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Radar placement for fall detection:
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Abstract. Two popular mounting positions of Doppler radar for human fall detection are in the ceiling center and at the torso
level. This paper examines the fall signatures observed by a Doppler radar at the two positions and evaluates their consistencies
with respect to the fall directions and locations. The complementary characteristics of the fall signatures motivate the integration
of the features from the ceiling mounted and torso level radars to improve the fall detection performance. Experimental results
using the data collected of an elderly at a senior residence apartment for almost a year support our studies and the benefit of
using both radars. The false alarm rate is reduced by a factor of 10 at 100% detection rate when compared to using a ceiling radar

alone.
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1. Introduction

The use of Doppler radar for human fall detection
has attracted considerable interests [2,5,8,13,16] in re-
cent years. A Doppler radar is able to characterize
through the Doppler effect the motion dynamics of a
human fall, which can be explored for its detection.
The distinguished radar signature of a human fall can
facilitate a promising technology for human fall detec-
tion.

The Doppler radar sensor addresses the privacy con-
cerns compared to the other fall detection sensors
including cameras and acoustics. On the other hand,
non-fall motions appear regularly in a daily living en-
vironment, causing active radar returns all the time.
Separating falls from normal activities is perhaps the
dominant factor for the effectiveness of fall detection
using Doppler radar.

Due to the time-varying nature of the dynamics of
a fall, time-frequency analysis has found some suc-
cess to process the radar signal and extract the fea-

*Corresponding author. E-mail: hod @missouri.edu.

tures for fall detection. The early work [12] used the
short time Fourier transform (STFT) to preprocess the
data and applied the Mel-Frequency Cepstral Coeffi-
cient (MFCC) features to distinguish between fall and
non-fall activities. Reference [1] investigated the per-
formance improvement by using the extended modi-
fied B-distribution (EMBD) in high-resolution time-
frequency distributions kernels (TFDs). Reference [8]
took a hybrid approach of utilizing compressive sens-
ing as well as multi-window analysis based on the
Slepian or Hermite function to extract the human ac-
tivity features for fall detection.

A human fall has a fast motion of short duration
at the beginning and a slow motion of long dura-
tion when hitting the ground. Such dynamics make
wavelet transform ideal for the time-frequency anal-
ysis [10,18]. In particular, [19] uses the discrete sta-
tionary wavelet transform (SWT) and [4] applies the
continuous wavelet transform for fall detection. En-
couraging results were reported in laboratory setting
environments and senior residence apartments.
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In addition to the Doppler radar, other variations of
radar have also been examined for fall detection [2,7,
16,20].

The response of a Doppler radar is proportional to
the velocity component along the human-radar direc-
tion. Placing the radar at a different position can affect
the fall signature and the detection results. The study
in [11] mounted the radar in the attic or the ceiling.
On the other hand, many other investigations [4,5] po-
sition the radar in the torso level. Some initial stud-
ies [11,15] indicate that placing the radar in the ceil-
ing yields better results than at the torso level. Ref-
erence [15] reaches the conclusion by illustrating the
strengths of the Doppler radar returns of the two radar
without providing the detection vs false alarm results.
The evaluations in [11] were based on the ROC curve
comparisons using the MFCC features. The MFCC
features are attractive for acoustic sensors but perfor-
mance is inferior to the wavelet features [19]. In addi-
tion, the comparisons were experimentally based and
little reason was provided for the observations. The
goal of this paper is to revisit the effect of radar lo-
cation on human fall detection performance, using the
better wavelet features and providing the rationale be-
hind the findings.

In contrast to the previous studies, we analyze the
behaviors of the radar signatures of the same fall ob-
served by a ceiling mounted and a torso level radar.
The effects of fall directions as well as fall locations
are examined, using the iVAT [6] image assessment
tool. The study indicates that fall signatures from the
ceiling mounted radar are more consistent than the
other. Furthermore, the two radars have complemen-
tary characteristics in the fall signatures, which leads
to the use of the features from both together to im-
prove fall detection. The newly proposed fall detection
method has shown promising performance, using the
data of human falls collected from the residence of a
senior over 11 months.

We shall provide in the next Section a quick over-
view of the radar system and the wavelet transform al-
gorithm for fall detection. Section 3 presents the pro-
cessing of radar signal for fall detection. Section 4
elaborates on the datasets used in this study. Section 5
analyzes the consistencies of fall signatures from the
ceiling and torso radars and examines their comple-
mentary behaviors. Section 6 presents the experimen-
tal results and Section 7 draws the conclusion.

2. System description

The Doppler radar used in this study is a commer-
cially available product GE Doppler Range Control
Radar (RCR50)! with a price of approximately fifty
US dollars. The dimension of the radar is 7.1 x 13 x
5.7 cm. The radar sends out a modulated pulse train at
a repetition rate of 10 MHz and a duty cycle of 40%,
where the carrier frequency is 5.8 GHz. The radar com-
pares the transmitted signal and the received echo and
produces an output proportional to the frequency dif-
ference. The radar is shown in Fig. 1, where a WiFi
router is used to transmit the data to a computer.

The experimental system has two identical radars,
one is mounted in the center of the ceiling facing down
and the other is attached on a wall at about 1 meter
above the ground facing front. We shall refer them as
the ceiling and torso radars for simplicity. The out-
puts of the two radars are digitized at the same rate of
960 Hz for processing.

Fig. 1. The Doppler radar human fall detection system.

! Available at: http://utcfssecurityproducts.com/.
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Fig. 2. (a) The radar output of a human fall occurred at 17.5 seconds, (b) the spectrogram of (a).

Figure 2(a) gives an example of the ceiling radar
output during a human fall at about 17.5 sec. Fig-
ure 2(b) shows the corresponding spectrogram.

3. Data processing

We shall summarize the data processing for com-
pleteness, more details can be found in [19].

The data processing block diagram is shown in
Fig. 3. The human motion observed by a Doppler radar
produces time-varying signal characteristics. Instead
of using the traditional Fourier transform, we shall ap-
ply the Stationary Wavelet Transform (SWT) [17] at
dyadic scales [3] to analyze the radar signal for hu-
man fall detection. Different from the Discrete Wavelet
Transform (DWT), SWT is shift invariant but redun-
dant, where at each scale it has the same number of
samples as in the original. Figure 4 gives an example of
SWT decomposition of a segment of a Doppler radar
signal, in which the radar is mounted in the ceiling
and the wavelet function is “rbio3.3” [3]. It contains a
human fall which occurred at 12.5 seconds. There are
other human activities before 7 seconds and after 18
seconds. The SWT coefficients at the first six dyadic
scales are shown, where c¢D; represents the SWT at
scale 2!, It is interesting that at dyadic scale 4, the fall
activities appear while other human motions are ab-
sent.

The human fall detection strategy has two phases —
prescreening and classification. The prescreening
phase processes the SWT coefficients at scale 4 to de-
termine if a possible fall activity has occurred. It gen-
erates a detection value at every 0.25 second from the
energy of the scale-4 SWT coefficients obtained over
a moving window of 0.5 second. To be specific, the
prescreener detection value is

480
Prescreener(k) = Z Hz(i)(ch(i + 240k))2,
i=1

ey

where k is the frame index corresponding to a time step
of 0.25 second, H (i) is the Hamming window and 480
is the number of samples in 0.5 second.

Figure 5 illustrates the prescreener detection values
of the input signal shown, where the fall is in the mid-
dle. It is clear the prescreener detection profile iden-
tifies clearly the fall and rejects the nonfall activities.
Whenever the precreener detection profile exceeds a
pre-determined threshold, the corresponding SWT co-
efficients over several dyadic scales around that time
instance will be used for feature extraction and classi-
fication.

In the classification phase, the features for fall detec-
tion are essentially the short-term SWT energies over
0.5 second from the 6 levels of dyadic scale SWT de-
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Fig. 3. The flow chart of Doppler radar human fall detection with wavelet transform.
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Fig. 4. The SWT at 6 dyadic scales of a attic mounted Doppler radar
signal. The human fall is occurred at 12.5 seconds. Other human
activities are shown before 7 seconds and after 18 seconds.

composition. Using k as the frame index with a step of
0.25 second and j the dyadic scale index, the feature
values are:

480
Fi(k) =Y H*()(cDj(i + 240k))’ )
i=1

for j =1,2,..., 6represent 6 different levels of SWT
decompositions. H (i) is the Hamming window and
480 is the number of samples in 0.5 second. An exam-
ple for F (k) is shown in Fig. 6.

A human fall occupies a certain time duration. We
therefore collect the short-term energies in a time seg-
ment of 1 second before and 1.5 seconds after the de-

Prescreener

Input

Seconds

Fig. 5. An illustration of the prescreener detection profile from SWT
at scale-4.

tection time location p identified by the prescreener to
form the feature set. There is a 50% overlap when ob-
taining the short-term energies, yielding 9 values for
each of the 6 dyadic scales. The 9 values are normal-
ized to unity sum:

~ F;(p)
Fi(p) = —— NS
average(Fij(p —4: p+4))
The whole set of features for classification is

Feature
Fi(p—4 Fi(p-3) Fi(p+4)
F(p—4) F(p-3) F(p+4
Fs(p—4) Fe(p—3) Fo(p+4)

“4)

The classifier is the k-Nearest Neighbor with k equal
to 1 (NN). Given a test sample, the confidence for fall
is simply the difference of the distance to closest mem-
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Fig. 6. The short-term SWT energies of a attic mounted Doppler
radar signal.

ber in the nonfall training sample cluster and the dis-
tance to that of the fall training sample cluster, where
the distance is computed by the first norm. Although
simple, NN classifier appears to perform better than
other classifiers such as support vector machine in the
experiments we performed.

4. Data description

The study in this work uses two datasets. The first
dataset DO was collected in a laboratory that sim-
ulates a home environment. The second dataset D1
was acquired in a senior residence apartment at Tiger-
Place” from 2014 to 2015 (336 days) containing ac-
tual falls from an elderly resident. The data collec-
tions have been approved by the Institutional Review
Board (IRB) at the University of Missouri with number
63573.

For DO, the dimension of the simulated living room
was 9m x 82 m x 3 m (L x W x H). The ceiling
radar is pointing down. The torso radar is attached in
the north part of the wall at a height of 1.27 m facing

2TigerPlace is an assisted living facility in Columbia, Missouri,
USA. Available at: http://eldertech.missouri.edu/.

horizontally towards the room center. The dataset con-
tains 3 directions of falls at different positions of the
room as shown in Fig. 7 for each radar. The three direc-
tions are north, west and east. Each position is along
the circumference of a circle centered at the room.
There are three circles and their radii are 1 m, 2 m and
3 m. The total number of fall positions is 21. Two sub-
jects perform the falls and their statistics are summa-
rized in Table 1. Each subject falls once in each direc-
tion and at each position. The total number of falls is
126 for each radar. The data is collected over 63 min-
utes. The non-falls in this dataset come from activities
during the data collection such as warming up, active
movements right before or after falls, moving the fall
protection pad and standing up after each fall. All of
these activities contribute to the non-fall events.

The dataset D1 is obtained from the daily living ac-
tivities of an elderly resident. The ceiling radar was
placed above the middle of the living room (4.4 m x
6.4 m x 2.7 m) in the attic and the torso radar is placed
at the corner of the room 1 m above the ground. Fig-
ure 8 shows the layout of the apartment and the posi-
tions of the ceiling and torso radars which are denoted
by CR and TR. The ceiling radar is facing down and
the arrow indicates the viewing direction of the torso
radar. Dataset D1 contains 336 days of data acquired
in a continuous fashion. It contains 11 actual falls, ran-
domly distributed in the living room, from the senior
resident. The normal daily activities create non-fall
events for the radar. The subject has a cat that weighs
about 3.8 Kg, which can cause significant amounts of
non-fall activities to the radars from various jumping
motions. The statistics of the in-home subject are sum-
marized in Table 2.

5. Radar signatures and consistencies
5.1. Wavelet function selection

Computing SWT requires a wavelet function. For
a radar mounted in the attic, previous studies have
found that using the decomposition wavelet func-
tion “rbio3.3” [3] gives the best fall detection perfor-
mance, for both prescreening and classification. Here
we present the study of wavelet function selection
when the radar is mounted in the torso level.

We shall use the receiver operating characteristic
(ROC) [21] curves to examine the fall detection perfor-
mance. A total of 111 commonly used wavelet func-
tions has been tested [3,14]:
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Fig. 7. The 21 fall positions in dataset DO.

Table 1

Subject information of DO

Subject Gender  Height (cm)  Weight (kg)
Subject A male 183 83
Subject B male 171 61
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Fig. 8. The layout of the apartment and the positions of the two
radars.

Table 2

Subject information of D1

Subject Gender Age  Height (cm)  Weight (kg)
S1 female 76 160 63.5

Daubechies (db) 1-45

Bi-orthogonal (bior) and reverse Bi-orthogonal
(rbio) series. (1.1, 1.3, 1.5,2.2,2.4,2.6, 2.8, 3.1,
33,3.5,3.7,39,44,55,6.8)

Coiflets (coif) 1-5

Discrete approximation of Meyer wavelet (dmey)
Symlets (sym) 1-30

The cross symbol in Fig. 9 shows the prescreener
stage results of wavelet function selection for a torso
radar by using dataset DO. For each wavelet function
tested, we recorded the best result over the six dyadic
scales. The areas under the ROC curves are normal-
ized with the largest value and sorted in descending
order. The best five mother wavelet functions for pre-
screening are “rbio3.3”, “rbio3.5”, “coif1”, “db2”, and
“sym2”.

Figure 10 shows the prescreening results from the
six different levels SWT decomposition. Scales 4 and
8 give comparable results, and this observation is con-
sistent with the ceiling radar.

We then examine the performance of different
wavelet functions for classification. The results are
shown in Fig. 9 with red circles, where the ordering
index is the same as the prescreener. The best five
wavelet functions are “rbio3.3”, “rbio4.4”, “rbiol.3”,
“rbiol.5”, and “db1”. The “rbio3.3” and “rbio4.4”
have similar performance in the classification stage.
Based on Figs 9 and 10, we choose the “rbio3.3” as the
wavelet function to process the torso radar signal.
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Fig. 9. The relative detection performance from different wavelet
functions for the torso radar.
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Fig. 10. The prescreening ROCs of DO using the wavelet coefficients
from rbio3.3 at different scales for the torso radar.

For comparison purpose, Fig. 11 gives the SWT de-
composition uses the same data segment as in Fig. 4
using the wavelet function equal to “rbio3.3”. Fig-
ure 12 is the energy of multi-level wavelet decompo-
sition of Fig. 11. A ceiling mounted radar appears to
provide better results.

5.2. Feature consistency

The output of a Doppler radar is proportional to
the velocity projected along the direction between the
radar and the subject. In addition to the radar position,
the geometric effect also affects the radar fall signature
when the fall happens in different directions or posi-
tions. It is imperative to investigate the consistency of
fall signatures when varying the positions and direc-

ch

cD3
3
2

cD1

fowy

Input

0 5 10 15 20 25
Seconds

Fig. 11. The SWT decomposition of a Doppler radar signal from the
torso radar. The human fall occurred at 12.5 seconds. Other human
activities are shown before 7 seconds and after 18 seconds.
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Fig. 12. The short-term SWT energies of the torso radar signal to be
used for features.
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tions of the falls, at a certain radar position. We expect
a robust fall detector to have consistent features that
are not too sensitive to the fall directions or positions.

In this regard, we first generate the correlation co-
efficient of the feature vector of each fall with respect
to the others. This process essentially forms a matrix
of 126 by 126, where the (i, j)-element is the cor-
relation coefficient between the ith and the jth fall,
i,j =1,2,...,126. The correlation coefficient used
here is the maximum value over different time offsets
between the two feature vectors. Let the feature vector
for fall i be F;(¢),t = 1,2, ..., T, where ¢ represents
the time/element index within the feature vector. Then
the correlation coefficient C(i, j) is

C(i, j) = max Y FWFi—1) |
' \/(Zt ‘Fi(t)z Zt Fi(t — 1)2)
&)

The numbering of the fall is (subject#) x 63 +
(position#) x 3 + (direction), where subject# is 0 or
1, the position# is indicated in Fig. 7 and north, west,
east directions are represented by 0, 1 and 2. Clearly
the diagonal elements are equal to unity.

For the ceiling radar, the smallest correlation is 0.88,
which comes from the north direction fall in position
19 with the west direction fall in position 3. To gain
further insight, we use the iVAT image [6] to provide
visual similarity assessment. The iVAT image repre-
sents the correlations by clustering the falls of high
similarity together. At a correlation threshold of 0.9,
Fig. 13 gives the binary iVAT image, where the hori-
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Fig. 13. iVAT image of the correlation coefficients from the ceiling
radar.

zontal and vertical axes represent the re-ordered num-
bering of the 126 falls. The dark areas correspond to
correlations larger than the threshold. The upper left
dark area is large, implying the similarity of the fall
features is high. We further sort the falls by grouping
them for the same fall direction. They are indicated by
different line styles of “solid line”, “dashed line” and
“dotted line” for the three directions — north, west and
east. The distributions for the fall directions are quite
uniform in the highly correlated region, suggesting the
fall features are not sensitive to the fall directions.

We repeat the same study for the torso radar. The
smallest correlation value is 0.61, from the east direc-
tion fall at position 7 with the east direction fall at
position 8. Figure 14 is the binary iVAT image of all
126 falls at the correlation threshold of 0.9. Comparing
Fig. 13 with Fig. 14, the upper left dark area is much
smaller, indicating the similarity for the fall features is
less. Regarding the fall directions, the signatures from
the north direction falls appear to be less consistent
than those from the other two directions, since the solid
line area in the upper left dark region is smaller. The
consistency of the falls in the other two directions are
similar.

Next, we examine the effect of fall positions. For
each position, we average the correlation coefficients
for the three fall directions and the two subjects, re-
sulting in a correlation coefficient matrix of size 21.
The corresponding binary iVAT images are shown in
Fig. 15. The left subfigure is for the ceiling radar and
the right one is for the torso radar, where the correla-
tion threshold is set at 0.9, the same value as in Fig. 13
and Fig. 14. Interestingly, the features from the ceil-
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Fig. 14. iVAT image of the correlation coefficients from the torso
radar.
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Fig. 15. iVAT image from the correlation coefficients of the 21 different positions; ceiling radar: left, torso rador: right.
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Fig. 16. iVAT image from the correlation coefficients of the 21 different positions with different thresholds.

ing radar is quite insensitive to the fall positions and
this is not the case for the torso radar. Figure 16 illus-
trates the binary iVAT images at different correlation
thresholds, where the top two subfigures uses a value
of 0.8 and bottom two 0.7. The left two subfigures are
from the ceiling radar and the two right ones are from
the torso radar. It is clear that the ceiling radar is in-
sensitive to fall positions where the correlations among
them are at least 0.8. This is not the case in the torso
radar, only six fall positions have correlations larger
than 0.8 and there are two fall positions having corre-
lations less than 0.7.

The study concludes the ceiling radar has more ro-
bust features for fall detection with respect to fall di-

rections and positions, thereby expecting to outper-
form the torso radar. This is consistent with the obser-
vations in [11] and the ROC results in Section 5.

5.3. Complementary radar features

We now examine the similarity of the signatures
from the ceiling and torso radars. It is realized that the
ceiling radar to subject direction and the torso radar
to subject direction are nearly orthogonal. The two
radars could observe different characteristics of a fall.
Figure 17 shows their signals and spectrograms, for
the fall at the center of the room falling towards the
north direction. It is obvious their time domain re-
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Fig. 17. The ceiling and torso radar outputs and the corresponding
spectrograms of a human fall at position 1 towards north.

sponses are different. The spectrograms reveal high to
low frequency content for the ceiling radar and the re-
verse for the torso radar. The corresponding SWT fea-
tures at several dyadic scales that characterize the time-
frequency behaviors over the 2-second fall segments
are shown in Fig. 18, where a smoothing window of
0.5 is applied to give better visualization. The upper
subfigure is for the ceiling radar and the lower for the
torso radar. The ceiling radar has strong responses in
the small scales (high frequency) at the beginning and
in the large scales (low frequency) towards the end of
the fall. For the same fall, the torso radar essentially
provides the opposite behavior where low frequency
responses appear at the beginning of the fall followed
by high frequency responses while the subject reaches
the ground. The explanation comes from the fact that
the fall motion is moving downward followed by lying
horizontally.

To examine further, we compute the correlation co-
efficients of the same fall observed by the ceiling and
the torso radar. Figure 19 depicts the correlation values
sorted in decreasing order, where the results from the
three fall directions are shown separately. The trends
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Fig. 18. SWTs for the two radars of the fall at position 1 towards
north.
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Fig. 19. The correlation coefficients between ceiling and torso radars
for the same falls.

in the three fall directions show similar behavior. The
highest correlations for the same fall are at position 7,
15 and 14 for the north, west and east directions. The
worst correlations appear for the falls at position 1, 17
and 17 for the three directions.

There is little similarity of the fall signatures ob-
served by the two radars, due to their nearly orthogo-
nal radar to subject directions. Indeed, the ceiling radar
captures the fall dynamics in the vertical direction and
the torso radar the horizontal direction. We expect that
integrating the features from both radars together can
improve the fall detection performance and reduce the
false alarms.

5.4. Performance improvement by using two radars

We shall propose to integrate the features from both
radars together for fall detection. The processing block
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Fig. 20. The flow chart of human fall detection by using two Doppler radars.

diagram is shown in Fig. 20. First, we utilize the pre-
screener alarms from the ceiling radar to extract the
SWT features for the ceiling and torso radars at the
same temporal region. The features from both radars
are concatenated to form a single feature vector that
has a length of 108, twice as the individual. The feature
vector is applied to train a nearest-neighbor classifier
for fall vs non-fall classification.

The radar placed in the attic captures the motion
projected along the z-axis and the one on the wall cap-
tures the motion along the x and y axes. Both radars
together provide better understanding of the motions
in the three axes and thereby yielding better detection
performance.

6. Results

Both radars apply the same algorithm to perform
prescreening for identifying the temporal regions hav-
ing possible falls and to extract features for fall vs non-
fall classification. The prescreening detection does not
require training and the classification results use leave
one out cross-validation [9]. The wavelet function
“rbio3.3” is used for SWT, which is found to yield the
best results for both radars.

For dataset DO, Fig. 21 contrasts the prescreening
performance of the ceiling and torso radars, which are
denoted by CR and TR. The ceiling radar yields much
better prescreening performance than the torso. At the
same detection rate, the number of false alarms is at
least halved.

Figure 22 illustrates the results of the second level
processing of classification. It improves the prescreen-
ing results considerably. The ceiling radar continues to
outperform the torso radar significantly, except at near

100% detection where the torso radar is better.

Also shown in Fig. 22 are the detection results when
using the concatenated features from both radars. It
provides considerable improvement to detect the last
few hard to detect falls.
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Fig. 21. The prescreener results of dataset DO.
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Fig. 22. The classifier results of dataset DO.

We next evaluate the performance using dataset D1.
The radar data were processed continuously and no
data portions were removed. The fall activities were
identified through the depth image video collected in
conjunction with the radar data. Due to the low num-
ber of falls, only 11, in the dataset, we include always
the falls from DO in the training but exclude them in
the testing for cross validation. The prescreening per-
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Fig. 24. The classifier results of dataset D1.

formance is shown in Fig. 23 and the classification
results in Fig. 24, Classifier (CR+TR)(1). The pre-
screener from the ceiling radar gives about 250 alarms
per day. The torso radar prescreener produces almost
400 alarms per day. The classification performance
from the ceiling radar is far better than the torso radar.
It confirms our investigations in Section 4 that the fea-
tures from ceiling radar are more consistent and gener-
alize better than the torso radar for classification. Nev-
ertheless, there remains 30.7 false alarms to reach 90%
detection rate and 83.7 for 100% when using the ceil-
ing radar alone.

When using both radars together to form the fea-
tures, the number of false alarms reduces to 2.4 per day
at 90% detection. To reach 100% detection the num-
ber of false alarms is 8.6 per day. The weakest fall oc-
curred at the edge of the coverage areas of both radars
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Fig. 25. The zoom-in version of Fig. 24.

and they don’t capture well the motion of this fall. The
false alarm rate decreases to 2.4 per day if we ignore
that particular fall.

The previous work [19] used only the ceiling radar
for fall detection. At 100% detection, it reported 1.6
false alarms per day over 10 days, where the data por-
tions with staff or visitors present were removed. Iso-
lating the data when the subject is alone is found to be
not practical for fall detection in reality. If we apply the
same processing as in Fig. 24 to this dataset without
removing the data portions where staff or visitors are
present, the number of false alarms is 58.3 per day to
reach 100% detection after classification. Having both
ceiling and torso radar not only improves fall detection
but also increases system robustness.

To ease the concern that the classifier could be over-
fitted on the subject, also shown in Fig. 24, Classifier
(CR+TR)(2), is the ROC curve where the classifier is
trained using the falls from DO only, instead of using
leave-one-out cross validation when testing the detec-
tion of falls of D1. At 70% Detection Rate, the per-
formance is nearly identical with leave-one-out cross
validation. The results remain encouraging in reaching
100% Detection Rate and are much better than using
either radar by itself. We would also like to add that
the fall detection system is to be used to detect the falls
of a particular elder person in his/her residence. It is
not unreasonable of training a classifier to fit the falls
of that particular individual, which could lead to better
detection performance.

The results in Figs 21-25 ascertain better perfor-
mance when the radar is mounted in the ceiling cen-
ter than in the torso level. This observation can be
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explained by the fact that the response of a Doppler
radar is proportional to the velocity component along
the radar-subject direction. Fall is a downward motion.
A ceiling mounted radar aligns the radar-subject di-
rection with the velocity better than a torso level at-
tached radar, and as a result leading to better perfor-
mance.

7. Conclusion

We have analyzed the fall signatures from the ceil-
ing mounted and the torso-level attached radar. The
time-frequency (wavelet) features from the ceiling
radar are more consistent than the torso radar, irrespec-
tive of the fall directions and fall positions. As a re-
sult, having the radar in the ceiling would provide bet-
ter fall detection performance. The fall features from
both radars have shown to complement each other. In-
tegrating the features from both radars is able to im-
prove the detection performance, especially for the
hard to detect falls. The results from both the labora-
tory data and the extensive senior residence data con-
firm our studies and illustrate the advantages of using
both radars.

Although promising, the number of false alarms
may still be considered not sufficiently low for prac-
tical use. We are continuing this research and having
additional radars for better spatial coverage would im-
prove performance. In addition, when integrating the
radar fall detection system with other sensor modali-
ties such as acoustics and cameras, the number of false
alarms could be reduced considerably.

There are many directions to extend the work of us-
ing radar for elder care. One is the estimation and mon-
itoring of vital signs. Another would be the tracking of
a subject remotely such as behind walls.
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