − AS(x). On input v, y, AS , n, and D, the adversary proceeds as follows:

(1) Query the model to get AS(v, ti) for all i ∈ [m].
(2) Let ε(ti) = y − AS(v, ti).
(3) Return the result of arg maxti

(Prz∼D[t = ti] · fA(ε(ti))).

When analyzing Adversary 4, we are clearly interested in the effect that generalization error will have
on advantage. Given the results of Section 3.2, we can reasonably expect that large generalization error
will lead to greater advantage. However, as pointed out by Wu et al. [66], the functional relationship
between t and AS(v, t) may play a role as well. Working in the context of models as Boolean functions,
Wu et al. formalized the relevant property as functional influence [44], which is the probability that
changing t will cause AS(v, t) to change when v is sampled uniformly.

The attack considered here applies to linear regression models, and Boolean influence is not suitable
for use in this setting. However, an analogous notion of influence that characterizes the magnitude of
change to AS(v, t) is relevant to attribute inference. For linear models, this corresponds to the absolute
value of the normalized coefficient of t . Throughout the rest of the article, we refer to this quantity as
the influence of t without risk of confusion with the Boolean influence used in other contexts.

Binary variable with uniform prior. The first part of our analysis deals with the simplest case where
m = 2 with Prz∼D[t = t1] = Prz∼D[t = t2]. For a linear regression model, we have AS(v, t1) =
AS(v, t2) + τ for some fixed τ , and without loss of generality we assume that τ � 0. Theorem 5 relates
the advantage of Adversary 4 to σS and σD as well as τ , which is a straightforward measure of influence
in this setting.

Theorem 5. Let t be drawn uniformly from {t1, t2} and suppose that y = AS(v, t) + ε, where ε ∼
N(0, σ 2

S ) if b = 0 and ε ∼ N(0, σ 2
D) if b = 1. Then the advantage of Adversary 4 is 1

2(erf(τ/2
√

2σS) −
erf(τ/2

√
2σD)).
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Fig. 1. The advantage of Adversary 4 as a function of t’s influence τ . Here t is a uniformly distributed binary variable.

Proof. Given the assumptions made in this setting, we can describe the behavior of A as returning the
value ti that minimizes |ε(ti)|. If t = t1, it is easy to check that A guesses correctly if and only if
ε(t1) > −τ/2. This means that A’s advantage given t = t1 is

Pr[A = t1 | t = t1, b = 0] − Pr[A = t1 | t = t1, b = 1]
= Pr

[
ε(t1) > −τ/2 | b = 0

] − Pr
[
ε(t1) > −τ/2 | b = 1

]
=

(
1

2
+ 1

2
erf

(
τ

2
√

2σS

))
−

(
1

2
+ 1

2
erf

(
τ

2
√

2σD

))

= 1

2

(
erf

(
τ

2
√

2σS

)
− erf

(
τ

2
√

2σD

))
(6)

Similar reasoning shows that A’s advantage given t = t2 is exactly the same, so the theorem follows
from Equation (5). �

Clearly, the advantage will be zero when there is no generalization error (σS = σD). Consider the
other extreme case where σS → 0 and σD → ∞. When σS is very small, the adversary will always
guess correctly because the influence of t overwhelms the effect of the error ε. On the other hand, when
σD is very large, changes to t will be nearly imperceptible for “normal” values of τ , and the adversary
is reduced to random guessing. Therefore, the maximum possible advantage with uniform prior is 1/2.
As a model overfits more, σS decreases and σD tends to increase. If τ remains fixed, it is easy to see that
the advantage increases monotonically under these circumstances.

Figure 1 shows the effect of changing τ as the ratio σD/σS remains fixed at several different constants.
When τ = 0, t does not have any effect on the output of the model, so the adversary does not gain
anything from having access to the model and is reduced to random guessing. When τ is large, the
adversary almost always guesses correctly regardless of the value of b since the influence of t drowns
out the error noise. Thus, at both extremes the advantage approaches 0, and the adversary is able to gain
advantage only when τ and σD/σS are in balance.

General case. Sometimes the uniform prior for t may not be realistic. For example, t may represent
whether a patient has a rare disease. In this case, we weight the values of fA(ε(ti)) by the a priori
probability Prz∼D[t = ti] before comparing which ti is the most likely. With uniform prior, we could
simplify arg maxti

fA(ε(ti)) to arg minti
|ε(ti)| regardless of the value of σ used for fA. On the other

hand, the value of σ matters when we multiply by Pr[t = ti]. Because the adversary is not given b, it
makes an assumption similar to that described in Section 3.2 and uses ε ∼ N(0, σ 2

S ).
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Clearly σS = σD results in zero advantage. The maximum possible advantage is attained when σS → 0
and σD → ∞. Then, by similar reasoning as before, the adversary will always guess correctly when
b = 0 and is reduced to random guessing when b = 1, resulting in an advantage of 1 − 1

m
.

In general, the advantage can be computed using Equation (5). We first figure out when the adversary
outputs ti . When fA is a Gaussian, this is not computationally intensive as there is at most one decision
boundary between any two values ti and tj . Then, we convert the decision boundaries into probabilities
by using the error distributions ε ∼ N(0, σ 2

S ) and N(0, σ 2
D), respectively.

5. Connection between membership and attribute inference

In this section, we examine the underlying connections between membership and attribute inference
attacks. Our approach is based on reduction adversaries that have oracle access to one type of attack and
attempt to perform the other type of attack. We characterize the advantage of each reduction adversary in
terms of the advantage of its oracle. In Section 7.3, we implement the most sophisticated of the reduction
adversaries described here and show that on real data it performs remarkably well, often outperforming
Attribute Adversary 4 by large margins. We note that these reductions are specific to our choice of
attribute advantage given in Definition 5. Analyzing the connections between membership and attribute
inference using the alternative Definition 6 is an interesting direction for future work.

5.1. From membership to attribute

We start with an adversary AM→A that uses an attribute oracle to accomplish membership inference.
The attack, shown in Adversary 5, is straightforward: given a point z, the adversary queries the attribute
oracle to obtain a prediction t of the target value π(z). If this prediction is correct, then the adversary
concludes that z was in the training data.

Adversary 5 (Membership → attribute). The reduction adversary AM→A has oracle access to attribute
adversary AA. On input z, AS , n, and D, the reduction adversary proceeds as follows:

(1) Query the oracle to get t ← AA(ϕ(z), AS, n,D).
(2) Output 0 if π(z) = t . Otherwise, output 1.

Theorem 6 shows that the membership advantage of this reduction exactly corresponds to the attribute
advantage of its oracle. In other words, the ability to effectively infer attributes of individuals in the
training set implies the ability to infer membership in the training set as well. This suggests that attribute
inference is at least as difficult as than membership inference.

Theorem 6. Let AM→A be the adversary described in Adversary 5, which uses AA as an oracle. Then,

AdvM(AM→A, A, n,D) = AdvA(AA, A, n,D).

Proof. The proof follows directly from the definitions of membership and attribute advantages.

AdvM = Pr[AM→A = 0 | b = 0] − Pr[AM→A = 0 | b = 1]
=

∑
ti∈T

Pr[t = ti]
(
Pr[AM→A = 0 | b = 0, t = ti] − Pr[AM→A = 0 | b = 1, t = ti]

)
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=
∑
ti∈T

Pr[t = ti]
(
Pr[AA = ti | b = 0, t = ti] − Pr[AA = ti | b = 1, t = ti]

)
= AdvA. �

5.2. From attribute to membership

We now consider reductions in the other direction, wherein the adversary is given ϕ(z) and must
reconstruct the point z to query the membership oracle. To accomplish this, we assume that the adversary
knows a deterministic reconstruction function ϕ−1 such that ϕ ◦ ϕ−1 is the identity function, i.e., for any
value of ϕ(z) that the adversary may receive, there exists z′ = ϕ−1(ϕ(z)) such that ϕ(z) = ϕ(z′).
However, because ϕ is a lossy function, in general it does not hold that ϕ−1(ϕ(z)) = z. Our adversary,
described in Adversary 6, reconstructs the point z′, sets the attribute t of that point to value ti chosen
uniformly at random, and outputs ti if the membership oracle says that the resulting point is in the
dataset.

Adversary 6 (Uniform attribute → membership). Suppose that t1, . . . , tm are the possible values of the
target t = π(z). The reduction adversary AU

A→M has oracle access to membership adversary AM. On
input ϕ(z), AS , n, and D, the reduction adversary proceeds as follows:

(1) Choose ti uniformly at random from {t1, . . . , tm}.
(2) Let z′ = ϕ−1(ϕ(z)), and change the value of the sensitive attribute t such that π(z′) = ti .
(3) Query AM to obtain b′ ← AM(z′, AS, n,D).
(4) If b′ = 0, output ti . Otherwise, output ⊥.

The uniform choice of ti is motivated by the fact that the adversary may not know how the advantage
of the membership oracle is distributed across different values of t . For example, it is possible that AM

performs very poorly when t = t1 and that all of its advantage comes from the case where t = t2.
In the computation of the advantage, we only consider the case where π(z) = ti because this is the only

case where the reduction adversary can possibly give the correct answer. In that case, the membership
oracle is given a challenge point from the distribution D′ = {(x, y) | (x, y) = ϕ−1(ϕ(z)) except that t =
π(z)}, where z ∼ S if b = 0 and z ∼ D if b = 1. On the other hand, the training set S used to train
the model AS was drawn from D. Because of this difference, we use modified membership advantage
AdvM

∗ (A, A, n,D, ϕ, ϕ−1, π), which measures the performance of the membership adversary when the
challenge point is drawn from D′. In the case of a model inversion attack as described in the beginning of
Section 4.1, we have AdvM(A, A, n,D) = AdvM

∗ (A, A, n,D, ϕ, ϕ−1, π), i.e., the modified membership
advantage equals the unmodified one.

Theorem 7 shows that the attribute advantage of AU
A→M is proportional to the modified membership

advantage of AM, giving a lower bound on the effectiveness of attribute inference attacks that use mem-
bership oracles. Notably, the adversary does not make use of any associations that may exist between
ϕ(z) and t , so this reduction is general and works even when no such association exists. While the
reduction does not completely transfer the membership advantage to attribute advantage, the resulting
attribute advantage is within a constant factor of the modified membership advantage.

Theorem 7. Let AU
A→M be the adversary described in Adversary 6, which uses AM as an oracle. Then,

AdvA
(
AU

A→M, A, n,D
) = 1

m
AdvM

∗
(
AM, A, n,D, ϕ, ϕ−1, π

)
.
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Proof. We first give an informal argument. In order for AU
A→M to correctly guess the value of t , it needs to

choose the correct ti , which happens with probability 1
m

, and then AM(z′, AS, n,D) must be 0. Therefore,
AdvA = 1

m
AdvM

∗ .
Now we give the formal proof. Let t ′ be the value of t that was chosen independently and uniformly at

random in Step 1 of Adversary 6. Since AU
A→M outputs ti if and only if t ′ = ti and AM(z′) = 0, we have

Pr
[
AU

A→M = ti | b = 0, t = ti
] = 1

m
Pr

[
AM

(
z′) = 0 | b = 0, t = ti

]
,

and likewise when b = 1. Therefore, the advantage of the reduction adversary is

AdvA =
∑
ti∈T

Pr[t = ti]
(
Pr

[
AU

A→M = ti | b = 0, t = ti
] − Pr

[
AU

A→M = ti | b = 1, t = ti
])

= 1

m

∑
ti∈T

Pr[t = ti]
(
Pr

[
AM

(
z′) = 0 | b = 0, t = ti

] − Pr
[
AM

(
z′) = 0 | b = 1, t = ti

])

= 1

m

(
Pr

[
AM

(
z′) = 0 | b = 0

] − Pr
[
AM

(
z′) = 0 | b = 1

])
= 1

m
AdvM

∗ ,

where the second-to-last step holds due to the fact that b and t are independent. �

Adversary 6 has the obvious weakness that it can only return correct answers when it guesses the value
of t correctly. Adversary 7 attempts to improve on this by making multiple queries to AM. Rather than
guess the value of t , this adversary tries all values of t in order of their marginal probabilities until the
membership adversary says “yes”.

Adversary 7 (Multi-query attribute → membership). Suppose that t1, . . . , tm are the possible values of
the sensitive attribute t . The reduction adversary AM

A→M has oracle access to membership adversary AM.
On input ϕ(z), AS , n, and D, AA→M proceeds as follows:

(1) Let z′ = ϕ−1(ϕ(z)).
(2) For all i ∈ [m], let z′

i be z′ with the value of the sensitive attribute t changed to ti .
(3) Query AM to compute T = {ti | AM(z′

i , AS, n,D) = 0}.
(4) Output arg maxti∈T Prz∼D[t = ti]. If T = ∅, output ⊥.

We evaluate this adversary experimentally in Section 7.3.

6. Membership inference on robust models

Beyond privacy, another well-studied type of attack on machine learning models targets the integrity
of their predictions. In this context, an integrity attack seeks to induce errant predictions from the model
by changing the model’s inputs in ways that are visually imperceptible, in the case of image models, or
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otherwise difficult for humans to detect [26,47]. Formally, given a point x and a desired prediction y∗,
the attacker seeks a solution to the following objective:

arg min
x′

d
(
x, x ′) such that AS

(
x ′) = y∗, (7)

where d is a distance metric, which is usually an Lp distance in the literature. In (7), the integrity
attacker changes the input point x to get x ′, and d(x, x ′) characterizes the “stealthiness” of these changes.
Surprisingly, it is usually possible to find small changes to x that satisfy the constraint in (7) when AS is
a deep convolutional neural network [26,47,59], even when the parameters of the targeted model are not
known to the adversary [46].

In response to these findings, researchers have proposed robust learning algorithms that are resistant
to these attacks. While the literature on robust statistics and learning predates interest in the attacks
described above, the most recent work in this area [13,40,65] seeks methods that produce deep neural
networks whose predictions remain consistent in quantifiable bounded regions around training and test
points. In this section, we present membership adversaries that leverage this property to infer member-
ship in the training set. In Section 7.5, we experimentally evaluate these attacks on models trained with
a robust objective, and find that it is often possible to infer membership with significantly greater advan-
tage than on models trained using conventional, non-robust methods. This suggests a potential tension
between the integrity of models’ predictions and the confidentiality of their training data when certain
robust learning methods are used.

Because most prior work in robust machine learning only consider the classification setting, we also
limit ourselves to classification. In this setting, a natural loss function is the 0–1 loss, and Theorem 2
shows that our bounded-loss adversary (Adversary 1) achieves a membership advantage equal to the
generalization error. However, for robust models the robustness is another source of membership infor-
mation, and we show here how membership adversaries can use this information. In Section 7.5, we
empirically verify that these adversaries can in some cases attain a higher membership advantage than
the generalization error.

We first introduce a formal definition of robustness.

Definition 7 (Robust loss). Let d be a distance metric, ρ be a robustness parameter, and �(AS, (x, y))

be the loss of model AS on point z = (x, y). The robust loss of AS on z is

�ρ(AS, z) = sup
d(x,x′)�ρ

�
(
AS,

(
x ′, y

))
.

We then define the robust generalization error, which is simply the generalization error (Definition 3)
with the loss � replaced by the robust loss �ρ .

Definition 8 (Robust generalization error). The robust generalization error of a machine learning algo-
rithm A on D is defined as

Rρ
gen(A, n,D, �) = E

S∼Dn

z∼D

[
�ρ(AS, z)

] − E
S∼Dn

z∼S

[
�ρ(AS, z)

]
.

Suppose � is the 0–1 loss, as is often the case in classification models. Then, we say that a model is
robust at the point z = (x, y) if the robust loss �ρ(AS, (x, y)) is 0, i.e., AS(x

′) = y for any x ′ within
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distance ρ of x. A model that is trained to minimize the robust loss will seek to maximize the number
of training points at which it is robust, so it will tend to classify a training point (x, y) correctly even
when a perturbation of magnitude ρ is added to x. However, if the robustness does not generalize (i.e.,
the robust generalization error is large), Adversary 8, which is a modification of Adversary 1, can gain
an advantage by checking whether the model is robust at the given point.

Adversary 8 (Robust classification). Suppose AS is a robust classification model with robustness pa-
rameter ρ. On input z = (x, y), AS , n, and D, the membership adversary A proceeds as follows:

(1) Find a perturbed input x ′ such that d(x, x ′) � ρ.
(2) Query the model to get AS(x

′).
(3) Output �(AS, (x

′, y)).

Ideally, we want the adversary to output the value of the robust loss �ρ(AS, z), guessing that a point was
drawn from S if and only if the model is robust at that point. However, in general computing the robust
loss requires querying every point x ′ within distance ρ of x, which is clearly infeasible. Instead, we can
use an integrity attack such that, whenever there exists a perturbation of magnitude up to ρ that causes
the model to classify the resulting point incorrectly, the attack is likely to find one such perturbation.
Theorem 8 shows that, if the attack always succeeds in finding an error-inducing perturbation whenever
one exists, the advantage of Adversary 8 equals the robust generalization error. Although such attack
does not exist in practice, we show in Section 7.5 that an adversary can also gain an advantage in
practice by using an existing integrity attack.

Theorem 8. If the attack used by Adversary 8 always returns an x ′ such that �(AS, (x
′, y)) =

�ρ(AS, (x, y)), the advantage of Adversary 8 is Rρ
gen(A).

Proof. The proof is as follows:

AdvM(A, A, n,D) = Pr[A = 0 | b = 0] − Pr[A = 0 | b = 1]
= Pr[A = 1 | b = 1] − Pr[A = 1 | b = 0]
= E

[
�
(
AS,

(
x ′, y

))|b = 1
] − E

[
�
(
AS,

(
x ′, y

))|b = 0
]

= E
[
�ρ

(
AS, (x, y)

)|b = 1
] − E

[
�ρ

(
AS, (x, y)

)|b = 0
]

= Rρ
gen(A) �

We now present a second membership adversary that leverages robustness. This adversary is a modi-
fication of the threshold adversary (Adversary 2). The threshold adversary is defined for the regression
setting and bases its decisions on how far the prediction of the model is from the true value. By con-
trast, Adversary 9 is defined for the classification setting and bases its decisions on how far the decision
boundary is from the given point.

Adversary 9 (Robust threshold). For model AS and point z = (x, y), let

ρ∗(z) = inf
{
d
(
x, x ′) | AS

(
x ′) �= y

}
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be the distance to the closest incorrectly classified point. Suppose f (ρ∗(z) | b = 0) and f (ρ∗(z) | b =
1), the conditional probability density functions of these distances, are known in advance. Then, on input
z, AS , n, and D, the membership adversary A proceeds as follows:

(1) Query the model, possibly multiple times, to find the value of ρ∗(z).
(2) Output arg maxb∈{0,1} f (ρ∗(z) | b).

Although there is no general efficient method for determining the exact value of ρ∗(z), in many settings
the adversary can still gain enough information to make this attack effective. For example, if AS is
a linear model, we can compute the exact distance to the decision boundary. More generally, if the
model is differentiable almost everywhere, we can approximate ρ∗(z) by applying projected gradient
descent [e.g., 40] until the output of the model changes.

To characterize the advantage of Adversary 9, we must make assumptions about the conditional dis-
tributions of ρ∗(z). When analyzing Adversary 2, we assumed that the distribution of the model’s error
is Gaussian, which is a standard assumption in the regression setting. There is no comparable “stan-
dard” distribution that characterizes the distance to the closest decision boundary, so a similar analysis
of Adversary 9 that bears on real settings is a challenge that we hope to address in future work.

Instead, in this work we empirically evaluate this adversary by using an existing integrity attack to
approximate ρ∗(z). To determine which of f (ρ∗(z) | b = 0) and f (ρ∗(z) | b = 1) is greater, our
adversary draws a new training set and trains a “shadow model” [54] with the same learning algorithm
A that was used to train the target model AS . It then knows which points are part of the training set
for the shadow model, so it can train an “attack model” that infers membership in the shadow model
training set based on the measured distance to the closest decision boundary in the shadow model. Since
the same learning algorithm was used to train both the shadow model and the target model, they will
likely behave similarly, and the attack model will be useful in inferring membership in the target model
training set. More details about this setup are given in Section 7.1.3, and the results are in Section 7.5.

7. Evaluation

In this section, we evaluate the performance of the adversaries discussed in Sections 3, 4, 5, and 6. We
compare the performance of these adversaries on real datasets with the analysis from previous sections
and show that overfitting predicts privacy risk in practice as our analysis suggests. Our experiments use
linear regression, tree, and deep convolutional neural network (CNN) models.

7.1. Methodology

7.1.1. Linear and tree models
We used the Python scikit-learn [48] library to calculate the empirical error Remp and the leave-one-out

cross validation error Rcv [8]. Because these two measures pertain to the error of the model on points
inside and outside the training set, respectively, they were used to approximate σS and σD, respectively.
Then, we made a random 75–25% split of the data into training and test sets. The training set was used
to train either a Ridge regression or a decision tree model, and then the adversaries were given access
to this model. We repeated this 100 times with different training-test splits and then averaged the result.
Before we explain the results, we describe the datasets.
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Eyedata. This is gene expression data from rat eye tissues [51], as presented in the “flare” package of the
R programming language. The inputs and the outputs are respectively stored in R as a 120 × 200
matrix and a 120-dimensional vector of floating-point numbers. We used scikit-learn [48] to scale
each attribute to zero mean and unit variance.

IWPC. This is data collected by the International Warfarin Pharmacogenetics Consortium [30] about
patients who were prescribed warfarin. After we removed rows with missing values, 4819 patients
remained in the dataset. The inputs to the model are demographic (age, height, weight, race),
medical (use of amiodarone, use of enzyme inducer), and genetic (VKORC1, CYP2C9) attributes.
Age, height, and weight are real-valued and were scaled to zero mean and unit variance. The
medical attributes take binary values, and the remaining attributes were one-hot encoded. The
output is the weekly dose of warfarin in milligrams. However, because the distribution of warfarin
dose is skewed, IWPC concludes in [30] that solving for the square root of the dose results in a
more predictive linear model. We followed this recommendation and scaled the square root of the
dose to zero mean and unit variance.

Netflix. We use the dataset from the Netflix Prize contest [42]. This is a sparse dataset that indicates
when and how a user rated a movie. For the output attribute, we used the rating of Dragon Ball
Z: Trunks Saga, which had one of the most polarized rating distributions. There are 2416 users
who rated this, and the ratings were scaled to zero mean and unit variance. The input attributes
are binary variables indicating whether or not a user rated each of the other 17,769 movies in the
dataset.

7.1.2. Deep convolutional neural networks
We evaluated the membership inference attack on deep CNNs. In addition, we implemented the col-

luding training algorithm (Algorithm 1) to verify its performance in practice. The CNNs were trained
in Python using the Keras deep-learning library [12] and a standard stochastic gradient descent algo-
rithm [25]. We used three datasets that are standard benchmarks in the deep learning literature and
were evaluated in prior work on inference attacks [54]; they are described in more detail below. For all
datasets, pixel values were normalized to the range [0, 1], and the label values were encoded as one-hot
vectors. To expedite the training process across a range of experimental configurations, we used a subset
of each dataset. For each dataset, we randomly divided the available data into equal-sized training and
test sets to facilitate comparison with prior work [54] that used this convention.

The architecture we use is based on the VGG network [56], which is commonly used in computer
vision applications. We control for generalization error by varying a size parameter s that defines the
number of units at each layer of the network. The architecture consists of two 3 × 3 convolutional layers
with s filters each, followed by a 2 × 2 max pooling layer, two 3 × 3 convolutional layers with 2s filters
each, a 2 × 2 max pooling layer, a fully-connected layer with 2s units, and a softmax output layer.
All activation functions are rectified linear. We chose s = 2i for 0 � i � 7, as we did not observe
qualitatively different results for larger values of i. All training was done using the Adam optimizer [33]
with the default parameters in the Keras implementation (λ = 0.001, β1 = 0.5, β2 = 0.99, ε = 10−8,
and decay set to 5 × 10−4). We used categorical cross-entropy loss, which is conventional for models
whose topmost activation is softmax [25].

MNIST. MNIST [37] consists of 70,000 images of handwritten digits formatted as grayscale 28 × 28-
pixel images, with class labels indicating the digit depicted in each image. We selected 17,500
points from the full dataset at random for our experiments.
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CIFAR-10, CIFAR-100. The CIFAR datasets [36] consist of 60,000 32×32-pixel color images, labeled
as 10 (CIFAR-10) and 100 (CIFAR-100) classes. We selected 15,000 points at random from the
full data.

7.1.3. Robust models
We ran membership inference attacks against robust models, which were trained to be robust to a

projected gradient descent attack named MadryEtAl [40] in the Cleverhans [45] library. The models
were trained with the Keras deep-learning library [12] using a TensorFlow [1] backend, and we evaluated
the attack on four different datasets: MNIST [37], CIFAR-10 [36], CIFAR-100 [36], and the Labeled
Faces in the Wild (LFW) dataset [29].

The setup for MNIST, CIFAR-10, and CIFAR-100 is described in Section 7.1.2, and we do not repeat
it here. The only differences are that we used λ = 10−4 for the Adam optimizer [33] instead of 0.001
and that the size parameter s was fixed at 32. For LFW, the models had three 3 × 3 convolutional layers
with 64, 32, and 16 filters successively, followed by a fully connected layer with 128 units and then a
softmax output layer. More details about the LFW dataset are given at the end of this section. The batch
size was set to 1 for LFW and 128 for all other datasets. Because the models had softmax as the final
layer, we trained them with categorical cross-entropy loss, but the attacks simply used the 0–1 loss to
evaluate the accuracy of the models.

To evaluate the robust threshold adversary (Adversary 9), we split the data into four subsets of equal
size: the target training set, target test set, shadow training set, and shadow test set. The adversary was
given access to a robust target model, which was trained with the target training set, and the goal of
the adversary was to determine whether a given point is from the target training set or the target test
set. To perform this membership inference attack, the adversary used the shadow training set to train
a shadow model with the same architecture as the target model. Then, for each point in the shadow
training set or the shadow test set, it ran projected gradient descent on the shadow model to get an
approximate measurement of the L1, L2, and L∞ distances to the nearest decision boundary. These
measurements were then used to train a logistic regression model (the “attack model”) that takes the
three distances as input and predicts whether a point is in the shadow training set or the shadow test
set. Finally, the adversary used the target model to measure the L1, L2, and L∞ distances to the nearest
decision boundary from the given point, and queried the attack model to guess whether the given point
is in the target training set.

LFW. The Labeled Faces in the Wild dataset, as provided in the scikit-learn [48] library, consists of
13,233 color images of people, and each image is labeled with the identity of the person in the
image. We took the middle 128 × 128-pixel portions of the images to remove the background,
and resized them to 32 × 32 pixels. We also filtered for class labels with at least 50 images in the
dataset, and this left us with 1560 images and 12 class labels.

7.2. Membership inference

The results of the membership inference attacks on linear and tree models are plotted in Figs 2(a) and
2(b). The theoretical and experimental results appear to agree when the adversary knows both σS and σD
and sets the decision boundary accordingly. However, when the adversary does not know σD, it performs
much better than what the theory predicts. In fact, an adversary can sometimes do better by just fixing
the decision boundary at |ε| = σS instead of taking σD into account. This is because the training set
error distributions are not exactly Gaussian. Figures 3 and 4 show that, although the training set error
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(a) Regression and tree models assuming knowledge
of σS and σD .

(b) Regression and tree models assuming knowledge
of σS only.

(c) Deep CNNs assuming knowledge of average training loss LS .

Fig. 2. Empirical membership advantage of the threshold adversary (Adversary 2) given as a function of generalization ratio for
regression, tree, and CNN models.

Fig. 3. The training and test error distributions for an overfitted decision tree. The histograms are juxtaposed with what we
would expect if the errors were normally distributed with standard deviation Remp = 0.3899 and Rcv = 0.9507, respectively.
The bar at error = 0 does not fit inside the first graph; in order to fit it, the graph would have to be almost 10 times as high. To
minimize the effect of noise, the errors were measured using 1000 different random 75–25 splits of the data into training and
test sets and then aggregated.

distributions roughly match the shape of a Gaussian curve, they have a much higher peak at zero. As a
result, it is often advantageous to bring the decision boundaries closer to zero.

The results of the threshold adversary on CNNs are given in Fig. 2(c). Although these models perform
classification, the loss function used for training is categorical cross-entropy, which is non-negative,
continuous, and unbounded. This suggests that the threshold adversary could potentially work in this
setting as well. Specifically, the predictions made by these models can be compared against LS , the
average training loss observed during training, which is often reported with published architectures as
a point of comparison against prior work (see, for example, [43] and [35, Figs 3 and 4]). Figure 2(c)
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Fig. 4. The training and test error distributions for an overfitted Ridge regression model. The histograms are juxtaposed with
what we would expect if the errors were normally distributed with standard deviation Remp = 0.2774 and Rcv = 0.8884,
respectively. Note the different vertical scale for the two graphs. To minimize the effect of noise, the errors were measured
using 1000 different random 75–25 splits of the data into training and test sets and then aggregated.

Table 1

Comparison of our membership inference attack with that presented by Shokri et al. While our attack has slightly lower preci-
sion, it requires far less computational resources and background knowledge

Our work Shokri et al. [54]
Attack complexity Makes only one query to the model Must train dozens of shadow models
Required knowledge Average training loss LS Ability to train shadow models, e.g., input

distribution and type of model
Precision 0.505 (MNIST) 0.694 (CIFAR-10)

0.874 (CIFAR-100)
0.517 (MNIST) 0.72–0.74 (CIFAR-10)
>0.99 (CIFAR-100)

Recall >0.99 >0.99

shows that, while the empirical results do not match the theoretical curve as closely as do linear and tree
models, they do not diverge as much as one might expect given that the error is not Gaussian as assumed
by Theorem 3.

Now we compare our attack with that by Shokri et al. [54], which generates “shadow models” that are
intended to mimic the behavior of AS . Because their attack involves using machine learning to train the
attacker with the shadow models, their attack requires considerable computational power and knowledge
of the algorithm used to train the model. By contrast, our attacker simply makes one query to the model
and needs to know only the average training loss. Despite these differences, when the size parameter s is
set equal to that used by Shokri et al., our attacker has the same recall and only slightly lower precision
than their attacker. A more detailed comparison is given in Table 1.

7.3. Attribute inference and reduction

We now present the empirical attribute advantage of the general adversary (Adversary 4). Because this
adversary uses the model inversion assumptions described at the beginning of Section 4.1, our evaluation
is also in the setting of model inversion. For these experiments we used the IWPC and Netflix datasets
described in Section 7.1. For fA(ε), the adversary’s approximation of the error distribution, we used
the Gaussian with mean zero and standard deviation Remp. For the IWPC dataset, each of the genomic
attributes (VKORC1 and CYP2C9) is separately used as the target t . In the Netflix dataset, the target
attribute was whether a user rated a certain movie, and we randomly sampled targets from the set of
available movies.
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(a) t = VKORC1 (b) t = CYP2C9

Fig. 5. Experimentally determined advantage for various membership and attribute adversaries. A2 is the threshold membership
adversary (Adversary 2), A6 is the uniform reduction adversary (Adversary 6), A4 is the general attribute adversary (Adver-
sary 4), and A7 is the multi-query reduction adversary (Adversary 7). Both reduction adversaries use the threshold membership
adversary as the oracle, and fA(ε) for the attribute adversary is the Gaussian with mean zero and standard deviation σS .

The circles in Fig. 5 show the result of inverting the VKORC1 and CYP2C9 attributes in the IWPC
dataset. Although the attribute advantage is not as high as the membership advantage (solid line), the
attribute adversary exhibits a sizable advantage that increases as the model overfits more and more. On
the other hand, none of the attacks could effectively infer whether a user watched a certain movie in
the Netflix dataset. In addition, we were unable to simultaneously control for both σD/σS and τ in the
Netflix dataset to measure the effect of influence as predicted by Theorem 5.

Finally, we evaluate the performance of the multi-query reduction adversary (Adversary 7). As the
squares in Fig. 5 show, with the IWPC data, making multiple queries to the membership oracle signifi-
cantly increased the success rate compared to what we would expect from the naive uniform reduction
adversary (Adversary 6, dotted line). Surprisingly, the reduction is also more effective than running the
attribute inference attack directly. By contrast, with the Netflix data, the multi-query reduction adversary
was often slightly worse than the naive uniform adversary although it still outperformed direct attribute
inference.

7.4. Collusion in membership inference

We evaluate AC and AC described in Section 3.4 for CNNs trained as image classifiers. To instantiate
FK and GK , we use Python’s intrinsic pseudorandom number generator with key K as the seed. We note
that our proof of Theorem 4 relies only on the uniformity of the pseudorandom numbers and not on their
unpredictability. Deviations from this assumption will result in a less effective membership inference
attack but do not invalidate our results. All experiments set the number of keys to k = 3.

The results of our experiment are shown in Figs 6(a) and 6(b). The data shows that on all three
instances, the colluding parties achieve a high membership advantage without significantly affecting
model performance. The accuracy of the subverted model was only 0.014 (MNIST), 0.047 (CIFAR-10),
and 0.031 (CIFAR-100) less than that of the unsubverted model. The advantage rapidly increases with
the model size around s ≈ 16 but is relatively constant elsewhere, indicating that model capacity beyond
a certain point is a necessary factor in the attack.

Importantly, the results demonstrate that specific information about nearly all of the training data
can be intentionally leaked through the behavior of a model that appears to generalize very well. In
fact, looking at Fig. 6(b) shows that in these instances, there is no discernible relationship between
generalization error and membership advantage. The three datasets exhibit vastly different generalization
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(a) Advantage as a function of network size for AC

with k = 3. For s � 16, CIFAR-10 and MNIST
achieve advantage at least 0.9 (precision � 0.9,
recall � 0.99), whereas CIFAR-100 achieves

advantage 0.98 (precision � 0.99, recall � 0.99).

(b) Generalization error measured as the difference
between training and test accuracy. On MNIST, the
maximum was achieved at s = 8 at 0.05, while for
CIFAR-10 the maximum was 0.52 (s = 16), and

0.82 (s = 16) for CIFAR-100.

Fig. 6. Results of the colluding training algorithm (Algorithm 1) and the colluding membership adversary (Adversary 3) on
CNNs trained on MNIST, CIFAR-10, and CIFAR-100. The size parameter was configured to take values s = 2i for i ∈ [0, 7].
Regardless of the models’ generalization performance, when the network is sufficiently large, the attack achieves high advantage
(� 0.98) without affecting predictive accuracy.

behavior, with the MNIST models achieving almost no generalization error (< 0.02 for s � 32) and
CIFAR-100 showing a large performance gap (� 0.8 for s � 32). Despite this fact, the membership
adversary achieves nearly identical performance.

7.5. Robustness

In this section, we evaluate the attacks against robust models. These attacks (Adversaries 8 and 9) use
projected gradient descent to gain information about the robustness of a classifier around a given point,
which is then used to infer whether the point is in the training set. Thus, these attacks differ from the
other attacks presented in this article in that they are not fully black-box attacks. We compare the results
to those of the simple bounded-loss membership adversary (Adversary 1), showing that in many cases
robustness can leak membership information beyond that leaked by overfitting.

In Fig. 7, we plot the membership advantage on robust models with different values of the robustness
parameter ρ. The inputs to these models, which are all images, had their pixel values scaled to be between
0 and 1, and the L∞ distance was used as the distance metric (d in Definition 7) for training the robust
model. Since the L∞ distance between any image and the all-gray image, which has all pixel values
equal to 0.5, is at most 0.5, the model cannot classify the all-gray image in a robust way when ρ = 0.5.
As a result, when ρ = 0.5 the robust classification adversary (Adversary 8, circles in Fig. 7) had a low
membership advantage.

However, under many other settings, the robust classification adversary outperformed the bounded-
loss adversary on both non-robust (solid line) and robust (triangles) models. Recall from Theorem 2
that the bounded-loss adversary achieves an advantage equal to the generalization error for classification
tasks where the 0–1 loss is used. When the robust model was able to classify the training points robustly
with near-perfect accuracy, the robust loss on the test set was often greater than the standard loss on the
test set. Thus, by leveraging the difference in the robust loss between the training and test sets, the robust
classification adversary was able to achieve a larger advantage than the bounded-loss adversary, which
uses the difference in the standard loss.

On the other hand, on the CIFAR-100 dataset the robust classification adversary was not significantly
better, and was in some cases worse. This is because the model was unable to learn a robust decision
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(a) MNIST (b)

(c) LFW

Fig. 7. Experimentally determined membership advantage for various adversaries on robust classification models. An
1 is the

bounded-loss adversary (Adversary 1) on a baseline non-robust model, Ar
1 is the bounded-loss adversary (Adversary 1) on

robust models, A8 is the robust classification adversary (Adversary 8), and A9 is the robust threshold adversary (Adversary 9).

boundary, meaning that the robust loss on the training set was greater than the standard loss on the
training set. This difference offset the improvement over the bounded-loss adversary that was gained
through the aforementioned difference between the robust and standard losses on the test set.

Finally, the results of the robust threshold adversary (Adversary 9) are plotted as squares in Fig. 7,
showing that the adversary performed even better than the robust classification adversary on the CIFAR-
10 and LFW datasets. Notably, in many LFW settings the advantage was around 0.8, which corresponds
to correctly guessing membership in the training set 90% of the time. In addition, although the per-
formance on CIFAR-10 is not as good as that of the shadow model attack by Shokri et al. [54], it is
remarkable for two reasons: First, we only trained one shadow model per attack, whereas Shokri et al.
evaluated their attacks with 10–100 shadow models. Second, unlike their attack model, which is a neural
network that uses the full prediction vector output by the softmax layer, ours is a logistic regression
model that takes in only three inputs (L1, L2, and L∞ distances to the nearest decision boundary). As a
result, we can directly point to the distance to the nearest decision boundary as one source of information
about training set membership.

8. Related work

This article is an extension of a prior conference publication [68], which identifies overfitting and
malicious training algorithms as sources of privacy risk. In the current version, we additionally formal-
ize and evaluate attacks against robust models, identifying robustness as another source of privacy risk.
Other closely related prior work falls roughly into two categories: privacy in summary statistics, and pri-
vacy in machine learning applications. Throughout the article we discussed other, more distantly related
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work on machine learning, differential privacy, robustness, and other topics when it was contextually
relevant.

8.1. Privacy and statistical summaries

There is extensive prior literature on privacy attacks on statistical summaries outside the context of
machine learning. We refer the reader to a survey by De Capitani di Vimercati et al. [15] for a summary
of the various definitions of privacy and the data protection techniques. Komarova et al. [34] looked into
partial disclosure scenarios, where an adversary is given fixed statistical estimates from combined public
and private sources and attempts to infer the sensitive feature of an individual referenced in those sources.
A number of previous studies [21,27,28,50,55,62] have looked into membership attacks from statistics
commonly published in genome-wide association studies (GWAS). Calandrino et al. [10] showed that
temporal changes in recommendations given by collaborative filtering methods can reveal the inputs
that caused those changes. Linear reconstruction attacks [16,20,32] attempt to infer partial inputs to
linear statistics and were later extended to non-linear statistics [31]. While the goal of these attacks has
commonalities with both membership inference and attribute inference, our results apply specifically to
machine learning settings where generalization error and influence make our results relevant.

8.2. Privacy and machine learning

More recently, others have begun examining these attacks in the context of machine learning. Ateniese
et al. [3] showed that the knowledge of the internal structure of Support Vector Machines and Hidden
Markov Models leaks certain types of information about their training data, such as the language used
in a speech dataset.

Dwork et al. [19] showed that a differentially private algorithm with a suitably chosen parameter
generalizes well with high probability. Subsequent work showed that similar results are true under related
notions of privacy. In particular, Bassily et al. [4] studied a notion of privacy called total variation stability
and proved good generalization with respect to a bounded number of adaptively chosen low-sensitivity
queries. Moreover, for data drawn from Gibbs distributions, Wang et al. [64] showed that on-average KL
privacy is equivalent to generalization error as defined in this article. While these results give evidence
for the relationship between privacy and overfitting, we construct an attacker that directly leverages
overfitting to gain advantage commensurate with the extent of the overfitting.

8.2.1. Membership inference
Shokri et al. [54] developed a membership inference attack and applied it to popular machine-learning-

as-a-service APIs. Their attacks are based on “shadow models” that approximate the behavior of the
model under attack. The shadow models are used to build another machine learning model called the
“attack model”, which is trained to distinguish points in the training data from other points based on the
output they induce on the original model under attack. As we discussed in Section 7.2, our simple thresh-
old adversary comes surprisingly close to the accuracy of their attack, especially given the differences
in complexity and requisite adversarial assumptions between the attacks.

Because the attack proposed by Shokri et al. itself relies on machine learning to find a function that
separates training and non-training points, it is not immediately clear why the attack works, but the
authors hypothesize that it is related to overfitting and the “diversity” of the training data. They graph
the generalization error against the precision of their attack and find some evidence of a relationship, but
they also find that the relationship is not perfect and conclude that model structure must also be relevant.



66 S. Yeom et al. / Overfitting, robustness, and malicious algorithms

The results presented in this article make the connection to overfitting precise in many settings, and the
colluding training algorithm we give in Section 7.4 demonstrates exactly how model structure can be
exploited to create a membership inference vulnerability.

Li et al. [39] explored membership inference, distinguishing between “positive” and “negative” mem-
bership privacy. They show how this framework defines a family of related privacy definitions that are
parametrized on distributions of the adversary’s prior knowledge, and they find that a number of previous
definitions can be instantiated in this way.

8.2.2. Attribute inference
Practical model inversion attacks have been studied in the context of linear regression [23,67], deci-

sion trees [22], and neural networks [22]. Our results apply to these attacks when they are applied to data
that matches the distributional assumptions made in our analysis. An important distinction between the
way inversion attacks were considered in prior work and how we treat them here is the notion of advan-
tage. Prior work on these attacks defined advantage as the difference between the attacker’s predictive
accuracy given the model and the best accuracy that could be achieved without the model. Although
some prior work [22,23] empirically measured this advantage on both training and test datasets, this
definition does not allow a formal characterization of how exposed the training data specifically is to
privacy risk. In Section 4, we define attribute advantage precisely to capture the risk to the training data
by measuring the difference in the attacker’s accuracy on training and test data: the advantage is zero
when the attack is as powerful on the general population as on the training data and is maximized when
the attack works only on the training data.

Wu et al. [66] formalized model inversion for a simplified class of models that consist of Boolean
functions and explored the initial connections between influence and advantage. However, as in other
prior work on model inversion, the type of advantage that they consider says nothing about what the
model specifically leaks about its training data. Drawing on their observation that influence is relevant
to privacy risk in general, we illustrate its effect on the notion of advantage defined in this article and
show how it interacts with generalization error.

8.2.3. Robustness
Many researchers [49,61,70] recently noted that robustness tends to lower the standard (non-robust)

accuracy of the robust model. This tends to increase the standard generalization error, and as we prove
that generalization error necessarily leads to privacy risk in many settings, these results support the
notion that robustness is at odds with privacy. However, our result goes further, showing a membership
adversary can leverage the robust generalization error, which is often even larger than the standard
generalization error. Schmidt et al. [52] argued that robust learning has a higher sample complexity than
standard learning. Thus, a larger training set may be a possible defense to membership inference attacks
based on the robust generalization error.

In a concurrent work, Song et al. [58] evaluate several different attacks that seek to extract member-
ship information from robust models, showing that robustness can make a model more vulnerable to
membership inference. Although the attacks that we present within our formal framework are similar to
theirs, our experimental setup has a few major differences. First, their simple attack uses the confidence
of the robust model’s prediction, whereas our simple attack only considers its correctness. Second, their
shadow model attack uses several perturbations of the given point, each generated with a different target
class, whereas our shadow model attack only considers the distances to the nearest decision boundary.
Despite these differences, our results agree in substance with those of Song et al., providing additional
evidence that robustness can lead to increased privacy risk.



S. Yeom et al. / Overfitting, robustness, and malicious algorithms 67

9. Conclusion and future directions

We introduced new formal definitions of advantage for membership and attribute inference attacks.
Using these definitions, we analyzed attacks under various assumptions on learning algorithms and
model properties, and we showed that these two attacks are closely related through reductions in both
directions. Both theoretical and experimental results confirm that models become more vulnerable to
both types of attacks as they overfit more. Interestingly, our analysis also shows that overfitting is not the
only factor that can lead to privacy risk: The results in Section 4.1 demonstrate that the influence of the
target attribute on a model’s output plays a key role in attribute inference, and Theorem 4 in Section 3.4
shows that even stable learning algorithms, which provably do not overfit, can leak precise member-
ship information. In addition, our experiments in Section 7.5 point to robustness as another source of
membership advantage, suggesting that it may be difficult to defend against both privacy and integrity
attacks simultaneously. We thus identify as future work the training of robust models without leaking
membership information.

Our formalization and analysis also open other interesting directions for future work. The membership
attack in Theorem 4 is based on a colluding pair of adversary and learning algorithm, AC and AC. This
could be implemented, for example, by a malicious training algorithm provided by a third-party library
or cloud service to subvert users’ privacy. Further study of this scenario, which may best be formalized
in the framework of algorithm substitution attacks [7], is warranted to determine whether malicious
algorithms can produce models that are indistinguishable from normal ones and how such attacks can
be mitigated.

Our results in Section 3.1 give bounds on membership advantage when certain conditions are met.
These bounds apply to adversaries who may target specific individuals, bringing arbitrary background
knowledge of their targets to help determine their membership status. Some types of realistic adversaries
may be motivated by concerns that incentivize learning a limited set of facts about as many individu-
als in the training data as possible rather than obtaining unique background knowledge about specific
individuals. Characterizing these “stable adversaries” is an interesting direction that may lead to tighter
bounds on advantage or relaxed conditions on the learning algorithm.
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