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Abstract. The field of human-robot interaction (HRI) is a broad community encompassing robotics, artificial intelligence (AI),
human-computer interaction (HCI), psychology and social science. HRI in social robotics explores important issues in designing
a robot system that works with people in daily life environments, capable of interacting with, modeling, and learning from
humans. Robotic systems should improve their capabilities to not only understand humans but also to convey their intention
within their actions. The present work demonstrates this behaviour is achievable through a field study conducted at a science
museum. This article introduces a computer vision algorithm which is able to detect and track a leader within a group of people –
the science communicator, for this particular case – and distinguish between group members and non-group members as well,
all by means of a cognitive and logical behaviour analysis of their interactions on scene. The leader’s direction is also computed
as an attention reference for this approach. The computer vision system is supervising people within a group following a guide
to prevent accidents and missing persons. This work represents one of a wide range of possible applications and future scenarios
where group interactions are a key aspect for robots to understand and effectively participate in social environments.
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1. Introduction

As one of the most active research topics in com-
puter vision, visual analysis of human motion attempts
to detect, track and recognize people, and more gener-
ally, the understanding of human behaviors from im-
age sequences involving humans [9,23,26]. This strong
interest is driven by a wide spectrum of promising ap-
plications in many areas such as content-based im-
age storage and retrieval, video conferencing, smart
surveillance [13], perceptual interfaces, virtual reality
and robotics [1], just to name a few.

Tracking groups of people is an important skill for
surveillance systems and robots which operate in pop-
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ulated environments. Research has found that up to
70% of pedestrians walk in groups [24]. People are
social beings and as such they form groups, interact
with each other, merge to larger groups or separate
from them. Group dynamics have been widely dis-
cussed on earlier works [5,22,27]. The harvest of pow-
erful knowledge about groups, their position, size, mo-
tion state and social behavior, can enable systems to
gain a deeper understanding of human environments
and provide better services to users.

What makes an assemblage of people a group is
a highly complex question in general which involves
difficult-to-measure social relations among subjects.
A concept related to this topic is the proxemics the-
ory introduced by Hall in [14]. It was found from a se-
ries of psychological experiments that social relations
among people are reliably correlated with physical dis-
tance during interaction. Correlation allows to infer

1876-1364/18/$35.00 © 2018 – IOS Press and the authors. All rights reserved

mailto:karla.andrea.trejo@upc.edu


4 K. Trejo et al. / Towards robots reasoning about group behavior of museum visitors: Leader detection and group tracking

group affiliations by means of available body spac-
ing information, an approach widely deployed in this
work.

The aim of this research is to track and reason about
social grouping with highly defined roles using a sim-
plistic cognitive process, rather than learning a pri-
ori social relations. This cognitive development detects
the subject holding a leader role within the group and,
subsequently, assigns the rest of corresponding roles as
either, group members or non-group members. The as-
signment is based on a behavioral analysis of the group
in reference to their selected leader, motion and spac-
ing interactions.

A museum is one of many HRI friendly environ-
ments where strong leader-group roles are relevant and
quite valuable to maintain people organized and safe,
such as schoolchildren walking, therapy groups and
guided tours on industrial or commercial facilities.

Large groups of people require heightened attention
on the part of the leader guiding them. A robotic com-
panion, acting as an autonomous and independent be-
ing that could interact with the crowd and assist the
group leader by processing their cohesion information,
can alleviate the workload. Rather than relying on a
smartphone or tablet platform to provide this data, an
activity that could easily distract the leader and break
their concentration in many possible ways.

Experiments in this work are a first attempt to prove
the feasibility of the proposed approach. The intention
is to later demonstrate that a robotic system endowed
with computer vision capabilities can track a group of
museum visitors following the lead of a science com-
municator. Hence, further implementation on robots of
other HRI areas with a similar behavioural setup would
help in their supervision tasks by adding a new tech-
nological support.

This paper is organized as follows: After a brief dis-
cussion of related work in Section 2, the methodolog-
ical formulation of the project’s proposal and its early
stages are described in Section 3. The main stages of
the proposed formulation, that is group categorization
and leader tracking, are introduced in the next two sec-
tions. Conducted experiments within the framework of
our case study are defined and illustrated in Section 6.
Section 7 concludes the paper and goes into details
about future work.

2. Related work

The ability of robots endowing cameras to keep
track of people in their surroundings is a major is-

sue. While tracking individual people is a highly stud-
ied problem in target tracking, computer vision and
robotics, the problem of tracking groups of people had
been barely explored [11]. However, the number of re-
lated works has been recently increasing due to activ-
ities in the visual surveillance and social computing
communities [8,25].

Arras et al. [17,18] have been constantly working
on their recursive multi-model hypothesis theory for
tracking groups of people. This approach seeks to re-
flect group formation process and gain efficiency in sit-
uations where maintaining the state of individual peo-
ple would be intractable. The theory relies heavily on
learning group models and their cohesion probabili-
ties.

State-of-the-art in the group tracking area undoubt-
edly includes these works, where even an outstand-
ing tracking performance is achieved in real-time us-
ing RGB-D data [19]. Nonetheless, research in which
a group of observed people is not only detected as a
whole, but accurately categorized by means of indi-
vidual role assigning is non-existent to the authors’
knowledge. It opens up a novel research line featur-
ing valuable in-depth information about the social re-
lationships and interactions within the tracked group.

Since the 1990’s research has explored possible im-
plementations of companion robots as robot museum
guides [2,3]. Some studies have been focusing on the
human-robot interaction addressing the robot’s ability
to create a short-term interaction with visitors at the
museum, as well as the robot’s ability to navigate in
populated, dynamic and unpredictable places such as
the museum environment [30]. Other studies have been
looking into creating believable social robots, explor-
ing the robots abilities to create emotional contact with
museum visitors through eye contact or engaging dia-
logues with the robots audiences on the museum tour
[12,15,16]. These studies have mainly been conducted
with a focus on the technological abilities of the robot
in a quest to optimize the robot’s functionalities to be-
come the guide. However not many have questioned
to pose the robot as an assistant to a human museum
guide. Thus providing support and empowering the hu-
man experts in their tasks rather than acting as a re-
placement [21].

One of these tasks would be to prevent visitors from
hiving off the group and inevitably get lost. A recur-
rent incident, specially for kids, which is the reason
why missing persons is a major concern in crowded
environments such as a museum. Moreover, a robotic
assistant would also keep visitors safe and aware from
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restricted areas in the museum that could be a source
of accidents as well. It is important to have support
on this matter, above all when a science communicator
deals with large groups of visitors.

3. Methodological approach

To detect a person holding the leadership position
within a group of people is an easy task for a human
being. For us, it just takes a few seconds after witness-
ing the interactions between a group, to identify the
members and recognize the leader among them. Thus,
we should formulate how to approach the problem to
convey this natural and cognitive capacity to discern
into a machine.

3.1. Analyzing behavior to select and track a leader

Beyond any distinctive piece of cloth, color or
equipment, a leader is all about attitude. There are dis-
tinctive traits or inferences that could rapidly spot the
person in charge. One of them is body language: lead-
ers tend to gesticulate the most within a group, rather
because they are expressing an idea or giving direc-
tions to other members. Another indicator, surely the
most obvious one, is leading translations, like if this
person is always ahead of the group or just being fol-
lowed by most of the members, guiding their way.

These features can be reflected in computer vi-
sion algorithms by means of a high variation in po-
sition of the bounding boxes obtained with a peo-
ple detector. Major gesticulation leads to variations in
size (width and height) of the bounding box, whereas
quick displacements become important translations in
x and y directions. Both assertions represent signifi-
cant changes in the bounding box position that other
members of the group certainly would not display
throughout the frames of a given scene.

Nevertheless, the ‘bounding box’ approach alone is
scarcely effective. People detector algorithms lose sta-
bility when it comes to precision of position recall.
Even if a person remains in the same place with the
same pose from one frame to another, the people de-
tector would likely retrieve a bounding box with a dif-
ferent position and size each time, despite being a true
positive. In Section 4.1 it is described how this premise
is reinforced with a motion detection strategy which
results in a robust group categorization algorithm.

According to the features selected, which strongly
relies in building an artificial cognition system based

Fig. 1. General scheme for the Group-Leader Tracker algorithm.

on human motion behavioral analysis, the general
methodology for the group-leader tracking is now ex-
posed. Figure 1 shows the structure behind the Group-
Leader Tracker algorithm, which detects the leader
within a group of observed people and, consequently,
classifies subjects on the scene as either, part of the
group of not.

3.2. Detections correspondence and filtering

The initial step is to detect all the individuals on the
image scene using OpenCV’s People Detector algo-
rithm [6] with a fine tuning of its parameters. In the
interest of achieving the best possible performance for
the detector, more than 30 training tests were carried
out with several different parameter settings in the ex-
perimentation phase.

Unfortunately, people detection does not preserve
the same appearance order throughout all the analyzed
frames. Match Detection makes sure to relate a human
detection in the current frame with its corresponding
detection on a previous frame. In this stage, the coor-
dinates of each detection box in the current frame are
compared with the coordinates of all the detections on
the previous frame. The minimum distance between
coordinates is assumed to be the same detection in both
frames.

Once detections are matched with people in the
scene, the areas’ difference between bounding boxes
�x,�y is quantified and stored as a cumulative sum.
The Accumulate Differences stage applies a thresh-
old filter which prevents outrageous values to sum-
up, originating from possible grouping errors or false-
positive detections from the people detector, as gener-
ally these values may disturb the algorithm and affect
the performance of upcoming stages.
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4. Motion detection and group categorization

In order to categorize people in the video stream,
motion and gesture detection algorithms will be em-
ployed in a fast and accurate form. From the detected
motion, tags will be assigned to the people present in
the scene according to the their role into the group.

4.1. Motion detection

The major improvement in the bounding boxes ba-
sic treatment for motion detection that was mentioned
in Section 3.1 has been achieved implementing a Dif-
ferential Subtracting algorithm from Collins et al.
[4]. The technique allows to erase the ghosting phe-
nomenon which generates bounding boxes around el-
ements in the image that are not humans. Moreover,
combining this method with the optimization from Cè-
dric Verstraeten [31] using standard deviation to ne-
glect false positives offer the prospect of better results.

Robust motion algorithms go as far as tackling out-
doors environment problems with ease. The presented
data was collected indoors, hence it is not necessary to
compromise CPU power on this task. A simple trick to
erase false positives is assuming motion only occurs in
a sequence of images larger than one.

Another interesting parameter which can be used to
neglect false positives is the standard deviation. Stan-
dard deviation describes the distribution of the motion.
When motion is specific at a single point, like when a
human is moving far away from the camera, then mo-
tion will be mainly concentrated around a single point
or pixel, hence standard deviation will be near to zero.
On the other hand, when a lot of motion is detected
and is distributed over the entire image, then standard
deviation will be very high. A huge distribution mostly
indicates no real motion, e.g. indicate aggressive wind
or other abrupt changes. Notice that in some scenarios,
such as public places, high distributions are very usual
and this assumption fails. Instead of working with a
rectangle shape as bounding box, a concave hull can
be defined. Again, as it is not the case for this problem,
keeping things simple is preferable.

Accordingly, processing for motion detection is
based on three images from the video stream, which
are called previous, current and next. The first step is
performed by subtracting the previous and next im-
ages (see example in Fig. 2(d)) and then the images
current and next (Fig. 2(e)). Logical AND operations
take place between both results and the final result is

Fig. 2. Motion detection example: (a) previous, (b) current and (c)
next image frames. The absolute difference between (a) and (c) is
shown in (d), whereas the absolute difference between (b) and (c)
is depicted in (e). The final result (f) is obtained by performing a
bitwise AND operation on (d) and (e) and thresholding its outcome.

thresholded to make it accurate for larger changes only
(Fig. 2(f)).

The thresholded result is placed as a window on the
current image looking for motion changes, that is for
pixels with values equal to 255 which will indicate mo-
tion. When motion is detected min and max values are
evaluated, which are used to compute a bounding rect-
angle containing all changed pixels on the scene. If
motion is detected, a yellow rectangle is drawn on the
resulting image (Fig. 3).

Besides the method is hold very simple and fast, it
obtains a high performance. Selection of the thresh-
old value is a key point for accurate motion detec-
tion. Some algorithms even suggest to pick a dynamic
or adaptive threshold. Nevertheless, this feature would
delay the overall procedure and it does not completely
avoid false positives, hence it is not considered.

4.2. Group categorization

Pursuing to categorize people detected on the scene
as part of a group or not, a definition of “group” must
be established. Group stands for a set of people hav-
ing one leader and his/her current followers. It will be
assumed that a leader will act as such throughout the
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Fig. 3. A yellow bounding box is computed containing the resultant
white pixels (values equal to 255) in Fig. 2(f), which represent the
area with the most significant motion in the given scene: the science
communicator’s gesturing hand.

entire video sequence while followers conforming the
group remain the same in number from start to finish.
In other words, no new leadership will arise among the
group and no new members will be allowed to join.
Despite the hard constraints in this definition, they typ-
ically apply to guided tours in museums. Hence, the re-
quired focus to monitor and track a group of museum
visitors has been established with such restrictions, as
they highly relate to the actual environment, the spe-
cific circumstances and the case to be studied in this
work. Depending on the conditions they meet while in
a Transitory or a Stationary state, people detected on
the scene earn a permanent or a transient (modifiable,
overwritable) tag which identifies and assigns the cor-
responding roles to each individual (see Table 1).

A Transitory state is initially considered when the
video stream starts depicting a leader moving with the
followers from one place to another (Fig. 4), whereas
a Stationary state is encountered when a video stream
starts with the leader already settled on the scene sur-
rounded by the followers (Fig. 5).

Fig. 4. Example of a video sequence undergoing a Transitory State.
Top: Frame 1 of Training2 video. Bottom: Frame 100 of Training2
video.

In this sense, a leader in a Transitory state is prone
to initiate the movement on screen, as is the one guid-
ing the group. Whereas in a Stationary state a leader
tends to gesticulate more than anyone else, sometimes
excessively, which is clearly justified for science com-
municators in a museum. This gesturing actions also
start displaying a notion of movement over the scene.
The logic for both assumptions and their subsequent

Table 1

Logic behind people detection categorization

Tag Type Role Transitory state Stationary state

1 Permanent Group Member Detection box overlapping with motion box
or with group members boxes

Potential group member not selected as the
leader

2 Permanent Non-Group Member Detection box not overlapping with motion
box nor group members boxes

Detection boxes not tagged as potential
group members

3 Permanent Group Leader First people detection box to overlap with
motion box

Potential group member which first
overlaps with motion box

4 Transient Potential Group Member NA Detection boxes significantly close to each
other
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Fig. 5. Example of a video sequence undergoing a Stationary State.
Top: Frame 1 of Training4 video. Bottom: Frame 100 of Training4
video.

effects are reflected in Table 1, evaluating to detail the
main interactions between a motion rectangle bound-
ing box and the people detections.

The leader is susceptible to be incorrectly detected
in the Stationary state, since detecting motion from
gesturing is more discrete, it takes a longer period
of time to be categorized than in its Transitory coun-
terpart. Hence, when no relevant movement is taking
place on the first frames of the image sequence while
quite a number of detections are occurring, images are
experiencing a Soft case. In the case of being able to
detect only one person on several frames of the scene,
then these images are going through a Hard case.

A Soft case is easier to overcome than a Hard one,
since it is just a matter of time for the leader to make
a significant gesture and activate the motion detection
algorithm (Fig. 6). A Hard case, in contrast, deals with
the difficulty of working through the people detector’s
failure due to complex view angles or occlusions with
other individuals (Fig. 7).

Fig. 6. Training3 video exemplifying a Soft case. Top: Frame 1, the
people detector outputs three human detections on scene. Bottom:
Frame 35, the algorithm is able to rapidly categorize all the detec-
tions after the group leader has been identified.

Group members have a tendency to get close to-
gether and maintain a certain distance from the leader
figure. In consequence, there exists a high probability
that the leader is the only person not occluded and the
one successfully identified by the people detector in a
Hard Case. However, it is not possible to rely entirely
on the previous assumption and assign roles based ex-
clusively on this.

Hence, to properly handle any ambiguous role situ-
ation, in conjunction with the Permanent-type tags, a
special Transient-type tag associated to the “Potential
Group Member” role has been created.

When the video stream starts and no motion is de-
tected yet, the algorithm searches for the people detec-
tion boxes which are closer to each other and designate
those detections as members of a potential group using
the transient tag. Once the leader is spotted, tags be-
come permanent and roles are automatically assigned.
This cognitive development is triggered by the process
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Fig. 7. Training1 video exemplifying a Hard case. Top: Frame 1, the
people detector outputs only one human detection. Middle: Frame 6,
leader is categorized with no group members around despite the ex-
istence of more humans on the scene. Bottom: Frame 97, one of the
group members is detected at last and is automatically categorized
by the algorithm.

of perceiving which individuals are grouping from the
very beginning, monitoring their behaviour and ana-
lyzing the scene. In this form, a general solution for
categorization in the Stationary state is achieved with-
out isolating Hard and Soft cases.

Evidently, the transient tag is not affecting the Tran-
sitory state where motion detection shows up rather
fast. Nevertheless, a True Member algorithm is inter-
nally serving as a last filter before assigning tags for
the Transitory State. Descriptions in Table 1 refer to
a set of actions which trigger role selection sequences
that finally transform into role assignments. The True
Member algorithm is responsible for a second level
analysis on this behavioral actions to ensure – as much
as possible – a definitive role assignment. True Mem-
ber evaluates box overlapping with other role-assigned
boxes or, failing that, how close they are to these boxes
in terms of pixels distance.

Up to this point, there is a clear distinction between
who is a group leader and who is a group member.
What about the cameraman? Is the cameraman consid-
ered a group member or not?

Technically, the cameraman can be treated as a pas-
sive group member after he follows the group and
keeps track of them from start to finish and at a –
sometimes – quite short distance. Nevertheless, given
the nature of this research, the choice has been made
through the line of reasoning in which the cameraman
is not considered a group member since he is not a mu-
seum visitor, strictly speaking.

The cameraman and any false-positives are catego-
rized as non-members, together with detections of peo-
ple wandering on their own in the scene.

A 25 frame rate sampling is applied for detection
and elimination of possible false positives, thus min-
imizing errors for upcoming frames. False positives
have their origin in the People Detector’s phase, the
first stage in our overall procedure, where algorithms
were maintained fast, but maybe inaccurate, for real-
time process purpose. When people’s bounding boxes
and their category labels have been assigned, comput-
ing time is available to evaluate if all registered detec-
tions have been active or not.

A detection activeness procedure is applied based
on a set of features. The five detection attributes are
the areas’ difference between bounding boxes �x,�y ,
the coordinates of the bounding boxes x, y and the
assigned categorization tag. The x, y coordinates pro-
vide the location of the upper-left corner of a detection
bounding box. If any of these features have changed
within 25 frames then the detection is considered as
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a true and active one; else, in the presence of a de-
tection with no attribute changes, it is considered as a
false positive since the probability that this detection
has been assigned to a still object rather than a human
being is extremely high. It should be emphasized that
this filtering is applied to all the detections obtained so
far at the time of evaluation, free from any role assign-
ment consideration.

5. Leader tracker and direction estimator

When the categorization phase has been completed
after a few frames in the video stream and roles have
been assigned in Stationary State, now is time for
the algorithm to continuously track the selected group
leader.

5.1. Leader tracker

Dlib’s1 implementation of the winning algorithm
from 2014’s Visual Object Tracking Challenge has
been selected to handle this stage. Robust scale esti-
mation is a challenging problem in visual object track-
ing. Most existing methods fail to handle large scale
variations in complex image sequences. The proposed
approach by Danelljan et al. [7] works by learning dis-
criminative correlation filters based on a scale pyramid
representation. They learn separate filters for transla-
tion and scale estimation, and demonstrate that this
improves the performance compared to an exhaustive
scale search. Scale estimation approach is generic as it
can be incorporated into any tracking method with no
inherent scale estimation. The method is shown to out-
perform the best existing tracker by 16.6% in median
distance precision, while operating at real-time.

The centre coordinates from the leader’s bounding
box, obtained from the first frame where the leader
has been detected, is the only information fed to the
algorithm, which is capable to predict the position of
this bounding box throughout all the upcoming frames
with high accuracy.

The 25 frame rate sampling in Section 4.2 is also
employed in the computation of an averaged optical
flow to determine the group leader’s direction. A mat-
ter thoroughly discussed in the next section of this pa-
per, which is also a relevant part from the last stage
of the algorithm and brings conclusion to the overall
methodology of the project.

1http://dlib.net/

5.2. Leader’s direction by constrained optical flow

Two simple optical flow algorithms are currently
available in OpenCV, Tao’s [29] and Lucas–Kanade
methods [20] which can be combined with Shi-Tomasi
[28] algorithm to select interest points, as well as
two dense flow implementations from Weinzaepfel
[32] and Farnebäck [10]. Although Tao’s and Wein-
zaepfel’s approaches are state-of-the-art procedures,
Farnebäck’s is a long-established algorithm that should
be tried out first. Tao’s algorithm works well with high-
resolution videos – which is not the case – leaving
Weinzaepfel’s as an unquestionable candidate for fu-
ture upgrades.

Therefore, in order to determine and indicate in
which direction the leader is facing on a given scene,
OpenCV’s implementation of Farnebäck’s optical flow
is chosen. The main idea is to constrain the optical
flow to be calculated only in the bounding box area of
the group leader by defining a ROI (Region Of Inter-
est), rather than running the algorithm over the whole
scene. Three options are proposed: (a) to compute the
leader’s direction by an average of all the directions
the body is manifesting; (b) to calculate the average di-
rection of all the pixels composing the central axis of
the bounding box; (c) to obtain the average direction
of the body’s centroid pixel. Only averaged approaches
are considered in the interest of stabilizing the flow’s
behavior and the way to display it, exposing a relevant
improvement not only visually but in terms of perfor-
mance as well.

For the time being, option (c) has been selected, as it
is a simple and straightforward strategy. It makes sense
to retrieve the centroid pixel direction computed by op-
tical flow: a person’s torso is a stable body part that in-
evitably describes the motion reality of the individual.
In other words, a person turning the head into a certain
direction does not necessarily imply she/he is planning
to move in this direction, they could be explaining and
looking at something next to them or someone could be
momentarily catching the person’s attention from that
location. While the action of moving the torso does de-
termine the person’s direction intention, as you can-
not move around your torso without conducting your
whole self, and states genuine focus, since your torso
is always standing in front of your primary attention.
Therefore, the torso is a more reliable body feature to
resolve which direction a human is facing and also, a
less complicated position to retrieve when confronting
the challenges of inter-individual variance.

http://dlib.net/
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6. Case study and experimentation

The National Institute of Informatics (NII) in Tokyo,
Japan, performed an experiment at The National Mu-
seum of Emerging Science and Innovation (Miraikan),
placing four Kinect v1 sensors on different spots
across a few rooms. This experiment consisted in
gathering color, depth and skeleton information pro-
vided by the RGB-D sensors stream from February
to March 2014 within several sessions. The collected
scenes mostly contained visitors interacting with sci-
ence communicators from the museum.

Retrieved data was meant to be replicated offline for
further analysis in 3D research lines. Unfortunately,
posterior data processing was taking more time than
expected as essential information was missing. Image
frames from the same scene have different angles and,
hence, different camera pose estimations for each case
scenario. Without any calibration parameters available,
camera re-sectioning and 3D-2D mapping for Color-
Skeleton streams is futile. A Depth-Color mapping ap-
proach was considered, yet, the collected depth frames
have two major drawbacks: there is no background
subtraction and no timestamp per frame. Only hand-
made workarounds could be actually performed, what
it is huge amount of work for results with a virtually
low precision rate.

At present, computing a 3D–2D mapping to opti-
mize results is almost unreasonable under these condi-
tions. However, it is genuinely interesting to exploit all
the 2D possibilities this valuable information is will-
ing to offer, as many robotic platforms and systems run
with basic hardware resources due to short budgets or
efficiency purposes. Which, in any case, makes high-
end, fast and easy-to-use technology affordable for ev-
eryone who needs it. Consequently, it has been decided
that only color data in the form of pictures and videos
is currently being used. Leaving aside, for the moment,
the rest of data for a 3D upgrade in the near future.

6.1. Goal of the experiment

The first objective is to use this information for
leader detection: to detect and track the leader within
a group of people – for this particular case, the sci-
ence communicator – and determine which direction
the leader is facing.

The second objective is group tracking: to identify
the leader’s followers on the scene, i.e., the members
composing the group guided by the science commu-
nicator. In addition to acknowledging other people are

not part of the group, classifying their roles by reason-
ing over their group behavior and interactions.

This understanding of the scene and the individuals
comprising it are key elements for an eventual robot
to socially interact with the environment and actively
participate on it. Role interpretation must be remark-
ably accurate, since the robotic system has to recog-
nize the entire group and keep track of them to fully su-
pervise the museum visitors, working together on this
task with the science communicator.

6.2. Testbed

Five videos comprising more than 3000 frames in
total were selected to train, in a supervised fashion,
the proposed Group-Leader Tracker algorithm. Four of
these videos share the same background as they were
obtained from the same Kinect device, although, one
of them was recorded prior to fixing the device into a
tripod base to gain stability. Hence, color data in this
video reflects some angle differences and related illu-
mination changes.

Six videos, different from the five ones used for
training, containing a total of 2405 frames were sub-
mitted for testing with respect to the ground truth.
Video 1 and Video 6 share the same background, yet
they have slightly different view angles, as the de-
vice apparently slid a bit between sessions. The four
remaining videos share a similar fate since all were
recorded on the same room, however, Video 2 and
Video 3 have the same angle of view, which differs
from the view angle found in Video 4 and Video 5.
Contrasting these background conditions with the re-
sults on Table 2 it is safe to say there is no relation
between good outcomes and a certain background, nor
the other way around.

6.3. Results

Ground truth and accuracy formulations
A quantitative evaluation of the proposed method-

ology is imperative so as to measure its actual perfor-
mance. Ground truth is an objective way to obtain the
real accuracy of the algorithm. To create and annotate
ground truth data becomes a time consuming process
in the absence of available datasets to employ. It is a
rather new problem, which implies some manual la-
belling and scoring when it comes to this matter.

The percentage of accuracy for each test video is
depicted on Table 2. Accuracy measurement is based
on the number of correct categorizations from the to-



12 K. Trejo et al. / Towards robots reasoning about group behavior of museum visitors: Leader detection and group tracking

Table 2

Categorization – Accuracy test

Test
name

Total
frames

Sampling
frame rate

Sample
frames

Detection
boxes

Leader
correct

Leader
incorrect

Member
correct

Member
incorrect

Accuracy
(%)

Video 1 910 10 91 139 3 33 47 56 36

Video 2 450 10 45 100 41 0 57 2 98

Video 3 200 10 20 35 0 13 17 5 46

Video 4 500 10 50 65 50 0 15 0 100

Video 5 230 10 23 48 20 0 27 1 98

Video 6 115 5 23 20 3 6 11 0 70

tal number of detection boxes, this applies to all the
sample frames of every video.

The first column of Table 2 displays the name of
the test video, followed by the total number of frames
composing that video and the sampling rate applied. To
test a video, a sample is taken every x frames, calling
this value Sampling Frame Rate. For this reason, the
number of Sample Frames is obtained as a result of
dividing the number of Total Frames by the Sampling
Frame Rate.

The Detection Boxes column states the total number
of detection boxes encountered on the sample frames,
whereas the next four columns determine which of
those detections were correctly or incorrectly catego-
rized by our algorithm, classifying them as leader or
members detections. Accuracy is then computed with
the sum of correct categorizations – Leader Correct
and Member Correct – over the Detection Boxes value
as the 100% goal.

To better understand these formulations take, for in-
stance, the next example. Figure 8 presents the anno-
tated ground truth versus the testing result of sample
frame number 38 in Video 2, where four out of five
detections are categorized correctly: the group leader,
two group members and the cameraman classified as
non-member. If any false-positives are encountered,
the algorithm should categorize them as non-members
until the filter is able to eliminate them. Which means
the false positive in this case has been incorrectly cat-
egorized as a group member.

Hence, the accuracy test results on sample frame
number 38 of Video 2 are allocated in Table 2 as: one
correct categorization for the leader (Leader Correct +
1), three correct categorizations for two of the group
members and the cameraman (Member Correct + 3)
and one incorrect categorization for the false positive
(Member Incorrect + 1).

Accuracy of the categorization
Very promising numbers for the algorithm intro-

duced in this work can be obtained from Table 2. The

Fig. 8. Sample frame 38 of Video 2. Top: Ground truth annotation.
Bottom: Testing result. A blue box represents the Group Leader,
green boxes are for Group Members and red boxes suggest Non–
Group Members. A yellow box describes the motion detection area,
which is rather large on this scene undergoing a Transitory state.

averaged accuracies from all the videos lead to a gen-
eral average accuracy of 75%, while the actual aver-
age accuracy of the algorithm is about 71% when com-
puted on the total of detection boxes rather than giving
the same importance to videos of different length.

Videos 2, 4 and 5 reveal astonishing results as the
one presented in Fig. 9, whereas Video 6 does not lag
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Fig. 9. Video 2 with 98% of accuracy. Science communicator is dis-
played as the group leader in a blue bounding box, while museum
visitors have been recognized in green-colored boxes as members of
this group. Pixel coordinates on the upper-left corner of each box.

behind with a 70% accuracy rate. These results merit
further in-depth analysis just as much as Video 1 and
Video 3 demand with a rather poor performance, ac-
tively seeking feedback in order to improve. All tests
intend to provide relevant information on any found
issue, which is thoroughly examined in Section 6.4.

Leader’s direction performance
The constrained optical flow approach has mani-

fested exceptional results. For example, Fig. 10 depicts
a Transitory state from Video 5 where the science com-
municator is guiding two museum visitors through an-
other exhibition in the room. Notice that the direction
arrow in sample frame 5 (Top) is rather small com-
pared to the arrow shown in sample frame 15 (Bottom).

Although these frames were taken from the same
video sequence, both portraying the displacement of
the leader and her group throughout the room, observe
that the magnitude of the motion has been calculated.
The length of the arrow reflects the magnitude of the
averaged optical flow from that point in space, which is
proportional to the magnitude of the motion on scene.

Science communicator in sample frame 5 has re-
cently started moving towards the appointed direction,
which is why the arrow’s magnitude is smaller than
the one seen in sample frame 15, where the science
communicator has reached her final destination. Mag-
nitude also reveals the speed of displacement. Hence,
large direction arrows are easily encountered in Tran-
sitory state videos, whereas short arrows are common
in Stationary state since science communicators do not
move from their position while explaining an exhibit
(see Fig. 11).

Fig. 10. Video 5 with 98% of accuracy. Top: Sample frame 5. A blue
arrow with the leader’s torso as origin estimates her direction. Bot-
tom: Sample frame 15. Leader’s direction arrow indicates the direc-
tion of movement and also displays its proportional magnitude.

Leader’s direction information can alert a robotic as-
sistant of large or quick displacements from the sci-
ence communicator. After all, museum visitors under
these circumstances are more likely to split from the
group accidentally, if they get distracted. A missing
persons situation could be prevented monitoring this
particular attention reference.

6.4. Found issues

Distance from the camera
A certain distance from the camera is necessary for

the people detector to work properly. Occlusion be-
tween individuals and their closeness to the camera
view makes it difficult for the algorithm to detect all
the group members on the scene, which is a recurrent
issue (see Fig. 11). In fact, it can quickly escalate into
a major one if the people detector is partially detecting
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Fig. 11. Video 4 with 100% of accuracy. A Stationary state scenario
where it is hard to detect the museum visitors being assisted by the
science communicator. Even so, the cameraman is successfully clas-
sified as a non-group member in a red color box.

members of the group despite these circumstances, as
it did in Video 1.

Failures related to the people detector
Video 1 holds the lowest performance from the tests,

owning a 36% of accuracy. The cause behind it is that
the first frame where the leader bounding box would
collide with the motion box, is the exact same moment
where the people detector does not detect the leader.

When the motion box finally makes an appearance
as a result from the science communicator’s gestur-
ing, the people detector has made only one detection
on scene. Unfortunately, this detection does not corre-
spond to the science communicator but to a museum
visitor instead. The algorithm immediately performs
the role assignment since the visitor’s over-sized de-
tection box overlaps with the motion rectangle (see
Fig. 12). The outcome of this Hard case scenario is
a wrong leader selection, an error which propagates
through the entire video sequence.

The effect of false-positives
Although false-positives are considered as non-

group members within the algorithm’s logic and a pe-
riodic filtering function has been set to eliminate them,
there is still a considerable amount of object-triggered
false-positives drawn by the people detector.

Losing track
An unusual problem was encountered in one of the

testing videos: the leader tracker got lost. The tracker
algorithm is extremely robust and normally the mani-
fested errors come from people detector’s weaknesses.

Fig. 12. Video 1 with 36% of accuracy. Top: Frame 1, science com-
municator has been detected, no role assigned yet. Middle: Frame
4, science communicator gestures and motion box overlaps with the
only detection obtained, selecting a museum visitor as the group
leader. Bottom: Frame 6, science communicator is detected after the
leader role has been given, appointing him as a group member.

Hence, it is quite rare to face this issue when it did not
occurred in any training sequence before.

Figure 13 shows how the algorithm was perform-
ing sufficiently well in Video 6 until the tracker looses
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Fig. 13. Video 6 with 70% of accuracy. Top: Science communicator
is being tracked as the leader. False positive object detection is clas-
sified as non-group member until the algorithm is able to eliminate
it. Bottom: Leader tracking is lost in some point around frame 35.
Yet, the algorithm still considers the leader as part of the group.

the science communicator’s location. Although track-
ing information is missing, the algorithm’s categoriza-
tion task remains in force.

The cameraman controversy
The cameraman case has been a difficult one to

overcome, opposing opinions exist on the question
as to whether a cameraman should be considered as
a group member or not, even among human beings.
Then, what can be expected from the reasoning of a
machine?

If the cameraman is close enough to the group or
moves fast to catch up with them, it is very likely for
the cameraman to be confused with a group member.

A situation also exists where the cameraman could
be addressed as the group leader if he starts moving
earlier than the leader and even faster, as he is trying to
avoid a possible collision with the group.

Keeping pace with the leader
Yet, false categorizations for the leader role can oc-

cur under a certain course of events. Video 3 portrays
an image sequence dealing with a Transitory State
where the video starts depicting a science communica-
tor guiding the museum visitors to the next exhibition.
Everyone on the scene moves at the same time and
as fast as the science communicator leading their way,
thus creating a large motion rectangle which overlaps
with all the detection boxes (see Fig. 14).

This unveils a critical predicament for the algo-
rithm’s logic so far. As all the detection boxes are the
“first” to overlap with the motion rectangle, the system
will choose as group leader the first box that was de-
tected and analyzed by the people detector, which is
random.

Fig. 14. Video 3 with 46% of accuracy. Top: All individuals have
been detected, no roles assigned yet. Bottom: The cameraman has
been addressed as the group leader, whereas the science communi-
cator is not even detected on this frame. A large motion rectangle is
displayed containing all the detections on scene.
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6.5. Discussion

As mentioned in the previous section, most is-
sues come from the people detector’s performance
and while it is true some cases come with a certain
complexity, a better people detector should be imple-
mented to mitigate this issue as much as possible.

Errors arising from self occlusions between individ-
uals and difficult view angles are very likely to dis-
sipate once the system is installed on a robotic assis-
tant. The experiments presented on this work contain
image sequences from fixed cameras of the Kinect de-
vices recording on the upper part of different rooms.
In contrast, a robot would have a better point of view
of the scene in general and even the flexibility to move
around to get one.

With the purpose of extending the average accuracy
of the system and boost the algorithm’s performance to
another level, an exponential motion algorithm should
be carefully designed for further implementation.

A human cognitive knowledge about roles within an
observed group of people is based on their exponential
interactions and behavioral attitudes over time. Mean-
ing that, it is sometimes difficult for human beings to
immediately categorize a group and classify their roles
when the group is extremely homogeneous a priori.

All members behave somehow equally and adopt
the same attitude towards each other, regardless of
whether there’s a visually distinctive subject or not. As
a consequence of this complexity, we need to observe
their interactions for a while longer until these mem-
bers seem to develop self-identities, defining their own
group roles (consciously or not).

Once we are satisfied with this development then it
looks only natural to deliberately determine who is a
leader and who are the followers. Arriving to that con-
clusion implies we had observed a series of interac-
tions evolving, where the leader’s attitude grew expo-
nentially within a certain time period. To convey this
human-like way of reasoning into a machine is the

missing piece of the puzzle. Quantifying the motion
interactions over time of all the detections, in an ex-
ponential fashion, will reinforce the algorithm and im-
prove significantly its overall structure.

6.6. Exponential motion algorithm implementation

A first version of the exponential motion approach
has been developed and subsequently tested on all the
videos. The exponential analysis is made every 50
frames, where the most targeted role for each detec-
tion becomes its definite categorization. At least until
the next 50 frames, since the role computations reset to
zero and start all over again, eliminating the initial hard
constraints and delivering a relatively dynamic role at-
tribution.

Table 3 refers to the accuracy test results obtained
after implementing the exponential motion algorithm.
In contrast with Table 2, the general averaged accuracy
and the actual average accuracy both have dropped by
2%, from 75% to 73% and from 71% to 69%, respec-
tively.

Following this comparison but being more specific,
Video 1 and Video 6 have shown fair results as some
errors have effectively diminished (see Figs 15 and
16). However, accuracy in Video 1 increased by 12%
with the exponential motion implementation, while ac-
curacy on Video 6 decreased 7%.

On the other hand, Video 3 rose its accuracy by 12%
as well, due to an improvement in correct leader detec-
tions (see Table 3), although members categorizations
on Video 3 leave much to be desired (Fig. 17). A prob-
lem that affects the rest of videos – the ones depict-
ing the best accuracies on the previous set-up – just as
much.

Notice that the accuracy on Video 2, Video 4 and
Video 5 fell by 9% with respect to the original algo-
rithm. The cause behind these fluctuations can be ob-
served in Table 3, a quite visible and general trade-off
between leader and members categorization: Improve-

Table 3

Categorization with exponential motion – Accuracy test

Test
name

Total
frames

Sampling
frame rate

Sample
frames

Detection
boxes

Leader
correct

Leader
incorrect

Member
correct

Member
incorrect

Accuracy
(%)

Video 1 910 10 91 178 36 46 51 45 48

Video 2 450 10 45 100 39 0 50 11 89

Video 3 200 10 20 36 8 3 13 12 58

Video 4 500 10 50 55 45 0 5 5 91

Video 5 230 10 23 57 16 1 35 5 89

Video 6 115 5 23 24 9 0 6 9 63
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Fig. 15. Video 1 results under exponential motion implementation.
Top: Frame 51, one group member is correctly categorized and the
other is wrongly addressed as the group leader, whereas the true
leader is not even detected. Bottom: Frame 419, after several frames
of analysis all the detections are correctly categorized on scene.

ment in the correct identification of the leader has af-
fected the membership in a negative way.

It seems that the dynamic role assigning interferes
with the proxemics of the original algorithm, a factor
that must be considered on a second version of the ex-
ponential motion implementation.

On a side note, people detection issues are still back-
ing down the algorithm’s performance, despite the ef-
forts of creating an array with a historical record of
detections as an attempt to maintain track and control
of all the detections boxes and avoid further duplica-
tion or sub-detection (identify the same detection in a
smaller bounding box).

7. Conclusion and future work

In this paper, a new problem has been addressed
within the group tracking research area. Detecting the

Fig. 16. Video 6 results under exponential motion implementation.
Top: Frame 51, only one false categorization made on a group mem-
ber and the leader tracking is working properly. Bottom: Frame 70,
incorrect categorization on the same group member remains, yet the
tracker keeps following the leader almost exiting the scene.

leader of a group and categorize its members attracts
a great deal of interest in the study of group interac-
tion and social environments. Role assignment and be-
havioural analysis by means of a cognitive approach
based on motion logic and proxemics theory is a novel
methodology which is apparently naive but its simplic-
ity has proven to be quite successful.

The prominent results of this work are considered
to be relevant for a wide scope of possible applica-
tions, specially for robotic assistants in similar envi-
ronments. In order to achieve the sufficient accuracy
for the algorithm and later impact on more complex
environments, a number of improvements are required,
besides the ones mentioned in Sections 6.5 and 6.6, af-
ter exhaustive analysis of experimental results. Hence,
depth data related to the color images obtained from
Kinect’s RGB-D sensor should be used to create a
more refined detection of the subjects, despite the
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Fig. 17. Video 3 results under exponential motion implementation.
Top: Frame 51, although the four people on the scene are moving
as significantly as the group leader does, the leader is correctly cat-
egorized along with the cameraman and one of the two group mem-
bers. Bottom: Frame 102, two out of three detections are wrongly
categorized. Purple boxes are references to previous detections.

challenge of restoring faulty information. Another im-
provement refers to the location of people’s bounding
boxes, which could be used as a region of interest over
the corresponding depth arrays, which combined with
thresholded distances, background subtraction algo-
rithm or a deep learning segmentation method, would
provide better results.

It is important to fully exploit the collected 3D data
on the field for the sake of future experiments in this
research line. However, it is also natural to explore so-
lutions with immediate upgrades.

Kinect v2 uses time-of flight by which the sensor
can see just as well in a completely dark room as in a
well lit room. The first Kinect also accomplishes this
feature using structured light to reconstruct the depth
data with approximations for pixels between the pro-
jected points. Still, Kinect v2 has far superior perfor-

mance since each pixel now has a unique depth value.
This method is more stable, precise and less prone
to interferences. Face recognition and motion tracking
have greater accuracy using the newest Kinect model.
Kinect v2 has 1080 image resolution (HD), 60% wider
field of vision, and can detect and track 20 joints from
6 people’s bodies including thumbs. In comparison,
Kinect v1 could only track 20 joints from 2 people.

This RGB-D state-of-the art technology is certainly
more powerful and complex than the one embedded in
the first generation of Kinect. A significant improve-
ment that comes along in real-time, processing 2 giga-
bytes of data per second with a faster broadband for
data transfer. Therewith, further on-line implementa-
tion of background subtraction and coordinate map-
ping would result in a people detector with higher ac-
curacy and virtually zero false-positives.
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