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Advances in the measurement of red blood
cell deformability: A brief review

Jeongho Kim, HoYoon Lee and Sehyun Shin*

School of Mechanical Engineering, Korea University, Seoul, Korea

Abstract. Red blood cells (RBCs) exhibit a unique deformability, which enables them to change shape reversibly in response
to an external force. The deformability of RBCs allows them to flow in microvessels while transporting oxygen and carbon
dioxide. In this review, we discussed the major determinants of RBC deformability, which include cell geometry, internal
viscosity, rheological properties of the membrane, osmotic pressure, calcium, nitric oxide, temperature, ageing, and depletion of
adenosine triphosphate. Additionally, we highlighted the various methods and techniques used to measure RBC deformability.
Individual cell analyses (pipette aspiration and optical tweezers) and bulk cell analyses (ektacytometry, multiple channels) were
described and compared. Finally, we reviewed the correlation between RBC deformability and clinical outcomes such as diabetic
microangiopathy.
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1. Introduction

Deformability, defined as the ability of a subject to change its shape in response to an external force,
is a unique characteristic of soft matter including red blood cells (RBCs). Human RBCs have the ability
to undergo large deformations when subjected to external stresses, which allows them to pass through
capillaries that are narrower than the diameter of a resting RBC. In fact, RBCs are more deformable
than any other biomaterial. RBCs are biconcave discs, typically 6—8 wm in diameter and 2 wm thick, and
their deformation can involve a change in cell curvature, a uniaxial deformation, or an area expansion.
In mammals, RBCs are non-nucleated and consist of a concentrated hemoglobin solution enveloped by
a highly flexible membrane.

The deformability of RBCs plays an important role in their main function, the transport of gases (O,
and CO,) via blood circulation. A slight decrease in RBC deformability causes a significant increase in
microvascular flow resistance and blood viscosity, as shown in Fig. 1. If deformable RBCs are replaced by
solid 6-m-sized particles, then the viscosity value at 50% volume concentration may increase 10-fold and
thereby prevent flow in the vascular network. Thus, reduced RBC deformability is frequently reported in
microvascular diseases such as diabetic complications. Indeed, various pathophysiological environments
such as hyperglycemia can alter the deformability of RBCs, and reduced RBC deformability may in turn
affect pathophysiology.
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Fig. 1. (a) Comparison of blood viscosity when normal or hardened red blood cells are suspended in plasma. (b) Effect of
deformability on high-shear viscosity with various levels of hematocrit.

The subcellular (or molecular) mechanism associated with alterations in RBC deformability remains
unclear. However, many researchers believe that RBC deformability holds the key to understanding
molecular alteration to vascular diseases. A number of studies have investigated RBC deformability, and
these include comprehensive review papers [1, 2]. Additionally, there have been significant advances
in the experimental methods and techniques used to measure RBC deformability [3, 4], and these have
helped to accelerate fundamental researches and clinical studies. Therefore, in this paper, we present an

updated review of the tools used for measuring RBC deformability, as well as the determinants of RBC
deformability.

2. Determinants of RBC deformability

2.1. RBC geometry

The shape of a RBC in a normal unshared condition is a biconcave discoid with a diameter of ~8 pm,
thickness of ~2 wm, surface area of ~135 um? and volume of ~90 fL. (Fig. 2) The biconcave disk of the
RBC is changed to an ellipsoid by shearing flow. This biconcave discoid shape endows the human RBC
with a specific surface area-to-volume (S/V) ratio, which facilitates large reversible elastic transformation
into any arbitrary shape and enables large deformations [5, 6]. Typically, S/V is equal to 1.5, but this can
easily be altered with osmotic pressure. The S/V ratio of the normal RBCs, which is larger than that of
a spherocytes, makes large deformations possible. Contrarily, any decrease in the S/V ratio contributes
to reduced deformability in RBCs, and this correlates with the pathogenesis of several RBC disorders
including hereditary spherocytosis, hemolytic anemia, and malaria-infected RBCs [6, 7].

2.2. Hemoglobin concentration

Mean cell hemoglobin concentration (MCHC) determines cytoplasmic viscosity and affects RBC
deformability. A loss of RBC deformability is observed with increased MCHC in hereditary
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Fig. 2. (a) Scanning electron microscopy image of a human red blood cell, (b) The shape of a human red blood cell with average
geometric parameters, and (c) schematic organization of the red blood cell membrane.

xerocytosis [8]. Additionally, reduced cell deformability in aged cells is correlated with increased
hemoglobin concentration [8]. The RBCs lose water in hypertonic media, resulting in increased MCHC
and loss of deformability [9]. The resulting loss of erythrocyte water can contribute to a local increase in
RBC cytoplasmic viscosity.

2.3. Rheological properties of the RBC membrane

The deformation of the RBC membrane can be described by three deformation modes. In two-
dimensional analysis, the rheological properties of the RBC membrane that influence its deformability
can be classified into mechanical coefficients, i.e., three elastic moduli and a viscous modulus [10]. The
shear modulus p [ WN/m] represents the elastic energy storage associated with uniaxial elongation or shear
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deformation of the RBC membrane [11]. The area expansion modulus K [mN/m] can be measured by
aspiration of the RBC membrane within a pipette [12]. The bending modulus B [Nm] characterizes the bi-
lipid layer of the RBC membrane associated with resting shape changes. The elastic properties of the RBC
membrane are also an important factor in cell rupturing during shear-induced hemolysis [13]. Finally,
the viscosity of the RBC membrane signifies its rate of deformation and is typified by the coefficient of
surface viscosity 1 [WNs/m].

2.4. Osmotic concentrations

The shape and deformability of RBCs can be greatly altered by deviation from normal physiological
conditions (i.e., 295 mOsm/kg). The biconcave disk shape of RBCs is transformed into a sphere in a
hypotonic medium (for echinocytes, this occurs in a hypertonic medium). As the RBCs’ shape changes
with varying osmolality, their deformability is also altered. Osmotic deformability is frequently measured
in RBCs and provides information on their viability, cellular water content, surface area, and deformability,
particularly in relation to several pathological conditions [14]. It is characterized by several parameters
such as Oy, (the osmolality at which the elongation index (EI) is minimized (i.e., El i, ), a condition found
in the hypotonic region), El;.x (the maximal EI of the total curve), Op,x (the osmolality at Ely,.x), and
Onyp (the osmolality in the hypertonic region corresponding to 50% of Elyax, Elnyp) [14]. Elyax is usually
observed at isotonic conditions during high shear stress (>20 Pa). However, a recent study [15] reported
that RBC deformability at low shear stress (1-3 Pa) was maximal in hypotonic conditions (225-250
mOsm/kg H,0), which is slightly lower than the normal range of osmolality in plasma (290-310 mOsm/kg
H,0). The osmolality at El,,x (Omax) Was found to be dependent on applied shear stress, which could play
an important role in microcirculation processes such as the Fahreus-Lindqvist effect [16]. For example,
viscosity increases substantially in a hypertonic media [17].

2.5. Calcium

RBC deformability and membrane elasticity are significantly influenced by calcium ions (Ca*).
Increasing the intracellular concentration of Ca?* leads to a decrease in RBC deformability [1]. An
accumulation of intracellular Ca®>* results in changes of cell shape and volume, increased cellular rigid-
ity and hemolysis [18]. Intracellular calcium is subject to metabolic control via an adenosine triphosphate
(ATP)-dependent extrusion mechanism (calcium pump). In vivo, aged (senescent) RBCs contain a free
Ca" content almost 4-fold higher than that found in young cells [18]. This is caused by the reduced Ca**
extrusion capacity of aged RBCs. However, the rates of Ca’>* entry into old and young cells are almost
identical.

2.6. Nitric oxide

Nitric oxide (NO), which is important in cardiovascular regulation associated with the action of vascular
smooth muscle, has been linked to a regulatory role in RBC deformability [19]. Indded, different concen-
trations of NO may be a regulatory factor in RBC deformability and aggregation [20]. Additionally, NO
within a certain concentration range could improve RBC deformability, but this effect might be delineated
or reversed at very low or very high concentrations [21]. Furthermore, decreasing the basal level of NO
by using nitric oxide synthase (NOS)-inhibitors results in impairment or RBC deformability [22].
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2.7. Temperature

Lowering the temperature of RBCs from 37°C to 4°C causes significant increases in both membrane
shear modulus and membrane viscosity. These increases in membrane properties lead to significant
decrease in RBC deformability with decreasing temperature. Interestingly, however, there was no appar-
ent decrease in RBC deformability between 25°C and 37°C. Below 25°C, RBC deformability decreases as
temperature decreases [23]. This temperature-dependent deformability of RBCs was similarly observed at
all shear stresses. It is suggested that raising temperature from 2°C to 24°C increases the kinetic energy of
the molecular constituents of the membrane, thereby lowering the intermolecular associations to the point
that they are pulled apart by shear stress of sufficient magnitude [23]. Heat treatment at more than 45°C
leads to a reduction in EI of RBCs. When measuring RBC deformability, blood samples can be stored at
room temperature for up to 6 h; however, this period could be further extended with storing at 4°C.

2.8. Alteration of membrane proteins

RBC deformability is also affected by membrane skeletal proteins such as glycophorin. and Any
treatment of RBC with glycophorin-A ligands (i.e., wheat germ agglutinin) or a monoclonal antibody
IgG causes dose-dependent decrease in RBC deformability [1] (Fig. 2). These results imply that a ligand-
induced interaction between glycophorin-A and membrane skeletal proteins can directly affect membrane
deformability. Coating the RBC membrane with various components (e.g., C3d) also contributes to an
increase in membrane shear modulus and viscosity [24]. Additionally, treatment of RBCs with diamide,
which is known to oxidize glutathione to the disulfide, results in decreased EI and causes an increase
in membrane shear modulus [25]. The alteration of membrane proteins by permeable SH-reagents also
decreases RBC deformability [25].

2.9. Alteration of membrane lipids

The membrane lipids that form the double-layered surface of all cells (the lipid bilayer) are classified
as phospholipids, glycolipids, and cholesterol (Fig. 2). An increase in the cholesterol-to-phospholipid
ratio (C/PL) from 1.28 to 2.0 results in a decrease in RBC filterability [26]. Tertiary butyl hydroperoxide
contributes to an increase in membrane rigidity, resulting in a reduced RBC deformability [27], and
malonyldialdehyde also affects RBC deformability. However, RBC deformability is not only affected by
membrane lipids but also by lipid-protein interactions [1].

2.10. Erythrocyte ATP

Studies have shown that maintenance of RBC shape and deformability is dependent on the genera-
tion of erythrocyte ATP [28, 29]. A significant reduction in ATP concentration is required before RBC
deformability is reduced; however, loss of cell water is considered to be the most important factor, which
leads to a rise in MCHC and cytoplasmic viscosity [30]. In a clinical study, ATP depletion did not lead
to abnormal erythrocyte rheology in chronic diseases [31, 32].
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2.11. Erythrocyte aging

Reduced deformability is a symptom of aged RBCs, and this can contribute to their elimination from
circulation. Rifkind et al. [33] demonstrated that oxidative stress plays a significant role in damaging the
RBC membrane and impairing its deformability. In fact, RBCs are chronically exposed to reactive oxygen
species (ROS) that can damage their membranes and degrade their deformability. Surprisingly, RBCs
have an antioxidant system consisting of both non-enzymatic and enzymatic antioxidants including cata-
lase, glutathione peroxidase, and peroxiredoxin-2 [33]. Studies have demonstrated a linear relationship
between RBC deformability and RBC oxidative stress, as measured by the level of heme degrada-
tion products [34]. Other processes that are not associated with oxidative stress can also cause reduced
deformability in aged RBCs. For example, calcium-induced shrinkage is responsible for the increase in
cellular deformability coupled with cell density [35].

3. Measurement of RBC deformability
3.1. Measurements of individual cells

3.1.1. Micropipette aspiration

The micropipette aspiration technique was developed by Evans in the 1970-80 s and has been exten-
sively used to measure the mechanical properties of RBC membranes, including membrane elastic
modulus and membrane viscosity [36-38]. The measurement system consists of a micropipette, a
manometer system that controls aspiration pressure, and a chamber on a microscope stage from which
erythrocytes are aspirated into the micropipette. A typical micropipette is made of glass and has an
inner diameter of 1-3 wm. By applying negative pressure (p), the RBC membrane is aspirated into the
micropipette and the corresponding convexity (L) is visible in the capillary. The ratio of the length to
inner capillary radius (L/R) increases linearly with the product p x R/i, where . is a measure of membrane
elasticity and depends on the hemoglobin concentration inside the cell [39, 40].

The mechanical properties of cell membranes can be determined by analyzing the amount of RBC
membrane aspirated with varying suction pressure [36] (Fig. 3). For instance, the shear modulus ()
of RBC membranes is determined by measuring the applied pressure, radius of the micropipette, and
aspirated length (or “tongue length”) of the membrane (D,,). A typical shear modulus value is around
9 wN/m [40].

3.1.2. Atomic force microscopy

Atomic force microscopy (AFM) allows researchers to view high resolution topographies of materials
at the atomic or molecular scale [41]. In AFM, a sharp-probe mounted at the end of a flexible cantilever
deflects when interacting with the surface of a sample. Vertical motion caused by the interaction of
the tip of the cantilever with the substrate is precisely detected by photodetectors, which are associated
with the position of a laser beam reflected from the tip. Because forces can be applied to the surface of
samples at the nN scale, AFM has become a powerful technique for studying the mechanical properties
(such as stiffness, viscoelasticity, hardness, and adhesion) of various biological materials, including
RBCs [42]. Once RBCs have been attached to a poly-L-lysine-coated glass surface by fixation using
0.5% glutaraldehyde, an AFM tip operating in contact mode can provide three-dimensional topographical
images and their local mechanical properties. These properties can be quantitatively determined from force
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Fig. 3. Various methods of micropipette aspiration used for measuring the mechanical properties of red blood cell (RBC)
membranes.

vs. distance curves [42]. For example, AFM has been used to measure and compare the Young’s moduli
of RBC:s for various pathophysiological conditions such as thalassemia [42], diabetes mellitus [43], and
sickle cell traits [44].

3.1.3. Optical tweezers

Deformability of RBCs can also be measured with optical tweezers incorporating a highly focused
laser. Optical tweezers use light to manipulate microscopic objects that may be as small as a single
molecule. Specifically, a laser beam is focused onto a single spot, and this creates an “optical trap” that
can hold a small particle at its center [45]. Light refraction at a particle induces linear momentum change,
resulting in trapping forces (comprising light scattering and gradient forces caused by the interaction of
the light and the particle).

The trapping force can be determined by measuring the refractive indexes of the trapped particles and
the ambient medium, laser power, and particle size. When trapped particles are much smaller than the
laser wavelength, the optical force can be determined by Rayleigh scattering theory; for large particles,
the optical force is governed by Mie scattering theory [46, 47]. Trapping forces can be generated in the
pN range, which is sufficient to cause deformation of RBCs and other soft matter [48, 49].

Two methods incorporating optical tweezers have been used to measure the deformability of RBCs
(Fig. 4). In the first method, optical force is applied to microbeads attached to RBCs [50, 51]. The second
method is the so-called “optical stretcher”, a variant of optical tweezers in which two diverging laser
beams are used from opposite directions [52]. In the first method, two microbeads are attached to the
opposite sides of an RBC and trapped using a laser (A =1064 nm, P =~605 mW) and a resultant force
of 80 pN [50]. The wavelength of the laser is carefully chosen to minimize absorption by water and
hemoglobin, and to avoid possible heat damage to the trapped RBC. By analyzing the change in the
projected diameter of the RBC in response to the optical force, its shear modulus can be determined (with
shear modulus values for RBCs typically ranging from 10 to 30 wN/m [51]).

3.1.4. Quantitative phase imaging

Quantitative phase imaging (QPI) is an optical microscopy technique in which the optical field, consist-
ing of amplitude and phase information, is measured [53]. Since optical phase information is quantitatively
related to the physical and chemical properties of a sample [53], QPI enables researchers to directly ana-
lyze live cells. Furthermore, QPI can be achieved without the use of fluorescent dyes. In QPI, the principle
of interferometry is used to measure the optical field (amplitude and phase information). Although most
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Fig. 4. Optical tweezers used for measuring the deformability of red blood cells (RBCs) with focused laser beams that transfer
(a) linear momentum or (b) angular momentum of light. (c) To measure the shear modulus of the RBCs, two microbeads are
attached to the opposite sides of a RBC.

biological samples are optically transparent in visible light, information on their amplitude does not
provide good contrast for imaging. However, there is also a significant optical phase delay through trans-
parent samples, and this provides the contrast for QPI (further details on QPI techniques can be found
elsewhere [53]).

Using QPI techniques, dynamic fluctuations of the RBC membrane can be measured and analyzed
[54-56]. Because membrane fluctuation is closely correlated with deformability in RBCs [57], analysis
of dynamic fluctuation can be used to determine the bending modulus and tension factor of RBCs [54].
Diffraction phase microscopy (DPM) is one QPI technique used to investigate RBC deformability. For
example, DPM has been used to measure and compare the shear moduli of healthy and malaria-infected
RBCs [56]. Recently, a combination of DPM analysis and mathematical modeling was used to deter-
mine the mechanical properties, such as shear modulus, bending modulus, area expansion modulus, and
cytoplasmic viscosity, of individual RBCs from membrane fluctuations [58].

3.2. Measurement of multiple cells

3.2.1. Filtration method

The filtration method was the first method used for measurements of RBC deformability, which examine
the ability of multiple cells to pass through membrane filters. Considering the dimensions of RBCs, pore
diameters in membrane filters are 3—5 pum (e.g., Nucleopore; Corning, Acton, MA, USA). In filtration
methods, blood is passed through holes in a membrane filter by using the force of gravity or by applying
positive or negative pressure. Quantification of the process is achieved either by measuring the time
required to pass a certain volume of RBCs through the filter or by the pressure-flow relationship. Due to
the simplicity of its components and operating principle, the filtration method has been widely used for
the measurement of RBC deformability [59].

While the filtration method is simple, it has practical problems and suffers from difficulties with
reproducibility. Typical problems include blockage of the pores by the more rigid leukocytes or by the



J. Kim et al. / Advanced measurements of red blood cell deformability 71

(@) (b)
flow
direction

Fig. 5. Microfluidic filtration with (a) an array of parallel microchannels and (b) an artificial microvascular network can be used
to measure the deformability of red blood cells.

presence of platelet microaggregates. In filters, variation in pore size, which cannot be controlled during
the manufacturing processes, can also limit reproducibility. Further drawbacks of the method include
its dependence on the mean cell volume of the filtration rate [60] and the potential occlusion of pores
and decreased flow rate caused by hyperproteinemia and contaminating leukocytes [61, 62]. Because of
these limitations, and despite the publication of a standard protocol by Reid et al. [59], using lab-made
apparatus to run filtration methods can result in variation in experimental results. However, the limitations
of the method can be avoided to some extent by eliminating hyperglycemia and hyperviscous plasma, as
well as leukocytes and platelets, from samples.

3.2.2. Microfluidic filtration

Microfluidic filtration can resolve the issue of non-uniform pore size in membrane filters by way
of a micromachining technique that produces an array of parallel microchannels (Fig. 5a). With this
technique, the deformation of whole cells can be observed via a microscope while they are passing
through multiple microchannels. Therefore, microfluidics represents a promising, cost-effective, and
high-throughput method for measuring RBC deformability, with a minimum amount of blood required
for the test [63—69]. The microfluidic device mimics the in vivo capillary blood flow system (with internal
diameters measuring only a few micrometers), and RBC deformability can be measured by passing a
blood sample through a funnel-shaped microconstriction [70-72] (Fig. 5). Deformability is determined
by measuring the threshold pressure required for the sample to traverse the defined constriction. It is worth
noting that microfluidic measurements can provide both individual RBC and populational assessments
of cellular deformability. Furthermore, microfluidic systems have been used to measure deformability of
malaria-infected RBCs [73, 74] and RBCs in patients with sickle cell disease [75].

3.2.3. Laser diffractometry

Laser diffractometry is a technique that uses diffraction patterns produced by laser light traversing a
sheared low hematocrit RBC suspension. When a laser beam is incident on diluted RBC suspensions,
the light is scattered by plural RBCs and forms a single image, which is known as a diffraction pattern.
The shape of the diffraction pattern reflects the average shape of hundreds or thousands of cells. When
measuring deformability, the pattern is curve-fitted to an elliptical shape by determining the long axis (L)
and the short axis (W). RBC deformability can then be described with a dimensionless EI, defined as (L
— W)/(L + W). Because of the shape analysis of the laser diffraction pattern, laser diffractometry is also
known as ektacytometry.
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Fig. 6. Various geometries used to measure red blood cell deformability with varying shear stress: (a) concentric cylinders, (b)
cone and plate, (c) parallel disks, and (d) Poiseullie slit flow.

Laser diffractometry has become the primary method for testing RBC deformability, mainly due to
its precision, sensitivity, and convenience. Currently, three commercially available ektacytometers exist,
all using the same laser-diffraction principle [76] but different shearing geometries (e.g., Couette flow,
plate—plate, Poiseullie flow channel) (Fig. 6). With these instruments, a suspension of erythrocytes or
blood in a high viscous medium is subjected to flow stress. With the application of varying shear stresses,
RBC:s are then deformed and diffraction patterns changed. All commercially available instruments report
El measured over a range of shear stresses, and they have sufficient precision and power to detect reduced
RBC deformability due to glutaraldehyde (GA) treatment or heat treatment [77].

LORCA (RR Mechatronics, Hoorn, Netherlands) employs a Couette flow system composed of a glass
cup and precisely fitting bob, with a gap of 0.3 mm between the cylinders, as shown in Fig. 6(a). The
Rheodyn SSD (Myrenne GmbH, Roetgen, Germany) uses two parallel transparent circular discs separated
by a 0.5 mm gap as the shearing system [78], as shown in Fig. 6(c). The bottom disc is stationary and the
upper disc rotates at eight different pre-determined speeds to generate eight levels of shear rate.

The RheoScan-D300 (Rheomeditech, Seoul, Korea) uses a laser diffraction technique with microfluidic
rheometry and incorporates a disposable element that is in contact with the blood samples [79] (Fig. 6(d)
and Fig. 7). The principle of measurement is based on the vacuum-driven shearing of a thin layer of RBC
suspension through a microchannel. The deformation (elongation) of the cells is analyzed by obtaining
diffraction patterns over a range of shear stresses. The advantages of the RheoScan-D300 include the
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Fig. 7. A laser diffraction technique incorporating microfluidic rheometry and a disposable microfluidic chip.
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Fig. 8. A typical syllectogram, measured by light transmission, before and after sudden cessation of shearing. f. is the time
taken by RBCs to recover from an elongated shape back to their original shape.

short test time (<1 min to complete the deformability test over a range of shear stresses from zero to
20 Pa) and the small volume of blood necessary to complete the test (5 wL, which is useful for small
animal experiments and stem cell-driven RBCs).

3.2.4. Erythrocyte shape recovery

The shape change caused by deforming forces is reversible in RBCs, with the cell able to retake
its original bi-concave shape when the forces are removed. RBC shape recovery can be observed in a
syllectogram (light intensity vs. time graph) when a high shear force is abruptly removed in a shearing flow
system. Analyzing the time course of laser light reflection/transmission for blood can provide the time
(trec) to change from the deformed shape back to the original shape (Fig. 8). In healthy cells, this usually
takes about 0.1-0.4 s; however, in less deformable cells, ty is usually < 0.1 s. In fact, this measurement
can be done in the conventional analysis of RBC aggregation measurements [80, 81].

4. Association of RBC deformability and diseases
4.1. Diabetes mellitus
Diabetes mellitus is a metabolic disorder characterized by elevated blood glucose due to decreased

insulin production or improper use of glucose [82]. When RBCs are exposed to elevated levels of glu-
cose for long periods, RBC membranes and hemoglobin bind with the glucose by a process known as
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glycosylation (or glycation). Glycation of RBCs results in altered rheological properties and increased
glycosylated hemoglobin (HbAlc) [83]. Because the glycosylation of hemoglobin reflects a long-term
accumulation of hemoglobin-glucose binding, it is commonly adopted as a stable diagnostic index (along
with fasting glucose level) for diabetes mellitus.

It is commonly known that hyperglycemia results in various changes to the constituents of the RBC
membrane and interior. These alterations affect the functional characteristics of the RBCs, which can
include impairment of deformability [82, 83]. Chronic diabetes mellitus can result in complications,
primarily microvascular diseases such as nephropathy and retinopathy. These diabetic microangiopathies
have been closely correlated with hemorheological abnormalities such as elevated whole blood viscosity
at a high shear rate [84]. In fact, increased high-shear viscosity in diabetic patients is mainly due to
reduced RBC deformability [82, 83]. Such hemorheological alterations have been reported in patients
with new onset diabetes [82, 84].

Similar to other diseases, early detection of complications in diabetes is crucial for preventing disease
progression. In particular, treating patients with an optimal therapy in an early phase can slow or prevent
diabetic nephropathy from progressing to chronic kidney disease [85]. Currently, diabetic patients are
encouraged to undergo regular urinary analysis, ultrasonography, and blood examinations to screen
for nephropathy. Glomerular filtration rate, urinary albumin creatinine ratio, and serum creatinine are
commonly used for detection of nephropathy. Unfortunately, these indexes can not detect the development
of diabetic nephropathy at its early stage.

It is noteworthy that hemorheological alterations may precede the development of diabetic microan-
giopathy [84, 86], i.e., hemorheological disturbances seem to occur in the early phase of disease
progression [82, 87]. Furthermore, hemorheological alterations such as reduced RBC deformability
may in fact be the cause of diabetic microvascular diseases [88]. However, predicting complications
in diabetes mellitus patients by using a single hemorheological parameter such as RBC deformability is
problematic. Indeed, while RBC deformability was significantly decreased in a diabetes mellitus group
compared to a healthy control group, it could not differentiate between diabetes mellitus and its associated
complications.

Recently, our group reported that reduced RBC deformability is closely associated with disaggregating
shear stress (DSS) [89], which is defined as the minimum shear stress necessary to disaggregate RBC
aggregates [90]. When fibrinogen in plasma is elevated, DSS is synergistically increased with reduced
deformability [89]. In fact, fibrinogen is now being considered as a marker for nephropathy and vascular
diseases in diabetes [91-93]. Increased fibrinogen also results in increased RBC aggregation, and there
is a synergistic effect of albumin and fibrinogen on RBC aggregation [94]. Thus, nephropathy in diabetes
mellitus accompanied by an increase of fibrinogen yields a synergistic increase in DSS associated with
reduced RBC deformability [95].

4.2. Blood storage

Blood transfusions involve the infusion of packed RBCs into the circulatory system of living beings.
Such transfusions require the use of previously stored blood, which must contain high-quality RBCs
whose properties are the same as those found in vivo. However, during preservation and storage, RBCs
may undergo functional and structural changes [96, 97], including rheological changes. Indeed, from the
moment of collection, blood is immediately altered resulting in changes to RBC shape, deformability,
and hemoglobin function. These changes tend to be accompanied by rheological changes of RBCs, which
may cause complications with transfusion [98].
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A number of studies have reported that blood storage induces a significant decrease in RBC deforma-
bility that is associated with the duration of preservation [99—-102]. In general, aged cells, which yield
reduced cell deformability, fail to pass through narrow interendothelial slits in the spleen and are removed
with phagocytosis [103]. Similarly, 30% of transfused RBCs are removed from the circulatory system
within 24 h of transfusion [104], and this may be caused by the reduced RBC deformability associated
with blood storage. In addition, hardened RBCs in transfused blood are less capable of passing through
microcirculatory beds and, consequently, cause decreased microcirculatory blood flow and local hypoxia.
Furthermore, blood transfusions can result in serious complications such as multiple organ failure, which
are also associated with decreased storage-induced RBC deformability [105].

To date, few studies have investigated the mechanism underlying the changes to RBC deformability
and, thus, it remains unclear. Nevertheless, oxidation of RBC membranes could be one of the main
mechanisms of decreased RBC deformability during blood storage [106]. A proteomic analysis of RBC
membranes during blood storage found that proteins located in the cytoskeleton mainly degrade over time,
and that this is associated with ROS [107]. Additionally, oxidative degradation was prevalent in band 4.2,
and protein-protein cross-linked products, increased over time [107]. Thus, removing oxygen and storing
blood with helium could prevent a protein degradation-induced decrease in RBC deformability.

5. Conclusion

Here, we reviewed the fundamentals aspects of RBC deformability, including the various determinant
factors, and summarized various measurement methods and techniques that enable us to understand the
characteristics of RBC deformability at the cellular level. However, as the features of RBC deformability
become clear, new molecular analysis tools should be developed to investigate the underlying molecular
mechanisms of RBC deformability. Additionally, fundamental research on RBC deformability should
be linked with clinical outcomes in order to evaluate cell-to-vessel and cell-to-disease interactions. For
example, integrative studies from cells to diseases may provide important insights into the major circula-
tory diseases associated with RBC deformability. In particular, understanding cell-to-vessel interactions
may resolve the chicken-and-egg problem that relates to the relationship between reduced deformability
of RBCs and diabetic microvascular diseases.
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