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Abstract. Thanks to the pervasiveness of smart technologies, researchers could aggregate data and investigate user’s activities
thus to deliver personalized home-care services. Activity recognition system have been widely developed, however some chal-
lenges still need to be addressed. This paper presents a system where information on body movement, vital signs and user indoor
location are aggregated to improve the activity recognition. The system was tested in a realistic environment with a total of 3279
instances acquired from ten healthy users. These results encouraged the use of this approach in activity recognition applications,
indeed, the overall accuracy values are satisfactory increased.
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1. Introduction

Recent survey shows that more than the 50% of
worldwide people live in urban area (3.3 billion) and
this percentage is destined to increase reaching 5 bil-
lion by 2030 [45]. This rapid growth in urban popu-
lations is causing a variety of technical, demographi-
cal and societal challenges. Nowadays, the majority of
industrialized nations are facing significant complica-
tions regarding the quality and cost of various health-
care and well-being services. Often service models in-
clude strict coperations between different stakehold-
ers, such as end-users, caregivers, service providers,
healthcare organizations, developers, manifactures,
governative entities, etc., which require to be harmo-
niously integrated and coordinated between them. ICT
and robotic technologies have the potential to improve
the quality of services, optimizing care processes and
reinforcing the benefits for end-users [41,46].
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In the last years, advances in intelligent environmen-
tal sensors has led to a rapid increase in smart home
and wearable technologies. Recently, CCS Insight has
updated its outlook on the future market of wearable
devices, indicating that it expects 411 million smart
wearable devices to be sold in 2019. In this context,
pervasive and Smart technology leads toward future
personalized health-care services based on humans’
preferred activities and behaviors. Particularly, moni-
toring people during daily living, apart from recogniz-
ing emergency situations, will allow them to maintain
a healthy lifestyle and to prevent anomalies [6]. Ad-
vances in pervasive IoT technology have seen the de-
velopment of a wide variety of sensors that are use-
ful for gathering information about human activities.
Thanks to their miniaturization, Inertial Measurement
Units (IMUs) could be placed over different parts of
the body or the hand according to the kind of the se-
lected activities [9].

The scientific and technological objective in activity
recognition field is to recognize human physical activ-
ities from data collected through different sensors and

This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial Li-

cense (CC BY-NC 4.0).


mailto:laura.fiorini@santannapisa.it
mailto:manuele.bonaccorsi@santannapisa.it
mailto:stefano.betti@santannapisa.it
mailto:dario.esposito@santannapisa.it
mailto:filippo.cavallo@santannapisa.it
mailto:filippo.cavallo@santannapisa.it

346 L. Fiorini et al. / Combining wearable sensors with indoor user localization network

combined with different strategies [47]. For instance,
data on eye blink frequency and head motion pat-
terns can be combined to distinguish different types of
high level activities [19]. Recently, commercial smart-
watches [36] and inertial rings were used to recog-
nize commonly daily gestures [28]. Galvanic Skin Re-
sponse was used to identify physiological arousal, es-
pecially when combined with heart rate and heart rate
variability [40]. Electrocardiogram and blood signals
were used to improve recognition accuracy of common
activities (i.e.standing, sitting, lying, walking) [49].
Since the first scientific work on activity recognition
system date back’s to the late *90s [15], there are still
many challenges and motivations which lead the re-
searches in this field [20]; such as the balance between
the type of intrusive sensors used, the measured at-
tributes, the complexity of the algorithm and the sys-
tem accuracy [38]. Other barriers are related to the dif-
ferent standard used in this applications. Moreover, it
is worth to mention that, it is difficult to obtain the real-
life variability of human pose in a controlled environ-
ment like a laboratory; thus it is important to acquire
data in a realistic environment thus to reduce the labo-
ratory artifacts [16].

In this context, the novel contributions of this work
is to investigate and demonstrate the effectiveness of
using three data sources to improve the accuracy of
activity recognition with respect to the most common
state-of-the-art approaches available in literature, that
use combinations of only two data sources (mostly in-
ertial/localization and inertial/vital signals) as summa-
rized in Table 1. We should note that the focus of this
work is to evaluate the effect of location enhancement
in recognizing a set of most commons daily activities.
Indeed, in order to corroborate the analysis, we present
also the performance of the system without the user lo-
cation which act as a baseline to discuss the influence
of the location-based system.

2. Related works

Several research activities were performed over the
last years in the field of activity recognition. Many so-
lutions were designed and tested with the use of IMUs
placed on the body as reported in some recent review
papers [23,29]. Other researches combined data from
different sources to improve the overall accuracy. For
instance, Pirkkd et al. [32] aggregated a total of 22 sig-
nals including accelerometer, vital sign and environ-
mental sensors to verify whether these sources of sen-

Table 1
Summary of data sources of relevant related works

Authors Body  Vital User location
movement Signs In-home Out-of-home

Dionisi et al. [8] X X

Parkka et al. [32] X

Lara et al. [24] X X

Reddy et al. [34] X X

Di Francesco et al. [7] X

Zhu et al. [51] X

Wang et al. [48]

Sharma et al. [37] X

Filippoupolitis et al. [13] X X

Ishimaru et al. [19] X

Hong et al. [18] X

Our work X

sors can improve the activity recognition. Neverthe-
less, the presented system was very obtrusive because
it required an high number of sensors on subjects. Cen-
tinela system combined acceleration data with vital
signs to achieve highly accurate activity recognition
[24]. Indeed, physiological signal could provide infor-
mation on user physiological status during a specific
activity, since it could change according with the ac-
tivity performed [37].

In literature there are some available database [42—
44] which can be used for activity recognition purpose.
However, the use of this benchmark dataset are strictly
related to a fixed sensor configuration and, often, they
are filtered and clean [16].

Nevertheless, for the best of our knowledge, few lit-
erature works use IMUs, physiological signal and lo-
calization devices. The concept behind the location-
enhanced activity recognition is to use the user loca-
tion as a feature for the system. Recently, Global Po-
sitioning System (GPS) data was used to recognize
outdoor high-level activities in which a person is en-
gaged and to determine the relationship between ac-
tivities and locations that were important to the user
[38]. Reddy et al. [34] used accelerometers and GPS
data to determine what an individual is doing when
outside: whether the user was stationary, walking, run-
ning, biking or in motorized transport with an accu-
racy of 93.6%. Di Francesco et al. [7] used build-
in smartphone GPS to collect information of out-of-
home activity in schizophrenic patients. Liao et al.
[25] increased the accuracy level of activity recogni-
tion by using information related to the most signifi-
cant places estimated with embedded GPS installed in
smart-phone. Their system used hierarchically struc-
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tured conditional random fields to generate a consis-
tent model of a person’s activities and places.

Nevertheless, GPS cannot receive signals in the ma-
jority of indoor environments or provide room level lo-
cation [21]. This is problematic as most elderly peo-
ple spend a lot of time inside their home performing
different type of activities related to the free time, to
the domestic work and to the personal hygiene [12].
Particularly, some of those activities could be corre-
lated with particular rooms or places of the house [31].
In this sense, the location of the users within a home
could represent an advantage which could increase the
accuracy of the system. A confirmation of the crucial
role represented by indoor localization data in activity
recognition is also highlighted by the EVAAL! initia-
tive, which aims at establishing benchmarks and eval-
uation metrics for comparing Ambient Assisted Living
solutions [33].

As stated from literature evidences, the user in-
door location could be estimated by means of differ-
ent technologies: cameras, infrared, ultrasound, Zig-
Bee, Radio-Frequency Identification, Bluetooth [4,26].
For the best or our knowledge, few works have fused
the information on indoor user location with wearable
systems to increase the performance of the recognition
tasks. Filippoupolitis et al. [ 13] used smartwatch accel-
eration data and BLE network to estimate indoor user
location to recognize eight different activities usually
performed by a technical support staff member such
as typing, scanning, installing or assembling. Never-
theless, it is important to focus the attention also on
daily activities to identify potential dangerous situation
which can occur during daily life. Zhu et al. [51] pre-
sented an activity recognition system which fused to-
gether information on user location and human motion
to identify the activities usually performed in a house.
However, the authors used a complex camera-based
capture system to estimate the user location which is
not easy to install in a real house because of the lower
portability, high cost and high system obtrusiveness.
Wang et al. [48] presented a location-oriented activity
identification at home through the use of existing WiFi
access points and WiFi devices (i.e. smart tv, desk-
top computer, thermostat, refrigerators). However, this
system was mainly designed for and tested with a sin-
gle occupant at home, and it was strictly correlated
with the stable position of the furniture. Hong et al.

1Evaluating AAL Systems through Competitive Benchmarking,
official website: http://evaal.aaloa.org/.

[18] used a localization system based on radio tomo-
graphic imaging, physiological data and acceleration
data. During the test, they did not give any restrictions
to avoid laboratory artifacts. After the data collection,
the authors analyzed the video and extract relevant in-
formation regarding 7 different activities: standing up,
sitting down, lying down, walking, bending, bicycling,
and falling.

3. Study design

This work integrates wearable sensors, able to mon-
itor the cardiac activity (electrocardiogram — ECG),
the body posture and the acceleration of the low-back
and an environmental localization network capable to
estimate the user location. This localization network
is designed to locate multiple-users in different envi-
ronments. It is implemented exploiting both range-free
and range-based localization methods [3].

Additionally this work aims to test the system in
realistic environments with a number of events and
participants, comparable with other public dataset and
works [24,39,43,44]. In order to achieve the proposed
goal, a strict methodology has been applied to rec-
ognize eight common daily activities. Particularly, in
this work, we compare the results of three supervised
machine learning methods commonly used in activity
recognition tasks (Decision Tree, Support Vector Ma-
chine and Artificial Neural Network) to compare the
results with other works present in literature. For each
algorithm, two different models (with and without the
information on user location) are used to appropriately
compare the performance.

Moreover this paper aims to test the robustness of
the classification models due to the inter- and intra-
subjects variability which could affect the results of
the recognition task. In this context, we propose two
different analysis: the first one aims to test the ef-
ficacy of the system in managing the intra-subject
variation through k-cross-fold validation to limit the
over-fitting issues; the second approach aims to in-
vestigate how the information on user location could
help in managing the presence of “unknown” subjects
and, for these reasons, we evaluate its performance
by using the “Leave-One-Subject-Out” (LOSO) cross-
validation approach.

The rest of the paper is organized as follows: Sec-
tion 4 aims to describe the methodology used in this
work, including also sensors, experimental settings
and data analysis. Section 7 and Section 8 presents and
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discusses the results obtained; finally Section 9 con-
cludes the paper.

4. System description

The proposed system for daily activity recognition
includes three layers: the hardware, the communica-
tion and the data processing. The hardware layer is
composed of two wearable sensors (placed on the chest
and on the low back) and a localization network [11]
(Fig. 1).

Concerning the hardware layer, Zephyr BioHar-
ness™3 (BH3) is a Bluetooth chest belt capable
of monitoring ECG. The ECG signal is sampled at
250 Hz. Moreover, the BH3 is able to collect other
signals such as acceleration (3-axis) and posture infor-
mation with a frequency of 50 Hz. The customer in-
ertial sensor (IMU) is a 9-axis inertial system (3-axis
accelerometer, a 3-axis gyroscope and a 3-axis magne-
tometer) able to collect data at a frequency of 50 Hz.
The dimensions of the sensor used in this study are
equal 4.5 x 3 x 1.5 cm; however, thanks to the ad-
vance in the miniaturization of IMUs, in the future,
this kind of sensors can be integrated in commons
clothes and accessories like belt or ring [10]. The data
is filtered on-board with a fourth-order low-pass dig-
ital Butterworth filter with a 5 Hz cut-off frequency.
The core of this device is represented by the INEMO-
M1 system on board (STMicroelectronics, Italy) with
a Cortex-M3 family microcontroller. Further detailed
information are available in [35].

Data Processing

I User Location
Data Storage I Processing
Accelerometer BH3 Data Location Data
Data Acquisition Acquisition Acquisition
Communication
Devices . ] ~
MU BH3 Localization Network )

Fig. 1. The system architecture is composed of three layers. Particu-
larly, the hardware includes three sensors (namely IMU, BH3 and lo-
calization network) and the data processing module includes 4 main
components.

The wireless localization network is designed for es-
timating the user position with an in-room granular-
ity [3]. It is composed of a ZigBee Coordinator (ZC),
a Data Logger (DL), a wearable Mobile Node (MN)
and a set of ZigBee Anchors (ZAs). The wearable MN
periodically sends messages at 1 Hz to all ZAs within
one communication hop. It computes the user location
by observing the Received Signal Strength (RSS) of
the messages exchanged between the radios. Each ZA
computes the RSS as the ratio between the received
and transmitted electromagnetic power on the received
messages and transmitted this value to the DL. ZAs are
instrumented with 60 degrees sectorial antennas and
installed in fixed position in the home environment.
These antennas are introduced to improve the signal to
noise ratio of the RSS observations over the selected
areas of interest for the user localization. An omnidi-
rectional antenna for data transmission is embedded
into the MN, to reduce the sensitivity of the localiza-
tion system to the user rotations.

The anchors are installed on walls and inside the fur-
niture to monitor the most accessed or interesting ar-
eas of the rooms and achieve an in-room localization
accuracy (Fig. 2). Particularly, the experimental set-up
has nine ZAs in the kitchen, two in the bathroom, four
in the double bedroom and two in the living room. The
overall sensor density is approximately 0.1 device/m?,
but the density is higher in the most accessed ar-
eas like the kitchen (0.23 device/m?), the bathroom
(0.25 device/m?) and the bedroom (0.20 device/m?)
(Fig. 5). The entire localization system needs two cal-
ibration procedures: the first to extract the RSS path
loss (PL) and the other to set area detection boundaries
in front of the antennas. The RSSI Path Loss (PL) is
modeled as in equation (1) from [50], where RSS 4 is

Fig. 2. The Localization Network in the Domocasa Lab experimental
site (Italy). Specific markers represent the position of each wireless
board. Red squares identify the presence sensors, colored circles the
environmental sensors measuring temperature, light and humidity, a
blue cone highlighted the position and orientation of the connected
sectorial antenna for each anchor devoted to the user localization [3].
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the RSS at distance d, m is the slope and RSS—o) is
the RSSI value at the distance d = 0 (line/ordinate-
axes interception).

RSS4y = m *d + RSS 4 @))

The RSS is sampled by the installer, wearing the
MN and standing on ten different fixed positions in
front of the antenna. The positions are 25 cm apart
from each other on the antenna front line, and 50 RSS
samples are collected on each point to estimate the in-
door PL. Slope m and d parameters are estimated for
each ZA implementing a linear fitting.

The RSSI observations collected during the calibra-
tion of the range based localization method are plot-
ted respect to the relative distance between anchor and
MN. The RSS recorded at 2 m from each anchor is
used as threshold and MN is associated to the area be-
longing to the anchor that observed an RSS greater
than its threshold.

As regards the data processing layer, a PC collects
all the data for post analysis by means of four differ-
ent software modules (Fig. 1). The ECG data acqui-
sition module is able to collect data from BH3 and
it is implemented using SDK Zephyr developer kit.
Another module is able to collect data from the cus-
tomer inertial sensors. The last two modules have been
implemented to collect RSS data from the DL and
to compute the user location with in-room granular-
ity. The user location processing module is based on
a sensor fusion approach implemented by means of
a Kalman Filter (KF). The system was accounted for
a meter-level localization accuracy (mean localization
error 0.98 m) as reported in [3].
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5. Activity recognition
5.1. Signal pre-processing

The accelerometer data consist of the following at-
tributes: timestamp and acceleration value along x, y
and z. Whereas, the physiological data consist of ECG
value and timestamp, and the user position data reports
the user location estimated by the User Location Pro-
cessing module with the relative timestamp. As con-
cerns the data analysis on body acceleration, we con-
sider the accelerometer of BH3 as data source for the
chest movement and the IMU for the low back move-
ment.

Firstly, the data were pre-processed and conve-
niently filtered to reduce the noise. Particularly, as
concern the accelerometer data acquired from BH3,
a fourth-order low-pass digital Butterworth filter was
applied with a 5 Hz cut-off frequency. Whereas, ECG
data were filtered with a fourth-order band-pass digi-
tal Butterworth filter with a 0.05 Hz and 60 Hz cut-off
frequencies in order to properly reject the disturbance
[1]. Then, since the ECG data required approximately
30 s from the beginning of each acquisition to stabi-
lize, the first samples were cut to reduce the ECG noise
and then synchronized by means of the timestamp.

5.2. Feature extraction

These signals were divided with a time-windows
length of 7 s, furthermore, an overlapping windows-
time of 50% had been chosen to handle transitions
more accurately (Fig. 3). Then, they were subsequently
processed to extract the following features (Table 2):

— Accelerometer sensors — the signals were anal-
ysed to extract for each axes (x, y, z) the mean
value (M), the root mean square (RMS), the mean

Data Sources |
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Fig. 3. Data Analysis logic flowchart.
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Features extracted from the system. Acc means accelerometer

Sensors Signals Sampling rate Feature extracted Total number
Customer Inertial Sensor Acc 50 Hz M, RMS, MAD, SD, VAR for each axis (x, y, z) 15
BH3 Acc 50 Hz M, RMS, MAD, SD, VAR for each axis (x, y, z) 15
ECG 250 Hz RRM, RRSD, BPM 3
Localization network - 1Hz Micro-Area 1
Total 64

absolute deviation (MAD), the standard deviation
(SD) and the variance (VAR). In the end, total
of 30 accelerometer features were computed for
each sensors.

— ECG signal — the ECG signal was analysed to
compute the inter-beats (RR) interval as the time
intervals between consecutive heart beats and
practically measured in the signal from the begin-
ning of a QRS complex to the beginning of the
next QRS complex. From RR signal three differ-
ent features were extracted: the mean RR value
(RRM), the standard deviation (RRSD) and the
number of heart beat for minute (BPM).

— User location — the last feature of this dataset
was represented by the user location which indi-
cate the micro-area where the activity was per-
formed.

In the literature [47], there are two main fusion
strategies that can be used to combine features from
multi-modal data. The first-one, namely early fusion,
aims to combine the data at feature level thus to create
an unique feature vector which represent the final in-
stance. The other strategy, called late fusion, combined
the data at decision level, it combines the scores of
each modality at high level to obtain the final decision
score. In this work, we consider the first approach, thus
we combine the features from the three date sources
at this level of the analysis. A total of 3279 instances
were computed. Each instance is composed of a total
of 64 features as summarized in Table 2. As shown
in Fig. 4, five activities account for more than 12%,
whereas SK is the activity with the lower percentage
of instances.

5.3. Classification

As state from literature evidence, many supervised
classification algorithms had been employed in activ-
ity recognition tasks [23]. In this work, three com-
mon supervised machine learning algorithms are ap-

Percentage (%)
[ [= [ [y = [y =
[ N TR TR S

[
[=]

SPC SK SB LSO

Activity

STV LS LRS cD

Fig. 4. Activity class distribution.

plied to adequately compare the recognition tasks. All
these models were computed using the machine learn-
ing toolbox of Matlab® 2012:

— Decision Tree (DT) — The Classification Tree is
wider used in the activity recognition tasks. In
this work we used a build-in function of machine
learning toolbox of Matlab based on a Classifica-
tion and Regression Tree model.

— Support Vector Machine (SVM) — Support Vec-
tor Machines algorithm only classify data into
two classes. Therefore in this work we used a
“multiclass support vector machine” developed
by Mishra A. [27] and adapted by Neuburger C.
[30] which solve the problems by decomposing
the problem into several two class problems. Par-
ticularly, in this work, we choose a third-order
polynomial function for the kernel to build the
models.

— Artificial Neural Network (NN) — They are quite
commonly used in supervised prediction tech-
niques. In this work we used a built-in Mat-
lab function to build feedforward neural network
with back propagation algorithm with 5 neurons
in the hidden layer that allows to minimize the er-
ror adjusting the weight of the link.

For each algorithm two different classification mod-
els were built to evaluate if user localization could im-
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prove the accuracy, one model included the informa-
tion on the user position and the other one not (Fig. 3).
The analysis without the information on user location
was used as a baseline to estimate the benefit of using
a location-based approach.

5.4. Validation

Two different analysis are proposed to validate the
models considering the intra- and inter-subjects vari-
ation. In the former, we use the “5 Cross-Fold vali-
dation” (5CFV) technique to evaluate the models re-
ducing the over-fitting problems. In this approach, the
dataset was partitioned into 5 randomly chosen sub-
sets (or folds) of roughly equal size. One subset was
used to train the model, the other subset was used to
test the model. In the latter, the models were tested
by means of the “leave-one-subject-out” (LOSO) cross
fold validation. The training dataset was built by us-
ing 9 subjects, whereas the test set included one “un-
known” subject. By using this approach we can esti-
mate how the model is robust when unseen data oc-
curs.

Accuracy, precision, F-Measure, sensitivity, speci-
ficity metrics and kappa statistic were used to esti-
mate the effectiveness of the models [22,24] and to
compare the performance of the three algorithms used
for both approaches. For the evaluation of LOSO ap-
proaches, these parameters were computed consider-
ing the overall confusion matrix. In order to over-
come the different distribution of the activities (Fig. 4)
the confusion matrices were normalized to the total
number of instances for each class. As described in
[14] the difference percentage was used to quanti-
tatively estimate the improvements between the two
models (with or without the information on user posi-
tion).

6. Data collection

According with statistic evidences [12] we defined
an operative protocols which includes a significant rep-
resentative of the typical day activities as described in
our previous work [14] where we presented an initial
proof of concept tested with three subjects. Particu-
larly, 8 daily activities had been selected as described
in Table 3.

These selected activities aim to underline how user
location could increase the accuracy of the activity
recognition tasks. For instance, four different activities
(SPC, STV, SK, and SB) presented equal body posture
but they were usually performed in different places.
Even LS and LSO activity presented the same body
posture and similar physiological parameters, but they
were performed in two different rooms.

This experimental protocol was realistically tested
in the Domocasa Lab (Peccioli, Italy), which repro-
duces a fully furnished apartment of 200 m?. The
apartment was instrumented with user localization net-
work as previously described. All the participants were
asked to wear the sensors and the MN for user position
and to perform each activity in the specified room for a
total of 3 mins as described in Table 3 for a total of 24
minutes of data streaming. The start and final time of
each activity was manually labelled. The participants
were free to perform each activity as they would do if
they were at home, neither suggestions or restrictions
were imposed.

6.1. Participants

Ten voluntary healthy young subjects (6 male, 4 fe-
male) with a mean age of 30.0 years (standard devi-
ation: 3.4, range: 25-35) and mean Body Mass Index
(BMI) of 22.9 (standard deviation: 2.4, range: 19.4—
26.0) participated on purpose in this study. Among

Experimental protocol

Acronym Name Description Location
SPC Work at the PC desk The user is sitting at the desk in the studio working on his PC Study Room
STV Sit on the sofa, watching TV The user is sitting on the sofa, watching TV Living Room
LSO Lay on the sofa The user is lying/resting on the sofa (supine), watching TV Living Room
LS Lay in the bed The user is lying (supine) in the bed Bedroom
LRS Lay in the bed The user is lying in the bed (on his right side) Bedroom
SK Sit at kitchen table The user is sitting at the kitchen table, reading the newspaper Kitchen

SB Sit on the water closet The user is sitting on the water closet, reading the newspaper Bathroom
CD Clean the dishes The user is standing at the kitchen sink, drying the dishes. He Kitchen

tooks a plate from the sink, dries it, and place it in the plate rack
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Table 4
Classifier Performances (N = without the user location feature, Y = with the user location feature)
Validation Classifiers Models Sensitivity Precision Accuracy F-Measure Specificity Kappa
5CFV DT N 0.917 0.924 0.913 0.921 0.987 0.900
Y 0.999 0.999 0.999 0.999 1.000 0.999
SVM N 0.995 0.995 0.995 0.995 0.999 0.995
Y 0.999 0.999 0.999 0.999 1.000 0.999
NN N 0.832 0.839 0.830 0.835 0.972 0.806
Y 0.909 0917 0.908 0913 0.986 0.894
LOSO DT N 0.550 0.535 0.542 0.543 0.946 0.476
Y 0.924 0.925 0.925 0.925 0.989 0.915
SVM N 0.538 0.533 0.533 0.536 0.944 0.467
Y 0.834 0.872 0.832 0.852 0.980 0.808
NN N 0.473 0.421 0.467 0.445 0.939 0.391
Y 0.853 0.867 0.854 0.860 0.983 0.833
DATA SOURCES
FRONT BACK

ECG

BH3
Acceleration
(3-Axis)

Mobile Node m

RSSI
Acceleration
(3-Axis) o

Customer Inertial Sensor

©

O
e

Fig. 5. The user was asked to wear the sensors (the BH3, the Customer Inertial sensor and the mobile node) and to perform each activity for a

total of 3 min.

tested subjects, 3 were smokers, 1 was occasional
smokers, and 6 were no smokers. Participants com-
pleted the experimental session in the Domocasa lab of
Scuola Superiore Sant’ Anna located in Peccioli (Pisa,
Italy). Written informed consent was obtained from all
the participants before starting the tests.

7. Results

The complete analysed dataset included a total of
3279 instances. Generally, the performance of the
models without the information on the user location
is lower than the performance obtained with the other
model. The complete results are depicted in Table 4.

The first analysis was conducted considering 5
Cross-Fold Validation techniques and the results are
aligned with our preliminary work [14]. These results
are used as a benchmark to compare the performance
of the recognition task in case of unknown subject. The
accuracy and the F-Measure for the DT and SVM mod-
els are > 0.920 (Table 4). Consequently, in this case,
the information on user location improves the perfor-
mance even if only slightly. Particularly, as concern
the DT algorithm,we can find the highest increase in
sensitivity value for LS activity (from 0.935 to 1.000).
For SVM algorithms, the two models present compa-
rable performance. On the contrary, for the NN model,
the accuracy increases from 0.830 to 0.908 (9.32%)
(Table 3) and the sensitivity is incremented for several
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F-Measure
F-Measure
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STV SPC SK SB LSO LS LRS CD

STV SPC SK SB LSO LS LRS CD
Activity Activity

Fig. 6. The F-Measure of the three models obtained with SCFV and LOSO approaches over the different activities included in the protocol.

activities. In particular, the activity with the highest
increase in the sensitivity value is SB (from 0.958 to
0.998).

As concern the LOSO approach, it is worth to say
that the information on user location reduce the influ-
ences of the variability on the recognition of a specific
activity (see Table 4). There is a lot of variability in
the performance of the activities (Fig. 7). Indeed, the
participants were set free to act in a natural way, con-
sequently they assumed different body postures for the
same activity. LSO, LRS, CD are the activities with
highest inter-subject variability. However, the location-
based analysis seems to improve the robustness of the
model (Fig. 7).

Particularly, the NN shows the highest difference
percentages, in fact the accuracy is increased from
0.467 to 0.854 (83.07%), whereas the F-measure is in-
creased from 0.445 to 0.860 (93.28%). Similarly, also
other parameters are significantly increased. The SVM
and the DT models present comparable improvement.
The accuracy is increased of 55.98% (from 0.533 to
0.832) for the SVM and 70.83% (from 0.542 to 0.925)
for the DT. Similar results has been obtained also for
the sensitivity and precision, respectively, the differ-
ences percentage are equal to 68.03% (from 0.550 to
0.924) and to 72.81% (from 0.535 to 0.925) for DT and
to 54.95% (from 0.538 to 0.834) and to 63.54% (from
0.533 to 0.872) respectively for SVM.

Particularly, as concerns the DT models the per-
formance are considerably improved for all activities
(Fig. 6). The activities with the higher improvements
for sensitivity measure are LRS (from 0.145 to 1.000),
LS (from 0.303 to 0.946), and STV (from 0.421 to
0.870). Whereas SPC and LSO have similar perfor-
mances in terms of F-Measure, particularly they have
higher precision in the model without the user location
respect to the other one.

Multi-class SVM presents similar results to DT. As
regards the F-Measure, the activities with the higher

improvements are LS (from 0.182 to 0.730), the SK
(from 0.301 to 0.871) and, LRS (from 0.301 to 0.870).
Similarly to DT performance, SPC and LSO present
comparable performance (Fig. 6).

As regard the performance of NN models, F-mea-
sure is significantly improved by the information on
user location as depicted in Fig. 6. Particularly, the ac-
tivities with the higher improvements are STV (from
0.165 to 0.933), LS (from 0.154 to 0.737) and LRS
(from 0.132 to 0.821).

8. Discussion

The main goal of the paper was to investigate
whether the location-based approach can enhance the
recognition of typical day activity. In this sense, the re-
sults show that the information on user location, which
is an invariant of the system respect to the subject,
makes the activity recognition more robust. Indeed,
the accuracy are significantly improved by using this
location-based approach (Table 4).

As regard the intra-subject analysis (SCFV), NN
benefits most from the localization-based approach
(Table 4). SVM and DT cannot take full advantage of
location information, indeed the results are slightly in-
creased. However, the results without the user loca-
tion are comparable with other similar work [2] where
SVM classified Sitting, Standing and Laying down ac-
tivities with a precision of 0.97, 0.90 and 1.00 respec-
tively.

On the contrary, for the LOSO analysis, the location-
based approach could enhance the management of un-
known subject as underlined by the increment for all
the evaluation parameters. Table 4 illustrates that DT
has the highest recognition performance (Accuracy =
0.925), but the NN is the algorithm which benefits the
most from the localization network.
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Fig. 7. Confusion matrix for the two models obtained with LOSO approach. The values are normalized respect to the total number of instance

for each class and they are expressed in percentage.

As regard the two analysis without the user location,
the LOSO approach has lower performance because of
the high variability which affect the data, as confirmed
by the confusion matrix reported in Fig. 7. The worst
recognized activity are STV, LRS and LS for the three
algorithms (Fig. 6).

Additionally, LS and LRS, STV and SPC, SB and
SK are often mutually confused in the model with-
out the user location (Fig. 7). STV activity is often
confused with LS and CD activities. In these cases
the location of the users provides valuable information
to discriminate this couple of activities. It is impor-
tant to notice that, in this experimental setting we con-
sider one accelerometer placed on the chest and one
on the low back and CD and STV have the same re-
quirement in terms of chest posture. Moreover, the user
were asked to act in natural way, thus often they were
relaxed on the sofa assuming different posture while
they were performing STV activity. These aspects in-
fluences a lot the variability of the data. Indeed, one of
the major drawback of public datasets is that they were
acquired in simulating the environment, thus the data
are often “clean” of artifacts. Other public datasets [42]
were more focus on other activity i.e. running, walking
and sitting, thus we consider other common activities
and poses of daily living.

In this work, the participants were asked to act in a
natural way, as they would do in their home, no partic-
ular restrictions were applied. This choice was made
to make the test more realistic and reduce the “labora-
tory” artifacts. In the reality, nobody will tell you how
you have to relax on your sofa or how to sit at your
PC desk. Consequently, as you imagine, there is a lot
of variability on the body postures that a single partic-
ipants can assume, just think on the way that you are
sitting on the sofa watching TV, or you are lying on
the bed. Additionally, vital signs (like ECG), because
of their nature, are affected of intra- and inter-subject
variations [17]. The peculiarity of this work is to per-
form the activity in a real house with real furniture, not
in a simulated environment. For instance, the action re-
laxing on the sofa was acquired using a chair, but the
user could assume different body posture depending
on the chairs (chair, sofa) [5].

IoT and connected devices are becoming more com-
mon in our daily life. Technology is ready to be used
by citizens during daily life. This means that there is a
lot of available information which could be potentially
included in the analysis. In this work user localization
was used as an example, but other activity recognition
models can be generated including other type of in-
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formation which come from the pervasive use of con-
nected devices and personal devices [47].

However, this work presents some limitations which
will be addressed in future improvements of the anal-
ysis. Particularly, the data acquisition was performed
in a living lab, even the participants were asked to
act in a natural way, some artifacts due to the settings
could affect the movement and the vital sign. Future
improvements of the system should envisage the user
of a real setting, where the user is free to move in
order to reduce the laboratory artifacts and manages
real data. Additionally, an improvement of the protocol
should include other common more dynamic daily ac-
tivities like walking, ascending/descending stairs, run-
ning and eating performed by young and older sub-
ject in order to analyse how a single activity could
change according with the age. Additionally, future
works are planned in order to built a more versatile
dataset which include other activities performed in the
different rooms. This analysis will be conducted to in-
vestigate also the outputs of the system when a tran-
sition occurs between two activities. Furthermore, the
evaluation of the impact of using different localization
systems, or the same system with different accuracy in
positioning could be an interesting future activities.

9. Conclusion

In this work, we proposed an activity recognition
framework for indoor environments, composed of a
portable user localization network and wearable sen-
SOrS.

Our experimental results have shown that there is a
clear improvement in the performance of our system
in managing unknown subjects when localization net-
work data are used, particularly, DT exhibits the high-
est performance gain when using user location feature.
The localization-based approach reduces the errors due
to inter-subject variability. As concern the intra-subject
analysis the extent to which the location information
can be advantageous depends on the type of classi-
fier. NN benefits more from the fusion of localization
data rather than the other two. Furthermore, the pre-
sented system has been tested in a realistic environ-
ment with ten young experimenters. These results are
promising and encourages the use of this approach in
activity recognition applications.

Further investigation should include other super-
vised machine learning algorithms which are com-
monly used in this research field and further analysis

should be performed in order to test the algorithms for
a real time applications.
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