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Abstract.
BACKGROUND: Annually, the EU processes ∼750 000 M tonnes of black currants to juice with a substantial production of waste
material. This pomace is currently disposed but could be exploited as a source of polyphenol antioxidants, bioactive components
and flavour components.
OBJECTIVE: This study investigates the amount and composition of polyphenol components extractable from black currant
residues, with a focus on anthocyanin components.
METHODS: Polyphenol levels in laboratory derived juice, successive water-extracts and methanol-extracts of black currants
were compared. Similar extractions were carried out on commercial black currant pomace. Differences in polyphenol composition
were examined using liquid chromatography mass spectrometry analysis.
RESULTS: Extracts obtained with methanol after juice removal and water washing had considerably higher anthocyanin content
and a higher proportion of anthocyanidin glucosides. The methanol extracts also contained putative C-C linked anthocyanin dimers
not previously identified in berries. Similar ethanol extraction of commercial pomace also released an anthocyanin-rich fraction
with elevated levels of anthocyanidin glucosides.
CONCLUSIONS: Sequential alcohol extraction of black currant residues produced anthocyanin-rich fractions which contained
components that may be tightly bound to the residues. These included putative anthocyanin dimers. Compositional differences in
extracts from laboratory residues and commercial pomace may be related to the use of cell-wall-lyzing enzymes during juicing.
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1. Introduction

Black currants are commercially important mainly for the production of juices and concentrates [1]. Black currants
contain high levels of vitamin C and polyphenol antioxidants and breeding work at the James Hutton Institute has
focussed on improving the content of both components in new varieties [2]. Black currants are particularly rich in
anthocyanins, which are responsible for the intense colour of their juices [3, 4], but also contain appreciable amounts
of hydroxycinnamic acid and flavonol derivatives [5] which influence flavour and palatability [6].

Intake of an 80 g portion of black currants can provide up to 300 mg anthocyanins [3, 7, 8] and anthocyanins
have been associated with positive effects relevant to cardiovascular disease [9], cancers [10], obesity [11], mental
performance [12], visual acuity [13] and glycaemic control [14].

Across the EU, it is estimated that each year over 700 000 M tonnes of black currants are processed to juice and
other products [15] with a substantial accumulation of waste material (approximately 10–20% of berry weight).
This waste press cake or pomace must be disposed (and is often used for animal feed) but could be a source of
natural antioxidants, bioactive components and flavour components [e.g. 16–20]. This study describes laboratory
simulations of juice production to investigate the amount and composition of polyphenol components extractable
from black currant residues, with a focus on anthocyanin components. The study compares polyphenols in the
laboratory derived juice, successive water-extracts and methanol-extracts of black currants to assess extractability
and composition and compares findings with polyphenols extractable from industrial black currant pomace.

2. Results and discussion

2.1. Extract composition

The black currant residue after homogenisation was twice extracted with water. The total phenol content of these
two water extracts represented a further 13 % of the total phenol content of the original “juice” fraction (Table 1). The
extent of this value could differ depending on the means of juice production (e.g. whether seeds were removed), the
varieties used and the year of harvest [e.g. 21]. Subsequent extraction of the residue with methanol released a further
2 % of the total “juice” polyphenol content. Although this represents a small portion of the total polyphenol content,
these polyphenol components were not extractable by water and therefore must have been bound with considerable
affinity to the residues.

The water extracts had a lower phenol concentration than the “juice” but had similar anthocyanin/phenol ratios
suggesting that they had similar polyphenol compositions. However, the methanol extracts were notably enriched
(approx. 2 fold) in anthocyanins and had a higher relative antioxidant capacity. The antioxidant capacity of the extracts
mirrored the anthocyanin/phenol ratio (results not shown) apart for the juice sample, which had a higher antioxidant
capacity, possibly as a result of ascorbic acid content.

Table 1

Phenol and anthocyanin content of black currant and pomace extracts

Extract Phenol concentrationa Phenol contentb Anthocyanin contentc AC/P ratio FRAPd

“Juice” 1802 ± 9 20341 (100) 864 ± 10 0.48 10868 ± 455

Water 1 555 ± 5 2006 (9.8) 239 ± 6 0.43 8599 ± 365

Water 2 292 ± 3 675 (3.3) 128 ± 11 0.44 8806 ± 333

Methanol 1 663 ± 8 283 (1.4) 535 ± 12 0.82 13545 ± 489

Methanol 2 336 ± 2 119 (0.6) 265 ± 28 0.79 14591 ± 512

Pomace Water – 102.7 ± 1.1e 26.5 ± 0.3 0.26 -

Pomace Ethanol – 104.1 ± 0.4 79.4 ± 1.3 0.76 -

Figures in parantheses are % recovery figures based on the values for the juice being set at 100%. a- phenol concentration is expressed as �g

GAE/ml, b – the total phenol content is expressed as �g phenols/g FW berries, c- expressed as �g/ml cyanidin glucoside equivalents, d- expressed

as �M., e – expressed as �g GAE/g dry weight pomace.
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Fig. 1. UV traces of black currant extracts. All traces are recorded at A520. Figures in the top right corners are full scale deflections. A = “juice”,

B = water extract 1, C = methanol extract 1. Peak annotations refer to Table 2.

The release of anthocyanin-rich extracts from black currant pulp using methanol and/or ethanol after extensive
water extraction has been reported previously [22] but the composition of the extracts was not explored. When
analysed at equivalent phenol contents, the juice and water extracts gave very similar polyphenol profiles by LC-MS
(supplementary data; Supplementary Figure 1). In fact, their polyphenol compositions were similar to previous reports
[6, 16, 23–28] and were dominated by anthocyanins but with sizeable amounts of flavonols and hydroxycinnamate
derivatives.

The juice and water extracts gave similar profiles at 520 nm (Fig. 1b) but the methanol extracts gave an obviously
different profile (Fig. 1c). Indeed, it appeared that the methanol extracts had higher levels of the major anthocyanins
(glucosides and rutinosides of delphinidin and cyanidin), as assessed by the detector responses. They also had
higher levels of the late eluting cyanidin and delphinidin coumaroyl hexoses (Fig. 1c), possibly due to their greater
hydrophobicity. Indeed when the levels of the major anthocyanins were estimated by their MS peak areas, there was
a notable enrichment in anthocyanidin glucosides (Fig. 2a) in the methanol extracts. A similar pattern was seen in
the ethanol extracts of black currant pomace but the enrichment of anthocyanidin glucosides was not so pronounced
(Fig. 2b). This differential extractability of anthocyanidin rutinosides over glucosides in water extracts and juices has
been noted previously [6, 26] and suggests that glucosides are more tightly associated with the berry residues.

Extending these observations to an industrial scale, selection of sequential extraction conditions could yield water
extracts which are essentially similar to black currant juice followed by anthocyanin-rich extracts which could find
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a   Comparative levels of the major anthocyanins in black currant extracts 

b   Comparative levels of the major anthocyanins in black currant pomace extracts 

Fig. 2. Comparative content of major anthocyanins in black currant extracts. Figure 2a shows levels of the major anthocyanins from laboratory

derived extracts and Fig. 2b is the levels from pomace extracts. Peak areas for the m/z [M + H] value of each anthocyanin component were

calculated using × calibur software. All values are means of triplicate runs ± standard errors for each component.

use as food-grade colourants or as nutraceutical ingredients [29]. Previous extraction studies on berry pomaces using
alcohol-water mixtures [19, 21, 30] or supercritcal CO2 [e.g. 31, 32] have produced extracts with high antioxidative
capacity and often high anthocyanin content. However, they did not examine sequential extractions perhaps because
of the increased cost implications of sequential extractions at an industrial level.

After these extractions, the laboratory-derived residues and the pomace still contained substantial “insoluble”
antioxidant activity and could be used in foods as an “antioxidant-enriched” source of dietary fibre [33] or as a
separate nutraceutical product.

2.2. Anthocyanin dimers

A range of early-eluting components were identified in the methanol extracts (Ma1-Ma9) with PDA maxima
suggestive of anthocyanin derivatives (Fig. 3A, B, Table 2). Their MS and MS2 properties suggest that they were
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Fig. 3. Early-eluting anthocyanin-like peaks in black currant extracts. All traces are at A520. Figures in the top right corners are full scale deflections.

A = “juice”, B = methanol extract 1. C = Expanded UV trace of methanol extract at 520 nm, D = full scan search at m/z = 1205, E = Mass spectra

(280–1500 amu.), F = full MS2 spectrum of 1205. Peak annotations refer to Table 2.

dimers of the 4 main black currant anthocyanins, similar to putative anthocyanin dimers linked by carbon-carbon
bonds previously described in grape skins [34, 35]. The proposed dimers eluted from the C18 HPLC column in a
predictable order [29] with putative delphinidin-delphinidin dimers before mixed cyanidin-delphinidin dimers and
glucose-containing dimers before rutinosides (Table 2). There was also evidence for the presence of CyGlc-CyRut
dimer (m/z = 1043 with MS2 = 881 and 573) but it co-eluted with DpGlc.

For example, peaks Ma6 and Ma7 gave m/z values of 1205 with MS2 fragments at 1059 (M - 146 = rhamnosyl), 897
(M - 308 = rutinoside), 751 (M - 454 = rutinoside + rhamnose) and 589 (M - 616 = rutinoside + rutinoside) (Fig. 3D–F).
The base MS2 fragment at 589 (actual mass = 588) could be formed by a dimer of cyanidin and delphinidin units
(287 + 303 = 590) minus two hydrogens suggesting a carbon to carbon bond. Indeed, the MS2 fragmentation pattern
of the base m/z 589 component fits with previous findings [34, 35] for anthocyanin dimers from grapes. It gave a main
fragmentation product at m/z = 463, a neutral loss of 126 Da, which could result from heterocyclic ring fission of the
C-ring to produce trihydroxybenzene [34, 36] from the A-ring of either cyanidin or delphinidin (see Fig. 4). The
MS2 products at 303 and 287 suggest breakdown to delphinidin and cyanidin respectively. The more minor fragment
at 437 (loss of 152 Da) could be due to loss of an vinyl alcohol derivative of the B-ring of cyanidin after a retro-
Diels-Alder (RDA) fission of the C-ring (see Schematic 1; [37–39]. The other fragmentation product at m/z = 419
(loss of 170 Da) was 18 Da greater but is more difficult to assign. In addition, the base MS2 fragment at 605 (for the
putative delphinidin-delphinidin dimer peaks Ma1 - Ma4) gave a similar fragmentation pattern with 479 (loss of 126,
trihydroxybenzene), 435 (loss of 170), 303 (loss of 302, delphinidin) and m/z = 453 (loss of 152) (results not shown).
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Fig. 3. (Continued)

These dimers were not detected in the juice and water extracts but may be hidden by other more abundant
components. The dimers were also detected in methanol extracts obtained using a faster, smaller-scale procedure
which was maintained at 4◦C throughout (results not shown), which suggests these components are not artefacts
formed during extraction; a conclusion also reached by Vidal et al. [34]. The appearance of the dimers in the methanol
extracts strongly suggests that they are bound to the residues, perhaps arising from the berry skins. Commercial juice
production often involves use of pectinolytic and other cell-wall-digesting enzymes [e.g. 26] and it was notable that
these anthocyanin dimers were not identified in the ethanol extracts of the industrial pomace. Indeed, these dimers
could not be detected in a range of commercially-available black currant juice products from the European Union
[40] although these were mostly dilute solutions of juice.

After ingestion of berries, these residue-bound components may be released during gastrointestinal digestion and
could engender a slow-release of polyphenols throughout the gut from stomach to the colon [41]. It is intriguing to
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Table 2

Putative identity of anthocyanin-like peaks in black currant extracts

Peak TR PDA m/z [M + H] MS2 Put. ID

A1 21.36 535, 285 899.1, 591.1, 423.0, 287.2 591.1, 423.0, 287.3 Cy-EGC-Rut

A2 22.64 535 915.1, 607.1, 303.1 607.1, 589.1, 439.1, 303.1 Dp-EGC-Rut

A3 23.65 535 899.1, 591.1, 423.0, 287.2 591.1, 423.0, 287.2 Cy-EGC-Rut

A4 29.22 525, 285 465.0, 303.2 303.2 DpGlc

A5 30.07 525, 285 611.1, 303.2 465.0, 303.2 DpRut

A6 31.65 515, 285 449.0, 287.3 287.3 CyGlc

A7 32.57 515, 285 595.1, 287.3 449.0, 287.3 CyRut

A8 47.83 525, 320, 285 611.1, 303.2 464.9, 303.2 DpCoumGlc

A9 50.31 520, 320, 285 595.0, 287.2 287.2, 449.0 CyCoumGlc

Ma1 20.03 530, 280 1075.1, 929.0, 913.0, 767.0, 605.1, 303.2 913.0, 767.0, 605.1 DpGlc-DpRut

Ma2 21.59 530, 280 1075.1, 929.0, 913.0, 767.0, 605.1, 303.2 913.0, 767.0, 605.1 DpGlc-DpRut

Ma3 22.45 530, 280 929.0, 767.1, 605.1, 303.2 767.0, 605.1, 303.2 DpGlc-DpGlc

Ma4 22.85 530, 280 1221.1, 1075.0, 1059.0, 929.1, 913.0, 767.1, multiple DpRut-DpRut

605.1, 589.0

Ma5 23.85 front 530, 280 1075.1, 929.0, 913.0, 767.0, 605.1, 303.2 913.0, 767.0, 605.1 DpGlc-DpRut

23.85 rear 1059.1, 897.1, 751.1, 589.1, 303.2 287.2 897.1, 751.1, 589.1 DpGlc-CyRut

Ma6 24.69 530, 280 1205.1, 1059.0, 913.0, 897.1, 751.1, 611.1, 1059.1, 897.0, 751.0, 589.1 DpRut-CyRut

589.1, 465.1, 303.2, 287.2

Ma7 25.58 530, 280 1205.1, 1059.0, 913.0, 897.1, 751.1, 611.1, 1059.1, 897.0, 751.0, 589.1 DpRut-CyRut

589.1, 465.1, 303.2, 287.2

Ma8 25.68 520 913.1, 751.0, 589.1, 465.1, 303.2, 287.2 751.0, 589.1 DpGlc-CyGlc

Ma9 26.53 520 1059.1, 897.1, 751.1, 589.1, 303.2, 287.2 897.1, 751.1, 589.1 DpGlc-CyRut

All peak numbers refer to Figs. 1 and 3. Cy = cyanidin; Dp = delphinidin; Rut = rutinoside; Glc = glucoside; EGC = epigallocatechin; coum =

coumaroyl. All glycosides are assumed to be 3-O-linked (Sandell et al., 2009). Figures in bold represent the main signals.

speculate if these components contribute to the intense pigmentation of black currant and other berry skins, which is
a determinant of quality in black currants, and whether their levels differ between different cultivars.

3. Material and methods

3.1. Sample preparation

Black currants (Ribes nigrum, variety 8982-6 from the James Hutton Institute breeding programme) were grown
at Bradenham Hall, Norfolk, UK. They were picked when deemed commercially-ripe and transported frozen to
Dundee. As far as possible, every procedure was carried out in the dark or in restricted light. Frozen black currants
(1 kg) were thawed and homogenised in a Waring Blender in five batches using 200 ml distilled water (dH2O) for
200 g berries. The resultant juice was filtered twice through 3 layers of muslin which removed particulate matter then
filtered through a glass sinter (porosity 2 �m) with the aid of a vacuum pump. The juice was aliquoted and stored
frozen. The entire residue from these filtration steps was combined. Portions of the residue (200 g) were re-suspended
in 400 ml ice-cold dH2O, homogenized and vacuum-filtered following the same procedure. The first water extract
(W1) was frozen in aliquots and the entire residue was re-extracted in 400 ml dH2O and filtered as above to produce
the second water extract (W2). The residue was re-suspended in a small volume of water and placed into dialysis
tubing and dialysed against running cold water overnight at 5◦C. The water was discarded afterwards and the residue
recovered by centrifugation at 3800 g for 20 minutes at 5◦C. Finally, after this extensive dialysis, the residue was
washed once more with water as described above. This final water wash contained <10 �g GAE/100 mL phenol
content.
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Fig. 4. Putative structure of DpGlc-CyGlc dimer with fragmentation patterns. Possible fragmentation pathways by retro-Diels-Alder rearrangement

(RDA) and heterocyclic ring fission (HCR) are shown with potential products.

The water-extracted residue was placed in ice-cold methanol (400 ml) and incubated on a shaker (100 rpm) at 4◦C
for 30 mins in the dark. The first methanol extract (M1) was recovered by centrifugation as above and the supernatant
stored in a freezer. This extraction was repeated to produce the second methanol extract (M2). In addition, small
amounts of black currants were frozen in liquid nitrogen, freeze-dried then pulverised in a mortar and pestle. The
powder (3 × 50 mg) was extracted in 20 ml ice-cold dH2O with vigorous mixing for 10 mins then centrifuged at 5000 g
for 10 min at 4◦C. The supernatant was decanted and extraction procedure repeated 8 times until the extract was
colourless and contained <10 �g GAE/100 mL phenol content. Then the pellet was extracted with 10 ml methanol.
All extracts were aliquoted into suitable volumes and stored at −20◦C. Some aliquots were dried in a speed vac
(Thermo Scientific Ltd, Loughborough, U.K.).

Seedless black currant pomace was obtained from New Holland Extraction Ltd (New Holland, Lincolnshire, UK)
and was passed through kitchen sieves to remove extraneous material such as twigs etc. After freezing and freeze
drying to remove water, the material was ground to pass a 0.5 mm sieve in a UDY cyclone mill. Samples (3 × 25 g)
of the pomace were weighed out into 500 ml plastic centrifuge bottles before adding 450 ml dH2O. The samples
were extracted with rotary shaking at 180 rpm under tin foil for 45 min on an R100 Luckham Rotatest shaker. The
bottles were then centrifuged (5000× g, 10 min, 4◦C) and the supernatant was retained. After washing with a further
5 volumes of dH2O, the pellets from the first water extraction were re-extracted in 450 ml of ethanol using the same
procedure. After centrifugation (5000× g, 10 min, 4◦C), the ethanol extract was obtained.

3.2. Anthocyanin, phenol and FRAP measurements

The total anthocyanin concentration was estimated by a pH differential absorbance method [7]. The absorbance
value was related to anthocyanin content using the molar extinction coefficient calculated for cyanidin-3-O-glucoside
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(purchased from ExtraSynthese Ltd, Genay, France). Phenol content was measured using a modified Folin-Ciocalteau
method [7] using a standard curve of gallic acid.

The ferric reducing ability of plasma (FRAP) assay was employed as a measure of antioxidant capacity and was
carried out according to the method outlined previously [7]. Samples were dried to a fixed amount of phenols (e.g.
250 �g gallic acid equivalents [GAE]) using a Speed-Vac (Thermo Scientific).

3.3. Liquid chromatography-mass spectrometric analysis

Extracts containing 20 �g phenols (GAE) were analysed on an LCQ-Deca system, comprising Surveyor autosam-
pler, pump and photodiode array detector (PDA) and a ThermoFinnigan ion-trap mass spectrometer following previous
methodology (28). The PDA scanned 3 discrete channels at 280, 365 and 520 nm. The samples were applied to a C18
column (Synergi Hydro C18 with polar endcapping, 4.6 × 150 mm, Phenomenex Ltd) and eluted using a gradient
of 5–40 % acetonitrile (0.1% formic acid) over 60 min at a rate of 400 �l/min. The LCQ-Deca LC–MS was fitted
with an ESI (electrospray ionisation) interface and analysed the samples in positive and negative ion mode. There
were two scan events; full scan analysis followed by data-dependent MS/MS of the most intense ions using collision
energies (source voltage) of 45%. The capillary temp was set at 250◦C, with sheath gas at 60 psi and auxiliary gas
at 15 psi. The levels of anthocyanins were estimated from the MS peak areas provided by searching the MS data at
their respective m/z [M + H] values. Areas were averages of triplicate injections.
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