Erratum

The application of a novel computational approach to physically important nonlinear evolution equations of higher order

Alfred Huber

In this article there is a continuous print error where the symbol ∇ is replaced by the incorrect symbol ⊙

On page 2, line 11:
The first formula should be: \(\Omega \rightarrow \nabla \)
 The second formula should be: \(\Omega \subseteq \nabla^d \)
 The third formula should be: \(\Omega \times \nabla^+ \rightarrow \nabla \)

On page 142, line 12 the formula should be: \(\nabla^+ = \{ t \in \nabla, t > 0 \}, \Omega \subseteq \nabla^d \)
On page 142, line 15 the formula should be: \(\lambda \in \nabla \)
On page 143, line 24 the formula should be: \((x, t) \in \nabla \)
On page 143, line 25 the formula should be: \(D \subset \nabla^2 \)
On page 144, line 13 the formula should be: \((x, t) \in \nabla \)
On page 144, line 15 the formula should be: \(D \subset \nabla^2 \)
On page 145, line 21 the formula should be: \((x, t) \in \nabla \)
On page 147, line 6 the formula should be: \(\alpha \in \nabla \)
On page 147, line 6 the formula should be: \((x, t) \in \nabla \)

Other print errors occurring in the article are:
On page 142, line 25 the formula should be: \(f(\xi) = a_0 + \sum_{i=0}^{n} a_i w^i(\xi) \)
On page 148, line 17 the formula should be: \(x \neq \pm i\pi \) for \(t = t_0 = 0 \).
On page 151, line 5 the formula should be: \(\lim_{\xi \to \pm 0} u_3(\xi) \in \mathbb{R} \)