
Journal of Ambient Intelligence and Smart Environments 8 (2016) 125–148 125
DOI 10.3233/AIS-160370
IOS Press

A comparative study of systems for the design
of flexible user interfaces
Christopher Mayer a,*, Gottfried Zimmermann b, Andrej Grguric c, Jan Alexandersson d,
Miroslav Sili a and Christophe Strobbe b

a AIT Austrian Institute of Technology GmbH, Health & Environment Department, Biomedical Systems,
Donau-City-Str. 1, 1220 Vienna, Austria
E-mails: christopher.mayer@ait.ac.at, miroslav.sili@ait.ac.at
b Stuttgart Media University, Responsive Media Experience Research Group, Nobelstr. 10, 70569 Stuttgart,
Germany
E-mails: gzimmermann@acm.org, strobbe@hdm-stuttgart.de
c Research and Innovations Unit, Ericsson Nikola Tesla d.d., Krapinska 45, 10002 Zagreb, Croatia
E-mail: andrej.grguric@ericsson.com
d German Research Institute for Artificial Intelligence, Campus D3 2 Stuhlsatzenhausweg 3, 66123 Saarbrücken,
Germany
E-mail: jan.alexandersson@dfki.de

Abstract. There are a number of Information and Communication Technology (ICT) services that can be used to increase quality
of life of older adults and persons with special needs. Unfortunately, there is often a mismatch between the offered services and
their user-friendliness, hindering their use and reducing their utility. One of the most important factors is the ability to provide
accessible, attractive and user-friendly interaction. In this study, three systems for the design of flexible user interfaces are
compared based on a generic framework. The framework introduces a multi-step adaptation process, the concept of context of use
and the distinction between adaptable and adaptive user interfaces. The three systems – AALuis, GPII/URC and universAAL –
are independently presented and compared by means of ten framework-related criteria. The analysis of the systems reveals
similarities (e.g., context of use, resource provision, and commitment to standards) and differences (e.g., abstract description of
the user interfaces, generation of user interfaces or pluggable user interfaces and maintenance of the user model). This paper
shows for each system where it is best suited in terms of application areas and desired system features. There is a need for further
research to work towards harmonization between the systems and their application areas so that they may mutually benefit from
each others’ strengths.

Keywords: User interaction, user interface generation, AALuis, GPII/URC, universAAL

1. Motivation

The research field of user interface design has
emerged with a large community, several journals and
regular conferences. Well-designed interfaces have
been identified as a driving force behind business suc-
cess. There have been numerous examples of bad de-
sign resulting in technology being discarded or even

*Corresponding author. E-mail: christopher.mayer@ait.ac.at.

labeled as erroneous, when in fact the problem is that
the consumers have just failed to understand its func-
tionalities. In one study, it was shown that half of all
“malfunctioning products” returned to stores by con-
sumers are in full working order, but that customers
cannot figure out how to operate the device [7].

Older adults constitute a challenging user group
with special needs and abilities. This is a heteroge-
neous group with rapidly changing characteristics and
requirements, as ageing may bring impairments in vi-
sion, hearing, mobility, dexterity and cognitive skills

This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License.

1876-1364/16/$35.00 © 2016 – IOS Press and the authors.

mailto:christopher.mayer@ait.ac.at
mailto:miroslav.sili@ait.ac.at
mailto:gzimmermann@acm.org
mailto:strobbe@hdm-stuttgart.de
mailto:andrej.grguric@ericsson.com
mailto:jan.alexandersson@dfki.de
mailto:christopher.mayer@ait.ac.at

126 C. Mayer et al. / A comparative study of systems for the design of flexible user interfaces

in a higher degree. Older adults are vulnerable. Today,
there is often a mismatch between available services
and their user-friendliness, which can reduce the usage
of many services from which older people could bene-
fit. The success of these services depends on their abil-
ity to provide user interaction that is accessible to their
users.

To increase the benefits for older adults using In-
formation and Communication Technology (ICT)-
based products and services, developers and service
providers must not only focus on the functionality it-
self but also, even especially, on the user interface.
An appropriately and correctly designed user interface
will guide the user to understand the underlying ser-
vice – a vital precondition for the service’s intended
usage. A fundamental prerequisite of this is the per-
sonalization or adaptation of user interaction to user
needs. Individuals need accessible user interfaces for
their preferred ICT devices and services.

The purpose of this paper is to provide a generic
framework for designing and deploying user interfaces
that are tailored to particular user groups. In the light
of this framework, three concrete systems – AALuis,
GPII/URC and universAAL – are analyzed and com-
pared. These systems have been chosen because of the
authors’ involvement in them. However, it is claimed
that they represent a wide variety of current systems
for the design of flexible user interfaces, and can there-
fore be considered as typical. The study was initiated
by an intensive face-to-face workshop which focused
mainly on the technical aspects of user interfaces and
their generation. A typical application area for these
systems is Ambient Assisted Living (AAL), but they
are not restricted to this domain and are rather gener-
ally developed for the design and generation of flexible
user interfaces.

The remainder of this paper is structured as follows:
In Section 2, one finds a short description of related
work regarding conceptual frameworks for technical
comparisons. Section 3 introduces some concepts and
terms, and defines a generic framework for the design
of adaptive user interfaces, providing a basis for the
comparison of systems. Section 4 describes the three
selected systems, focusing on the design of adaptive
user interfaces. In Section 5, the criteria for the com-
parison of the systems are given followed by a detailed
analysis of the three systems in light of these crite-
ria. In Section 6, the results of the qualitative compar-
ison are summarized and discussed. Finally, Section 7
provides conclusions and elaborates on possible exten-
sions and combinations of the systems.

2. Related work

Comparing different systems in a holistic way is a
challenge, since various aspects need to be considered.
These include both technical and user-oriented aspects.
This paper focuses in particular on the technical po-
tential and system features. It does not cover user as-
pects such as usability and acceptance from the end-
user point of view, nor the ease of use for developers,
although both of these are important issues on the one
hand for the acceptance of user interfaces and on the
other hand for development costs.

There do exist conceptual frameworks available for
the technical comparison, but these focus just on par-
ticular aspects to be considered for user interface adap-
tation. Examples of these from the literature are as fol-
lows: (a) models as basis for the user interface gen-
eration [16,21], (b) methods used for the user inter-
face generation [38], (c) tools supporting the genera-
tion process [23], (d) the final user interface [34], or
(e) multi-modality [5,15]. These aspects are important,
but do not cover the whole user interface adaptation
process as described in Section 3 and hence do not ful-
fill our intended purpose. Thus, more specific compar-
ison criteria have been formulated, taking the state-of-
the-art into account. Additionally, the Cameleon Ref-
erence Framework (CRF) [3], which defines four lev-
els of abstraction for user interface models, is used for
a final summary of the three systems in Section 4.4. It
is again a very useful framework for the comparison,
but does not cover the whole process as described in
Section 3.

3. Introduction to user interface adaptation

User interface adaptation covers different stages in
the design and lifecycle of user interfaces, and there
are various terms, concepts and aspects to consider.

3.1. User interface adaptation aspects

User interface adaptation can change any aspect of
a user interface. Figure 1 illustrates some adaptation
aspects and organizes them within our 3-layer model,
which breaks a user interface down into layers for pre-
sentation & input events, structure & grammar, and
content & semantics (ordered by increasing depth).
Adaptation aspects range from shallow modifications
(e.g., text size, line spacing, contrast settings, speech
volume, keyboard settings, shortcut keys) related to

C. Mayer et al. / A comparative study of systems for the design of flexible user interfaces 127

Fig. 1. Some aspects of user interface adaptation, depicted in a 3-layer user interface model.

the presentation & input events layer, over medium
deep modifications (e.g., input and output modalities,
grouping structure, gesture alphabet) related to the
structure & grammar layer, to deep modifications (e.g.,
natural language, captions, audio descriptions, level of
simplification) related to the content & semantics lay-
ers of a user interface.

3.2. Context of use

In the process of adapting a user interface, at least
one of the three user interface layers (see Section 3.1)
is adapted to a specific context of use, consisting of the
following main components [3]:

– User: The user interface needs to be tailored to
the user’s needs and preferences, which may be
dependent upon his/her capabilities, current phys-
ical activity, permanent and temporary impair-
ments, moods, etc. Some of these needs and pref-
erences are dynamic, i.e., can change based on
time and situation, even during a user interaction
session.

– Runtime Platform: Each runtime platform
comes with its own hardware and software con-
straints. Hardware constraints include, for ex-
ample, screen size, screen resolution, and sup-
port for pointing (e.g., mouse, D-pad, touch
screen). Depending on the underlying operating
system and Web browser, software features such
as specific fonts, runtime libraries, and script-
ing support may or may not be available at run-
time.

– Environment: The environment and situation in
which the use occurs can significantly impact us-
ability and accessibility aspects of a user inter-

face. Examples include ambient noise, lighting
conditions or the time of day.

3.3. Adaptable versus adaptive user interface

A system is said to have an adaptable user inter-
face or to be adaptable, when it allows the user to
customize the user interface [29]. A system is said to
have an adaptive user interface or to be adaptive when
it adapts the user interface by itself or suggests such
adaptations to the user at runtime [29], based on a user
model and other context-of-use data [24]. If the system
only remembers previous customizations made by the
user, this would not be called an adaptive system, but
rather only an adaptable system. A system can be hy-
brid, i.e., provide both adaptability and adaptiveness.
For example, if the user increases the font size, the sys-
tem may ask the user if he/she also wants to switch to
a high-contrast theme.

3.4. A framework for user interface adaptation

Figure 2 illustrates the process of user interface
adaptation in general, spanning design time and run-
time. At design time, the application developer creates
an abstract user interface that leaves some leeway with
regard to its final rendering (see Section 3.5 for a more
detailed description of the adaptation process and its
actors). The format of the abstract user interface varies
significantly between technologies. Some technologies
employ task models, some use abstract forms of wid-
gets and controls, some state diagrams, and some em-
ploy semi-concrete user interfaces that can be parame-
terized at runtime. Of course, these approaches can be
combined as well.

128 C. Mayer et al. / A comparative study of systems for the design of flexible user interfaces

Fig. 2. The general process of user interface adaptation, spanning
the overall development and rendition process from design time to
runtime.

Between the design of the Abstract User Interface
(AUI) and usage at runtime, user interface resources
may be prepared in advance by user interface design-
ers or automatic systems (or both). At this point, as-
sumptions (projections) are made for the context of use
at runtime. The goal of this activity is to have some
building blocks of a Concrete User Interface (CUI) “in
store” that would otherwise be impossible for genera-
tion at runtime.

At runtime, when the user interacts with the system,
the actual context of use is known, and the Final User
Interface (FUI) is built as an instantiation of the ab-
stract user interface. If user interface integration is in-
volved, the final user interface employs suitable user
interface resources that have been prepared before run-
time. As a possible complication, the context of use
may change during runtime, and the concrete user in-
terface may adapt immediately to the change.

User interface adaptation is a complex process typi-
cally occurring at both design time and runtime. Each
of these time points has its own opportunities and con-
straints. At design time, a human expert can create so-
phisticated user interfaces with variations for adapta-
tion. However, designers do not know the exact con-
text of use that will occur at runtime. Therefore, they
have to make guesses and provide internal (i.e., built-
in) or external (i.e., supplemental) variations that will
be selected at runtime. At runtime, the context of use
is available, and can be used to pick and/or tailor an
appropriate user interface. However, the user interface
must be available immediately for rendition, therefore
human design is out of reach at runtime.

3.5. Steps of user interface adaptation

Based on the general process of user interface adap-
tation (see Fig. 2), the following typical steps were

identified as relevant for the adaptation of user inter-
faces, each occurring at some point between design
time and runtime, inclusive (Note that some design ap-
proaches only support a subset of these steps):

1. User interaction modeling: At development
time, a developer implements an application and
describes its functionality related to the user in-
teraction in an abstract fashion. Forms of ab-
stract descriptions are, for example, task mod-
els, user interface models, Web service interface
descriptions, descriptions of an Application Pro-
gramming Interface (API), or ontologies.

2. Default user interface design: A user interface
designer implements a default user interface for
the application, based on the abstract description
of its functionality (see step 1). Along with the
user interface, components such as icons, labels
and videos are designed. The user interface and
these components are collectively called user in-
terface resources.

3. Supplemental user interface design: User in-
terface designers (either from the manufacturer
of the application, or from third parties) con-
tribute alternative user interface resources, based
on the application’s abstract description (see
step 1). These resources are supplemental to the
default resources (see step 2), and may include
alternative user interfaces (or parts thereof), e.g.,
a simplified version, that can be used to substi-
tute or extend the default user interface (or parts
thereof). Each user interface resource can be tai-
lored to a particular context of use, namely a
specific user group, runtime platform, environ-
mental condition, or any combination thereof.
It must have appropriate meta-information (e.g.,
key-value pairs) attached, to facilitate its integra-
tion in the final user interface at runtime when
a specific context of use is known. A local or
global resource repository stores the supplemen-
tal user interface resources and their meta-infor-
mation.

4. Context of use instantiation: At runtime, the
runtime platform instantiates the particular con-
text of use, consisting of a user model (which
may be retrieved as a whole or in parts from a
user model repository), a platform model and an
environment model. These models may be de-
scribed in various formats, including key-value
pairs or formal ontologies. Note that the context
of use can dynamically change during runtime.

C. Mayer et al. / A comparative study of systems for the design of flexible user interfaces 129

5. User interface accommodation (system-driv-
en): An adaptive system adapts the concrete user
interface to accommodate the particular context
of use at hand, i.e., finding the best matching user
interface for the actual context of use.1 Two types
of adaptations are distinguished (and may co-
occur): user interface integration and user inter-
face parameterization. User interface integration
means that a set of matching user interface re-
sources (e.g., dialogs, icons, labels, videos, cap-
tions) is chosen to form the user interface. User
interface parameterization means that the user
interface is “tweaked” along pre-determined pa-
rameters (e.g., font size). This step can be a
continuous process with subsequent iterations of
refinements, perhaps reacting to a dynamically
changing context of use during a user interaction
session. Both forms may ask the user to confirm
suggested adaptations.

6. User interface customization (user-driven):
When interacting with an adaptable system, the
user can take the initiative for adaptations by
customizing the user interface via explicit opera-
tions (e.g., through a settings dialog, a menu or
shortcuts). These operations may be part of the
runtime platform, or may be directly built into
the user interface. As in step 5, a customization
can be realized as user interface integration or
user interface parameterization, or both. User-
initiated customizations can be recorded (e.g., in
a user model) to make them permanent for the
user and the particular context of use.

This process can vary depending on the overall devel-
opment approach and toolset used, the user interface
quality requirements, the availability of user interfaces,
the availability of use context parameters and other in-
fluences. For example, the application could be mono-
lithic, with its user interface and business logic lumped
together. In this case, the developer would develop the
application’s user interface model (step 1), the default
user interface (step 2) and (optionally) supplemental
user interfaces (step 3). Also, rather than having a hu-
man designer create a user interface (steps 2 & 3),
it could be generated automatically based on the ab-
stract description and other resources. In this case, the
design of user interfaces could be deferred until run-

1Matching approaches are out of scope for this framework, but
may involve automatic inference mechanisms, a user’s explicit
choice, or a reactivation of a previous user choice.

time, when the exact context of use is known, and a
resource repository (step 3) might not be needed, since
the “best-matching” user interface would be generated
on demand in real-time. Furthermore, user interface
accommodation and customization may be combined
as a mixed dialog, i.e., steps 5 and 6 can occur any
number of times in an interwoven fashion.

4. Introduction to the selected systems for user
interface adaptation

The three systems – AALuis, GPII/URC and uni-
versAAL – are respectively described in the follow-
ing sections and finally summarized with respect to
the user interface levels of the Cameleon Reference
Framework (CRF) [3] (see Section 4.4). The frame-
work is used as a joint overview of the three systems
and as a wrap-up of the bottom-up approach.

4.1. AALuis

AALuis is a framework mainly focusing on the user
interface generation [18] and covers all steps of user
interface adaptation as described in Section 3.5. Fig-
ure 3 illustrates components of this framework to-
gether with the information flow from the calling ser-
vice/application to the end user and back. It covers
the service integration, the user interface generation
and the user interface rendering. The information flow
starts with the connection between the digital service
and the task model, which models the interaction be-
tween the user and the system (step 1 in Fig. 3). Each
task describes the logical activities that should support
users in reaching their goals [31] and each task is ei-
ther a user, system, interaction or abstract task [33].
Next, in light of the task model, model interpretation
yields a set of currently active interactions (step 2), and
the user interface is transformed and adapted (step 3).
Finally, the interaction between the user and the func-
tionality of the service completes the information flow
(steps 4–6).

The framework can either be used with local or re-
mote services. The former are integrated as separate
OSGi bundles and the latter are loosely coupled as
Web services, which allows an easy connection of any
platform to the system. Services are described in a
twofold manner by two separate files: the first defines
the task model of the service in Concur Task Trees
(CTT) notation [32,33], and the second one provides a
binding of the service methods and parameters to the
CTT tasks. Optionally, a description of additional re-

130 C. Mayer et al. / A comparative study of systems for the design of flexible user interfaces

Fig. 3. AALuis user interface generation framework.

sources used for different output modalities can be pro-
vided.

The user interface is generated at runtime based
on the interaction – specifically, using the task model
provided by the CTT. Final results of the automatic
transformation process are renderable user interfaces
(RUIs) in HTML5, which are dynamically generated
for every specific I/O channel. The flexible transfor-
mation approach also supports other output formats,
such as VoiceXML [30], and thus allows the usage of
a wide range of I/O devices. There is a set of default
transformation rules for different devices available and
additional ones can be provided.

The generation process takes into account not only
the task model but also additionally available infor-
mation. Besides the I/O devices and their capabilities,
this information also comprises user and environmen-
tal contexts [19]. The task model and the Abstract User
Interface (AUI) – which is derived from the task model
and which is device and modality independent – are
enriched step by step to create a device and modality
dependent user interface that is optimized for a specific
I/O channel, i.e., the final renderable user interface.
The abstract user interface and the intermediate steps
of the transformation process (i.e., the concrete user
interfaces or CUI), are described in MariaXML [35], a
model-based language for interactive applications.

In Fig. 4, one can see an example of a user inter-
face for the television generated by the AALuis sys-

tem. This user interface is generated solely based on
the provided task model in CTT notation and the ac-
tual context of use. The presented graphical user inter-
face uses an avatar as a virtual presenter of informa-
tion. This creates additional value by adding a visual
display to the verbal information.

4.2. GPII/URC

In the following, a combination of the Universal Re-
mote Console (URC) [14,43] and the Global Public
Inclusive Infrastructure (GPII) [44] technologies, and
their main components is introduced.

4.2.1. Universal Control Hub (UCH)
The Universal Control Hub (UCH) architecture is a

middleware-based profiling of the URC technology. It
allows for any kind of controller to connect to a mid-
dleware unit that in turn communicates with one or
more applications or services, called targets [14]. The
UCH implements the URC technology as a gateway
between a set of controllers and a set of targets. The
UCH follows the CEA-2014 standard [4], offering a
list of remote user interfaces from which a connected
controller can choose an appropriate one. Figure 5 il-
lustrates the UCH architecture.

When a target (e.g., a television) is discovered by
the UCH, it requests and downloads an appropriate
target adapter (TA) from the resource server. Then, a
user interface socket for that target is instantiated in

C. Mayer et al. / A comparative study of systems for the design of flexible user interfaces 131

Fig. 4. Example of a user interface generated by the AALuis system for a TV.

Fig. 5. Overview of the Universal Remote Console (URC) architecture.

the UCH’s socket layer. The variables, commands and
notifications in the user interface socket represent the
state of the connected target. If multiple targets are
connected to the UCH, each one has an associated user
interface socket as a means to access and modify the
target’s state.

When the user connects with his/her controller (e.g.,
a smartphone) to the UCH, the controller receives a list
of connected targets and user interfaces that are avail-
able for remote control. The UCH may download a
number of user interface resources from the resource
server in order to build the final user interface. More
specifically, only those user interface resources which
are suitable for the actual context of use (i.e., the user
and his/her controller device) are downloaded and pre-
sented. It is up to the User Interface Protocol Module
(UIPM) to decide how to interact with the controller

(i.e., in which protocol and format), but most com-
monly HTML over HTTP is used. Multiple UIPMs
can be present in the UCH at the same time, offering
choices of protocols and formats, and the controller
can pick the most suitable one.

Pluggable user interfaces can be written in any pro-
gramming language and run on any controller plat-
form. Currently, most user interfaces are based on
HTML, CSS and JavaScript, communicating with
the user interface socket via the URC-HTTP proto-
col [41], using AJAX and WebSockets as communi-
cation mechanisms. Thus, they can simply run in a
controller’s Web browser, and no prior installation is
needed on the controller side.

The UCH components (target adapters, user inter-
face protocol modules) have open APIs and can be
downloaded on demand from the resource server at

132 C. Mayer et al. / A comparative study of systems for the design of flexible user interfaces

runtime, thus providing a fully open ecosystem for user
interface management.

Currently, the German research project SUCH (Se-
cure UCH) develops a UCH implementation with spe-
cial security and safety mechanisms built-in, focusing
on confidentiality, privacy and integrity of data as well
as non-repudiation and access policies based on a role
concept. The implementation is guided by the ISO/IEC
15408 Common Criteria [6] methodology for IT secu-
rity evaluation and aims to be a certified open-source
implementation of the UCH at the Evaluation Assur-
ance Level 4 (EAL4).

4.2.2. Resource server
The openURC resource server (see Fig. 5) is a

repository for arbitrary user interface resources. It is
used as a deployment platform for application devel-
opers and user interface designers. The resource server
acts as a marketplace for the distribution of target
adapters, user interface socket descriptions, user in-
terface protocol modules, and user interface resources
that may or may not be specific to a particular context
of use. The resources are tagged with key-value pairs
for searchability, following the Resource Description
Protocol 1.0 standard [27] of the openURC Alliance
[26].

Controllers and UCHs can download appropriate
components from the resource server upon discovery
of specific targets and requests for user interface re-
sources specific to user preferences, and device and en-
vironment characteristics. Controllers and UCHs ac-
cess the resource server through a REST-based proto-
col [28], which is standardized by the openURC Al-
liance.

4.2.3. GPII personal preference set
While the URC enables pluggable user interfaces

(in any modality) designed for specific user groups
in a specific context of use, it does not define a user
model (needed for step 4 in Section 3.5), nor does it
actively support user-driven customization at runtime
(cf. step 6 in Section 3.5). However, the Global Pub-
lic Inclusive Infrastructure (GPII) defines a so-called
personal preference set, which encompasses parame-
ters for user interface parameterization and their pre-
ferred values for a specific user. This new format of a
personal preference set is currently being standardized
as a future version of ISO/IEC 24751 [12]. A user may
allow his/her personal preference set to be stored in the
cloud, thereby making it (or an appropriate subset of it)
available to any device with which the user interacts.
For example, a public computer in a library could au-

tomatically turn on closed captions in videos for users
with this preference enabled in their personal prefer-
ence set. A user may have to set up an initial user pref-
erence set with closed captions enabled, or the system
may remember that the user customized this setting in
a previous interaction (cf. step 6 in Section 3.5).

4.2.4. Integration of URC and GPII technologies
Taken together, the combination of the URC tech-

nology and the GPII technology covers all steps of
user interface adaptation, as described in Section 3.5.
URC with its user interface socket provides the ab-
stract user interface description and the concept of
pluggable user interfaces. These user interfaces may
be parameterizable to respond to a user’s preference
set, a device’s constraints and/or a situation of use. At
runtime, a user’s preference set is downloaded from
the GPII preference server, or read from a local repos-
itory (e.g., a USB stick). In addition, device and en-
vironment characteristics are captured by the GPII de-
vice and runtime handlers. In essence, URC provides
a roughly matching user interface (user interface inte-
gration), and GPII allows for further fine-tuning (user
interface parameterization) to achieve an optimal adap-
tation for the user, the device and the environment.
This mechanism even allows for fine-tuning during
runtime, in order to react to changing conditions of use
(e.g., ambient light or noise).

Figure 6 shows a demonstrational online banking
application whose Web interface has been manually
designed, based on the GPII/URC platform. At the
top, the Personal Control panel allows the user to cus-
tomize presentational and other aspects of the Web in-
terface. In this demo application, video clips in sign
language have been prepared by a third party, giving
a detailed explanation for each input field of the wire
transfer form. If the user sets their preferences to in-
clude sign language output, they will see small sign
language icons next to the input fields, and pressing
them will show an overlay window with a human sign
language interpreter or sign language avatar (whatever
is preferred and is available).

4.3. universAAL

The universAAL UI framework is a product of a
consolidation process including the existing AAL plat-
forms Amigo, GENESYS, MPOWER, OASIS, PER-
SONA, and SOPRANO [11] in order to converge to
a common reference architecture based on a reference
model and a set of reference use cases and require-
ments [40]. As a result of the work done, the uni-

C. Mayer et al. / A comparative study of systems for the design of flexible user interfaces 133

Fig. 6. A demonstrational online banking user interface, based on the GPII/URC platform. Through the Personal Control Panel (shown on the
top of the screen) the user can set presentational and other adaptation aspects. Sign language videos are available for the input fields via a special
icon. The screenshot shows a video in international sign language (with a human sign language interpreter) for the input field “account number”.

Fig. 7. universAAL User Interaction management framework.

versAAL Framework for User Interaction in Multime-
dia, Ambient Assisted Living (AAL) Spaces was ac-
cepted as Publicly Available Specification by the Inter-
national Electrotechnical Commission under the refer-
ence IEC/PAS 62883 Ed. 1.0.

Figure 7 illustrates components of the universAAL
UI framework together with the information flow from
the calling application to the end user and back. The
UI framework consists of the following parts:

– The User Interaction Bus (UI Bus) includes a ba-
sic, ontological model for representing the ab-

stract user interfaces and means for exchanging
those messages between UI Handlers and appli-
cations. Forms – the ontological representation of
the typical user interaction components, like tex-
tual inputs, multiple selections, buttons, and so
on – are created by UI Callers (as part of the appli-
cations that are connected to the UI Bus). These
are sent to UI Handlers (within UI Requests) to
be rendered, filled by user, and sent back to UI
Callers to be processed. UI Requests along with
the form (abstract user interface) carry the infor-
mation about addressed user, the priority of the

134 C. Mayer et al. / A comparative study of systems for the design of flexible user interfaces

Fig. 8. Example of a generated user interface by the universAAL framework.

dialog, and the language and privacy level of the
content. The language information is used by the
UI Handlers to retrieve the proper international-
ization file from the resource server.

– The UI Handler is the component that presents di-
alogs (payloads of UI Requests) to the user and
packages user input into UI Responses that carry
the input to the appropriate application. UI Han-
dlers ensure similar or same look and feel across
various applications and devices, which helps the
user to quickly become accustomed to the sys-
tem. Different UI Handlers have different capabil-
ities in terms of supported modalities, devices, ap-
propriateness for access impairments, modality-
specific customizations, context-awareness capa-
bilities, etc.

– The Dialog Manager manages system-wide dia-
log priority and adaptations. It adds adaptation
parameters (e.g., user preferences) to the UI Re-
quests coming from the application and returns
it to the UI Bus. There, the UI Bus Strategy de-
cides which UI Handler is most appropriate for
the interaction with the user in this specific mo-
ment (considering current context and informa-
tion, such as user location).

– The universAAL resource server stores and deliv-
ers resources, such as images, videos, etc., which
cannot be represented ontologically, to the UI
Handlers [39].

In Fig. 8, one can see an example of a user in-
terface generated by the universAAL framework. The
main screen of the universAAL system for the as-
sisted person rendered by the UI Handler GUI Swing
is shown. It displays an example setup where Medi-
cation Manager, Agenda, Long Term Behaviour Ana-

lyzer (LTBA) and Food and Shopping services are in-
stalled together with system-provided services for fil-
tering installed services (Search) and changing current
setup of user interaction preferences (UI Preferences
Editor).

4.4. Summary

Figure 9 gives a summary of the three systems for
user interface adaptation in terms of the user interface
levels of the Cameleon Reference Framework (CRF)
[3]. The Cameleon Reference Framework structures
the user interface into four levels of abstraction, from
task specification to the running interface. The level
of tasks and concepts corresponds to the Computa-
tion Independent Model (CIM) in Model Driven Engi-
neering; the Abstract User Interface (AUI) corresponds
to the Platform Independent Model (PIM); the Con-
crete User Interface (CUI) corresponds to the Platform
Specific Model (PSM); and the Final User Interface
(FUI) corresponds to the program code [37]. Figure 9
presents the equivalents to these levels for each of the
three systems. GPII/URC and universAAL have equiv-
alents for two and three of the four abstraction levels
respectively, and AALuis has all four.

5. Comparison of the three systems

In the following, the three systems are described in
detail based on ten defined comparison criteria. The
criteria have been developed by the authors based on
the generic framework presented in Section 3.4. The
motivation behind all ten criteria is to cover all steps
for user interface adaptation and to allow for a qual-
itative comparison of the three systems. Each crite-

C. Mayer et al. / A comparative study of systems for the design of flexible user interfaces 135

Fig. 9. Relation of the three systems with respect to the Cameleon Reference Framework (CRF).

rion is briefly presented with respect to the frame-
work and literature. The first eight are directly related
to the generic framework (see Section 3.4) and the
last two indirectly. All of them are of general impor-
tance for adaptive systems. After the short description
of each criterion, the systems are described based on
some guiding questions. The main attention has been
on overlapping and complementary aspects to high-
light the possibility to create added value by combin-
ing these different systems or by enriching one of the
systems by selected features.

5.1. Form of abstract user interaction description
(C01)

A separation of the presentation (i.e., user interface)
from the application and its functionality is helpful to
ensure that service developers can focus on the appli-
cation development (cf. step 1 in Section 3.5) and do
not need to be concerned with the user interface or any
special representation required by the target group [19]
(cf. steps 2 & 3). As described in the approach of ubiq-
uitous computing [49], it allows the input to be de-
tached from a particular device and to easily exchange
I/O devices for interacting with the requested applica-
tion [17].

In which form are the abstract user interaction de-
scriptions defined and how is the separation real-
ized? Are there any tools to support the developer?

In AALuis, the detachment of the functionality of
the service from the automatically generated user in-

terface is realized by the task model and a simple bind-
ing file. The Concur Task Trees (CTT) notation is used
to model the structure of the interaction in a well-
defined way and allows an unambiguous interpreta-
tion of the interaction flow. The CTT is a hierarchi-
cal logical decomposition of the tasks represented in
a tree-like structure with an identification of the tem-
poral relationships among tasks at the same level [32].
Developers can use the Concur Task Trees Environ-
ment (CTTE), which is a graphical tool for the creation
and analysis of task models [22]. The binding file, in
XML format, acts as connector between the CTT tasks
and the corresponding service functions to be called. It
models a many-to-one relationship between them. Fur-
thermore, the task parameters for each function call are
defined within the binding file [20]. The abstract user
interface in MariaXML notation is generated from a
set of currently active tasks of the CTT, the so-called
Presentation Task Set.

The Universal Remote Console (URC) framework
facilitates pluggable user interfaces based on an ab-
stract user interface, called a (user interface) socket.
The user interface socket description is a contract be-
tween the application developer and the user interface
designer. A socket represents the interaction elements
of a target in an abstract (modality-independent) man-
ner, by means of variables, commands and notifica-
tions, as follows:

– A variable denotes a data item that is persistent in
the target, but usually modifiable by the user (e.g.,
the power status or the volume level on a TV).

136 C. Mayer et al. / A comparative study of systems for the design of flexible user interfaces

– A command represents a trigger for the user to
activate a special function on the target (e.g., the
start sleep function on a TV).

– A notification indicates a message event from the
target to the user (e.g., a could not connect mes-
sage on a TV).

An open-source socket builder tool is available for
application developers to conveniently create and edit
a socket description, along with other URC compo-
nents and resources (e.g., labels).

The universAAL UI Framework enables indepen-
dence between the application and the presentation
layer. Application developers need only to consider
what information they want to present to and receive
from the user. The how aspect is handled within the UI
Framework, meaning that information received from
the part of the application connected to the UI Bus (UI
Caller) is just sent to the UI Bus. There, the most suit-
able interaction modality for the addressed user is se-
lected, based on the user’s capabilities and user inter-
action preferences. The components dealing with how
to present information to the user and how to obtain
user inputs are called UI Handlers [10].

Dialog descriptions in universAAL enable the com-
position of abstract representations of the user inter-
faces. They are based on XForms [2], which is an
XML format and W3C specification of a data process-
ing model for XML data and user interface(s), such as
web forms [46].

5.2. Support for user interface design (C02)

The user interface can be manually designed or au-
tomatically generated based on an abstract description
of the functionality (cf. step 2 in Section 3.5). Either
way, these approaches yield a default user interface
which can be supplemented by third parties, and fur-
ther adapted at runtime. There is a need to support the
designer or the system to generate the default user in-
terface, and this support can take various forms.

How is the design of the default user interface sup-
ported?

In AALuis, the default user interface is automati-
cally generated based on the abstract description of the
service and a default set of transformation rules. The
rules are available for different I/O device classes, such
as, tablets, smartphones, TVs. The user interface de-
signer can additionally create new transformation rules
for additional device classes and modalities. For exam-
ple, the transformation from the CUI to a final user in-

terface represented by VoiceXML can be defined in an
additional transformation rule and, thus, be used as an
alternative for the user interface representation.

In the URC framework, final user interfaces can be
manually designed or automatically generated based
on the user interface socket description. At runtime,
all user interfaces, including those manually designed
and automatically generated, are available to be used
for whatever context of use is present. If delicate de-
sign is an important feature of a product, user interface
designers and human factors experts can design user
interfaces in any common language and for any com-
mon platform (e.g., HTML5, Java, C#, iOS, Android).
The user interface code just needs to embed small code
fragments for communication with the socket (e.g., via
the URC-HTTP protocol, see Section 4.2). For the de-
sign of Web applications in HTML5, an open-source
JavaScript library is available. The user interface de-
signers can use whatever design tool they are familiar
with, as long as it allows them to add custom script
code.

If manually designed user interfaces are too expen-
sive, or if no appropriate user interface is available for
a specific application and context of use, it is also pos-
sible to generate one based on the description of a ser-
vice’s socket (in this case, steps 2 & 3 are done by
some automatic system at development time or run-
time). GenURC [52], part of the openURC resource
server implementation, is such a system, transform-
ing a user interface socket and its labels into a Web
browser-based user interface. As soon as the socket
description, a grouping structure and pertaining labels
are uploaded for an application, GenURC generates
a user interface in HTML5 that is especially tailored
for mobile devices by following the one window drill-
down pattern [42]. The result is then made available to
clients, along with all other (manually designed) user
interfaces for that specific target.

In universAAL, final user interfaces are automat-
ically generated by the selected UI Handler upon re-
ceiving an abstract representation of the user interface.
From an application developer’s point of view there are
four options when designing a user interface, each dif-
fering by the level of universAAL UI Framework us-
age. The easiest option in terms of developer effort is
to simply select one of the universAAL UI Handlers
and determine the desired look and feel package. The
second option is to do the same, but to use additional
recommendations (recommendation ontology) to give
the UI Handler instructions how to render the FUI.
The third option is to design another alternative look

C. Mayer et al. / A comparative study of systems for the design of flexible user interfaces 137

and feel package for an existing UI Handler or even
a complete UI Handler from scratch. The last option
is to avoid the universAAL UI Framework and to de-
sign a final user interface specifically for one applica-
tion. When using the universAAL UI Framework, re-
sources such as images, video and other files that can-
not be represented with the universAAL data represen-
tation model are only referenced in AUIs and loaded
via an appropriate UI Handler using its specific lan-
guage (e.g., Java Swing, HTML5, Android, etc.).

5.3. Third party contributions (C03)

The provision of additional resources and alterna-
tive user interface resources for use in the adaptation
process is mentioned in step 3 in Section 3.5. These
resources can either be provided locally or globally for
the system deployment by the developer him/herself or
by third parties, which can be external companies or
other user interface designers or experts.

Is it possible for third parties to contribute to the
user interface adaptation process and if so, how
and what tools are available?

There are several possibilities for contributions by
third parties in AALuis and the system is designed in
a modular and flexible way to support these contribu-
tions. These range from new transformations, to the in-
tegration of new AALuis-enabled devices and the de-
scription of their capabilities, to additional resources as
supplemental content for the user interfaces – e.g., pic-
tures, logos or videos. New transformation rules aim at
the provision of additional I/O modalities. An AALuis-
enabled device, including the description of its capa-
bilities, refers to any device that runs a small and sim-
ple application handling the automatic connection to
the AALuis system either via UPnP or socket-based
communication and provides basic information regard-
ing its capabilities. Supplemental resources, e.g., sign
language videos, can be included to allow an enrich-
ment of the user interfaces. The AALuis system is pre-
pared for use with a resource repository but currently
has none. Instead, additional resources are provided
via a URI.

In the URC framework, the developer of an applica-
tion is responsible for creating a single user interface
socket which handles the communication between the
service backend and any of its user interfaces. Once a
socket has been created and made publicly known by
its developer, anybody can build supplemental user in-
terfaces or alternative parts of user interfaces. If a user

has access rights to the socket, it allows for multiple
(supplemental) user interfaces that can plug into the
socket at the same time or at different times. Thus, in-
ternal and external user interface designers can inspect
the service’s socket description and create pluggable
user interfaces that map to the socket, accommodat-
ing the needs of a special user group, a special con-
troller device and/or a special context of use in gen-
eral. Such pluggable user interfaces can be developed
and contributed by third parties (e.g., external Human-
Computer-Interaction (HCI) experts, user groups, and
users themselves), and deployed to the openURC re-
source server for a selected audience to be used. The
resource server creates a market for user interfaces that
is separate from the market of applications.

In universAAL, the existing infrastructure is mod-
ular and allows addition of new (pluggable) UI Han-
dlers and/or look and feel packages. Coexistence of al-
ternative UI Handlers at the same time during the sys-
tem usage is also possible and, since each UI Han-
dler has its own profile in terms of appropriateness for
some specific parameter (e.g., user impairment, device
support, context awareness, etc.), this can add addi-
tional benefits in different contexts of use. Additional
resources are uniquely described via global URIs and
loaded at runtime by the UI Handlers. Pluggable UI
Handlers developed by third-party HCI experts and de-
signers can also be offered to the end users the same
way as universAAL services via the uStore (similar to
Apple’s AppStore). Some examples and guidelines are
available for UI Handler developers.

5.4. Context of use influencing the adaptation (C04)

Figure 2 and Section 3.2 describe the context of
use, covering information about the user, the runtime
platform and the environment, and its importance as
a source of information for any adaptation process of
the user interface (cf. step 4 in Section 3.5). The con-
text information can be modelled and implemented in
various ways.

Which context information is modelled and how is
it implemented? What aspects of the context of use
are taken into account in the adaptation process of
the user interface?

AALuis uses various information sources in the
transformation process. They are represented in differ-
ent context models and cover different aspects relevant
to finding the best match of user interface representa-
tion. The information ranges from data about the in-

138 C. Mayer et al. / A comparative study of systems for the design of flexible user interfaces

dividual’s current environmental conditions (e.g., sur-
rounding light or noise), to the capabilities of regis-
tered I/O devices (e.g., screen size or supported I/O
modalities) to user capabilities and preferences (e.g.,
hearing capability, preferred modality and I/O device)
[16]. This threefold information is used for the auto-
matic selection of the best-suited I/O device, modal-
ities and presentation. The environmental and device
model are currently implemented as key-value pairs,
but are open for extension to upcoming standardized
models. The user model is so far based on MyUI [36],
but an extension to GPII preferences is under consid-
eration.

In the URC framework, the UCH architecture de-
fines an extensible context model for the user and plat-
form. Commonly used terms for the description of user
preferences and platform and environmental character-
istics are being developed by GPII in the form of key-
value pair, with URIs as keys and a clear definition
of their value spaces. These terms are specified in a
repository-based approach so that they can be quickly
changed to reflect technological advancements. Cur-
rently, common preference terms cover a wide variety
of user preferences, and can be extended if needed. In
the future, these terms are planned to be adopted by the
next version of ISO/IEC 24751 [13].

The universAAL UI Framework uses different
ontology-based user, system and environmental mod-
els and a very modular design approach in the adapta-
tion process. During this process, user interface prefer-
ences and other user data (such as impairments, loca-
tion, language, etc.) are used together with descriptions
of interaction devices and other UI Handler-specific
descriptions to determine the best possible UI Han-
dler for the given situation, and also to enable a “fol-
low me” scenario for the end user where dialogs com-
ing from the applications “follow” the user as he/she
is changing the location. The Dialog Manager, as a
component specifically designed to adapt new dialogs
coming from the applications, is responsible for pro-
viding explicit and implicit update mechanisms for the
user interface preferences subprofile that can not only
be updated but also extended at runtime. The adapta-
tion mechanisms use a weighted scale of the adapta-
tion parameters to ensure the best possible adaptation.

5.5. Maintenance of user model (C05)

The user model is an important source for any adap-
tation of the user interface (cf. step 4 in Section 3.5).
Thus, the question arises whether the user model can

be changed manually by means of tools or whether
changes are done automatically as a result of common
user interactions.

Can the end user look into and change his/her own
user model and if so, how?

AALuis provides predefined profiles to be chosen
by the individual. While this has the advantage that
predefined profiles can be initialized easily, it also has
one big disadvantage: there is always the question of
how to choose the most suitable and appropriate set-
tings. The chosen approach is to link the profiles to
the CURE-Elderly-Personas, which are fictitious per-
sons synthetically generated from average traits mixed
across countries [50,51]. The user can browse through
the personas and choose the best fitting. Thus, the un-
derlying user settings are selected to be used in the user
context model. The user can also customize these set-
tings to his/her needs and these modified settings can
be provided via a profile repository for future use. A
support tool for the selection and customization of user
profiles is under development and will be provided in
the near future. Currently, no automatic update of the
user model via a feedback loop is realized.

GPII is currently working on a couple of tools that
will allow the user to create and maintain their pref-
erence set (i.e., user profile). The Preference Manage-
ment Tool (PMT) is a Web browser application that
supports a user in setting up a personal preference set
and populating it with initial values that reflect their
user interface preferences (e.g., font size, contrast set-
tings, keyboard settings, etc.). The Personal Control
Panel (PCP) provides a central point of preference con-
trol for the user at runtime. The PCP is always avail-
able, together with any application that the user is cur-
rently using. Therefore, the user can customize the ap-
plication’s user interface through the PCP, and changes
will immediately take effect on the application. Thus,
there is just one single preference settings dialog for
all applications, so that the user will quickly get famil-
iar with it. Changes on the PCP will automatically be
recorded in the user’s preference set, which is either
stored locally or on the preference server. Hence, the
system can reactivate them when the appropriate con-
text reoccurs.

All user profile related data in universAAL is stored
on an always up-to-date central profiling server that
exposes this information for services that may need
it. The user profile ontology is extended by the user
preferences subprofile related to user interaction and
inspired by the standards ETSI ES 202 746 [9] and

C. Mayer et al. / A comparative study of systems for the design of flexible user interfaces 139

ISO/IEC 24751-2 [13]. The Dialog Manager provides
means (“screen” in terms of GUI) for an explicit
change of user interface related preferences by the end
user, as well as a pluggable architecture for adaptors
that can automatically influence adaptation parame-
ters. During its first use, the system recognizes the type
of user based on a user role (connected to the user pro-
file) and initializes the user interface preferences based
on stereotype data associated with the user role (e.g.,
assisted person, caregiver).

5.6. User interface integration and/or user interface
parameterization (C06)

As stated in steps 5 & 6 in Section 3.5, there is a dif-
ference between user interface integration and user in-
terface parameterization. In other words, the full user
interface or just parts of it are exchanged or the user in-
terface is fine-tuned by setting predefined parameters.

What method(s) is/are used for the system-driven
accommodation and the user-driven customiza-
tion? Just integration, just parameterization or a
combination of both?

AALuis combines both approaches. On the one
hand, different widgets are integrated into the user in-
terface based on the automatic device and modality se-
lection. An example of such widgets are the on-the-fly
generated avatars. These are used as an additional I/O
modality and virtual presenter for arbitrary messages.
These messages can, for example, provide additional
information explaining the currently displayed user in-
terface. On the other hand, user interface parameteriza-
tion is utilized for tweaking of the user interface with
respect to contrast, font size, etc. related to the presen-
tation and inputs event layer.

The URC framework supports user interface inte-
gration through its concept of supplemental resources
and the openURC resource server as a marketplace for
user interfaces and user interface components. GPII
supports user interface parameterization, with the per-
sonal preference set acting as a central reference point
for setting the user interface parameters at runtime.
Taken together, the two approaches result in a system
that supports both user interface integration and user
interface parameterization.

The universAAL UI Framework combines both ap-
proaches as well. User interface integration is sup-
ported by alternative UI Handlers. Parameterization
is achieved via user-specific preferences and impair-
ments and user interface-related recommendations

coming from the applications which send outputs to
the user. Both users’ preferences and application de-
signers’ recommendations influence the final gener-
ated user interface. Appropriateness for certain impair-
ments, as part of the UI Handlers’ description, influ-
ence the process of selecting the most appropriate UI
Handler for a given user/situation.

5.7. Support for adaptability and/or adaptivity (C07)

As described in Section 3.3, user interfaces may be
adaptable, i.e., the user can customize the interface (cf.
step 6 in Section 3.5), and/or adaptive, i.e., the sys-
tem adapts the interface on its own or suggests adapta-
tions (cf. step 5 in Section 3.5). As stated, hybrid solu-
tions are possible as well. If adaptivity is supported, the
matchmaking between the current context of use and
the “best” suited adaptation is a delicate and important
task for the acceptance of the user interface. There are
various matching approaches, including rule-based se-
lections or statistical algorithms.

Are adaptability and/or adaptivity supported and
if yes, how is it realized? If adaptivity is supported,
which strategies for matchmaking are deployed?

With respect to adaptability and adaptivity, AALuis
again uses a hybrid approach with a broad range of fea-
tures. The user can customize his/her user preferences
at runtime, and the updated user model immediately
influences the transformation process. This refers to
the adaptability of the system. Adaptivity, on the other
hand, is reflected in the automatic device and modality
selection strategy and the user interface parameteriza-
tion based on the user model. Currently, a rule-based
selection process is implemented, but different strate-
gies (e.g., based on Bayesian networks) are under de-
velopment. These selection strategies take into account
the environmental model, the device capabilities and
their availability and the user preferences.

In GPII, a user can change his/her preferences at
any time via the Personal Control Panel (PCP, see Sec-
tion 5.5), i.e., the system is adaptable. The changes will
immediately take effect, and the system will remem-
ber the new settings and the context under which the
settings were changed by the user. In addition, the sys-
tem can learn from the user’s preferred settings and
their specific contexts, and can propose these settings
to the user in similar contexts (i.e., the system is also
adaptive). The GPII/URC system is also adaptive with
regard to the automatic selection of a (supplemental)
user interface that fits the platform characteristics. In

140 C. Mayer et al. / A comparative study of systems for the design of flexible user interfaces

GPII, rule-based and statistical matchmakers are cur-
rently being developed. The rule-based matchmaker
applies rules created by experts to propose new set-
tings, and can even suggest new assistive technolo-
gies that the user is not yet familiar with. The statis-
tical matchmaker looks at all user profiles across all
users (data mining over anonymized data), thus filling
gaps and proposing settings for unknown contexts in
a user’s preference set. For example, for a user who
has configured his/her Windows computer at home and
who is now initializing his/her new iPhone device, the
statistical matchmaker could activate the iPhone set-
tings of another person who has used the same or sim-
ilar windows settings.

In universAAL, when a meaningful match between
the most current user context, preference data and
different managers responsible for covering different
I/O channels (UI Handlers) is desired, it is neces-
sary to have good profiles describing the capabilities
of those software components responsible for user in-
teraction. This information, including appropriateness
for access impairments, modality-specific customiza-
tions and context-awareness capabilities, is initialized
at the moment of component registration, but is also
refreshed if something in the setup changes. In addi-
tion, the UI Framework is immediately updated if an
adaptation parameter changes (e.g., if the user location
changes, then the UI Framework sends the dialog to
another UI Handler which is closer to the user).

5.8. User interface aspects affected by the adaptation
(C08)

In Fig. 1, various aspects and levels of adaptation
are mentioned and clustered into a 3-layer model ap-
proximating the depth of their leverage (cf. step 5 and
6 in Section 3.5). The resulting adaptations can be
shallow modifications impacting the presentation & in-
put events layer, medium-deep modifications impact-
ing the structure & grammar layer, or deep modifica-
tions impacting the content & semantic layer of the
user interface model.

Which aspects and user interface layers are af-
fected by the adaptations?

The adaptations in AALuis affect all three user in-
terface layers described in Fig. 1. User interface pa-
rameterization handles aspects related to the presen-
tation and input events layer, such as text size, line
spacing, contrast setting, color setting, button size &
distance, and so forth. On the structure and grammar

layer, AALuis provides adaptations regarding input
and output modalities, grouping structures and the pro-
vision of various widget sets. Adaptations with respect
to the content and semantics layer are all supported by
the data handling and cover audio descriptions via the
avatar, captions, et cetera.

Regarding GPII/URC, most presentation aspects
are covered by the GPII Personal Control Panel (PCP).
Deeper aspects of adaptation can be dealt with by
providing supplemental user interfaces or user inter-
face components. In particular, the URC framework
allows for the definition of a user interface structure
via grouping sheets, which can be used to generate
a specific navigation structure at runtime. Also, cap-
tions, audio descriptions and natural language-specific
resources can be downloaded from the openURC re-
source server at runtime.

In universAAL, support for adaptability and adap-
tivity affects the top two layers described in Fig-
ure 1. Before runtime, end users or deployers de-
cide on the most appropriate UI Handlers with corre-
sponding look and feel packages. UI Handlers realiz-
ing the pluggability aspect and providing for diversity
in terms of different presentation, structure and con-
tent delivery are also capable of fine-grained adapta-
tions during runtime. Additionally, since the univer-
sAAL UI Framework is designed for distributed en-
vironment adaptation aspects, it may utilize the posi-
tion of a user to realize the so-called “follow me” sce-
nario with content delivery as the user moves around.
Means of such delivery depend on which UI Handlers
are installed as well as on the privacy level of the
content to be delivered, appropriate modalities, user
preferences and some other user specific needs and
wishes.

5.9. Support for multimodal user interaction (C09)

It is generally assumed that multimodal user interac-
tion increases the flexibility, accessibility and reliabil-
ity of user interfaces and is preferred over unimodal in-
terfaces [8]. It includes input fusion and output fission,
which refers to modality fusion when capturing user
input from different input channels to enhance accu-
racy, and modality fission when using different output
channels for presenting output to human users [47,48].
It is thus directly related to multimodality regarding
input and output channels.

In which way is multimodal user interaction sup-
ported and at what stage are input fusion and out-
put fission realized?

C. Mayer et al. / A comparative study of systems for the design of flexible user interfaces 141

AALuis allows the usage of multimodal user in-
terfaces. The I/O modalities can be combined in a
flexible way depending on the context models used.
The required data are either provided dynamically by
the service as additional resources (e.g., pictures, lo-
gos or videos) or automatically generated (e.g., text-
to-speech and avatars). The data are stored and rep-
resented in an internally defined format, which al-
lows the transport of different data types. In the trans-
formation process, the chosen modality set is incor-
porated into the transformation context variable and
these are rendered in the final user interface [20].
An example of multimodality is the simultaneous
output of text, speech and an on-the-fly generated
avatar. A next, planned step towards natural user in-
teraction is to extend the set of transformation rules
by a VoiceXML transformation. Furthermore, an ex-
tension towards a possible ambient output modality,
such as changing ambient light, is under investiga-
tion.

In GPII/URC, a user interface may employ
any modality for input and output, in any com-
bination. However, specific interaction mechanisms
are out of the scope of the system, and hence in-
put fusion and output fission are not directly sup-
ported. User interface designers and system develop-
ers are free to use whatever code, library or frame-
work they want to use to combine input and out-
put events in a manner appropriate to their applica-
tion.

The universAAL UI Framework has a strong sup-
port for multimodality. When the framework ac-
cepts the UI Request coming from applications, it
adds additional context and user related adaptation
parameters before deciding on the output modal-
ity, time of delivery and output location. The con-
nection of the UI Framework to the Context Bus
(for context information about the user environment)
and the Service Bus (for sharing functionalities be-
tween different parts of different applications and
higher level reasoners), allows to use information
about the user’s surrounding in further dialog process-
ing.

5.10. Support of standards (C10)

Standards play an important role in ensuring ex-
changeability of user interfaces and compliance with
the changes in needs of older adults. They offer, for
example, the possibility to prepare user interface gen-
eration to run not only on currently available de-

vices, but also on an upcoming generation of de-
vices.

Are there any pre-existing standards applied and
are there any standards influenced by or based on
the system?

AALuis supports and implements a wide range of
standards, such as UPnP, XML, HTML5, CSS, JS,
XSLT, WSDL, OSGi. The Concur Task Tree (CTT)
notation is used for the task model, as is the model-
based language MariaXML for the intermediate stages
(AUI and CUI) of the user interface in the transfor-
mation process. Both are W3C working drafts submit-
ted to the W3C Model-Based UI Working Group in
2012 [45]. The insights and experiences from applying
these working drafts in AALuis can be a good basis
for contributions to the W3C working group. The stan-
dardized usage of the CTT notation and the integration
of services as separate OSGi bundles or loosely cou-
pled web services, allow connection with any service
platform and, thus, usage of the system by any service
provider.

The URC framework is specified as the interna-
tional standard ISO/IEC 24752 [14] in multiple parts.
The openURC Alliance is a consortium for the de-
velopment and standardization of the URC technol-
ogy, and has published a series of Technical Re-
ports as standardized implementation guidelines for
the URC ecosystem [25]. More Technical Reports
are currently under development. URC and UCH
build upon a broad set of commonly established stan-
dards, including XML, UPnP Remote User Inter-
face, CEA-2014 and Bonjour. The preference set of
GPII will be specified in a future version of ISO/IEC
24751, using a repository-based approach to allow
for flexible changes in the set of common prefer-
ence terms, as is needed when new technologies
emerge.

The universAAL Framework for User Interac-
tion in Multimedia, Ambient Assisted Living (AAL)
Spaces is specified as a Publicly Available Speci-
fication by the International Electrotechnical Com-
mission (IEC) under the reference IEC/PAS 62883
Ed. 1.0., released at the end of 2013. The XForms
specification is used for the description of the ab-
stract user interfaces. Data representation is based
on RDF and OWL specifications which are used for
describing all universAAL ontologies, including the
user interface preferences ontology inspired by the
ETSI ES 202 746 standard [9] and ISO/IEC 24751-2
[13].

142 C. Mayer et al. / A comparative study of systems for the design of flexible user interfaces

6. Discussion

In the following, the results of the above compar-
ison of the three systems are discussed. Rather than
highlighting strengths and weaknesses of each system,
the aim is to identify use cases best suited for each
of the three systems. The section elaborates on sim-
ilarities and differences with a focus on open issues.
Furthermore, possible paths towards consolidation are
outlined, with the purpose of increasing harmonization
between the systems.

6.1. Similarities and differences

The analysis of the three systems with respect to the
comparison criteria reveals many differences and even
similarities, although the systems have been developed
independently. Table 1 summarizes the comparison of
the systems with respect to the ten criteria. It provides
a systematic overview of the different approaches fol-
lowed in the three systems.

All three systems are designed in an open way to
support third party contributions (C03). The provision
of additional resources is possible in all systems, but
realized in different ways, i.e., via an URI (AALuis)
vs. the openURC resource server (GPII/URC) vs. the
universAAL resource server (universAAL). It is one
of the main goals of all systems and a possible aspect
for harmonization by creating a single point for re-
source provision (see Section 6.3.3). A further aspect
of third party contributions is the provision of supple-
mental user interfaces. It is realized by the provision of
additional transformations and descriptions of AALuis
enabled devices (AALuis) vs. supplemental pluggable
user interfaces (GPII/URC) vs. alternative UI Handlers
(universAAL).

The systems use similar contexts of use in the
adaptation process (C04), but their representations of
the context models are different, i.e., key-value pairs
based on MyUI (AALuis) vs. the GPII preference set
(GPII/URC) vs. standards for the user model (uni-
versAAL). The context of use is directly related to
the support for adaptability and adaptivity (C07). All
three systems under comparison provide this support,
whereas the tools are diverse. As a future goal, these
tools should be harmonized and possibly merged, to
achieve a cross-platform compatibility of contexts of
use (see Section 6.3.2).

All systems support user interface integration as
well as parameterization (C06) and affect all three lay-
ers of user interface aspects (C08). Again, the realiza-

tion differs between the three systems. For details see
Table 1 and Sections 5.6 and 5.8.

The usage of standards is of utmost importance
for all three systems (C10), whereas the form dif-
fers slightly, i.e., using standards and working drafts
(AALuis) vs. already standardized and contributing
(GPII/URC) vs. using standards and being available as
a specification (universAAL). Supporting standardiza-
tion activities jointly would create additional possibil-
ities. First feasible joint standardization activities are
sketched in Section 6.3.2.

There are differences in the form of the abstract de-
scription of the user interaction and interface (C01),
i.e., CTT notation for modelling the interaction and
MariaXML for the abstract user interface representa-
tion (AALuis) vs. user interface sockets constituting a
contract between the service back-end and a user inter-
face (GPII/URC) vs. dialog descriptions using XForms
(universAAL).

Another distinguishing feature concerns support for
the user interface design (C02), i.e., automatic gener-
ation based on existing but extensible transformation
rules (AALuis) vs. at design time manually crafted,2

pluggable user interfaces (GPII/URC) vs. automatic
generation based on existing and extendable UI Han-
dlers (universAAL).

Especially the differences in criteria C01 and C02
allow for a differentiation between the best-suited ap-
plication areas and constraints of the three systems (see
Section 6.2), but also provide a potential for harmo-
nization so that they may mutually benefit from each
system’s advantages (see Section 6.3.1).

The maintenance of the user model (C05) is han-
dled differently in all three systems by means of dif-
ferent tools, i.e., customizable persona-based profiles
(AALuis) vs. the web-based Preference Management
Tool and Personal Control Panel (GPII/URC) vs. ini-
tialization of customizable user preferences based on
the user role (universAAL). This is again closely re-
lated to possible standardization activities and espe-
cially to create a common set of maintenance tools tak-
ing into account different strengths and avoiding dis-
advantages (see Section 6.3.2).

Finally, the systems can be distinguished by their
support for multimodality (C09), i.e., whether it is sup-
ported in the transformation process (AALuis) vs. pos-
sible but specific interaction mechanisms are out of

2It is also possible to automatically generate user interfaces in
GPII/URC, but design by human experts is the most common way.

C. Mayer et al. / A comparative study of systems for the design of flexible user interfaces 143

Table 1

Summary of the comparison of the selected systems

AALuis GPII/URC universAAL

C01: Form of
abstract user
interaction
description

Task model of application in CTT
notation; binding file for the connection
between tasks and the service calls; tool
for the CTT creation available; abstract
user interface represented in
MariaXML

User interface socket description as
“contract” between application developer
and user interface designer(s);
open-source socket editor available

Abstract user interfaces based on
the XForms W3C specification

C02: Support for
user interface
design

User interface automatically generated;
default transformation rules for certain
I/O device classes

User interface designers can use any
design tool for any user interface
platform; user interfaces may also be
generated automatically

Final user interfaces are
automatically generated; selected
UI Handler contains device specific
transformations

C03: Third party
contributions

Possible third party contributions are
new transformations, new AALuis
enabled devices and the description of
their capabilities, and additional
resources as additional content

Any third party can create a
supplemental/alternative user interface
and user interface resources based on the
application’s user interface socket; the
openURC resource server is the central
marketplace for all user interfaces

Any third party can create a
supplemental/alternative UI Handler

C04: Context of
use influencing
the adaptation

User, environmental and device model Common terms on user preferences,
device and environment characteristics,
specified by GPII in a repository-based
approach

Different user, system and
environmental models based on
ontologies

C05: Maintenance
of user model

Predefined but adaptable user profiles
linked to the CURE-Elderly-Personas

Preference Management Tool (PMT) for
setting up a personal preference set;
Personal Control Panel (PCP) for
changing user interface aspects at runtime

User interface preferences based on
stereotype data associated with the
user role; always up-to-date user
profile stored in profiling server

C06: User
interface
integration and/or
user interface
parameterization

User interface integration: different
widgets are integrated into the user
interface based on the automatic device
and modality selection; User interface
parameterization: tweaking of the user
interface with respect to contrast, font
size, etc.

User interface integration: pluggable user
interfaces and openURC resource server;
User interface parameterization: GPII
personal preference set

User interface integration:
pluggable UI Handlers providing
different interfaces and resource
server for providing specific
resources; User interface
parameterization: user interface
preferences in addition to
recommendations on user interface
rendering

C07: Support for
adaptability
and/or adaptivity

Adaptability: user can customize
his/her user preferences at runtime;
Adaptivity: currently, a rule-based
selection process is implemented, but
different strategies (e.g., based on
Bayesian networks) are under
development

Adaptability: GPII Preference
Management Tool (PMT) and GPII
Personal Control Panel (PCP);
Adaptivity: GPII matchmaker (learns
from the user’s configuration)

Adaptability: decision of UI
Handler and specific setup;
Adaptivity: set of adapters in Dialog
Manger are responsible for
intelligent management of specific
adaptation parameter

C08: User
interface aspects
affected by the
adaptation

Presentation layer: by user interface
parameterization; Structure layer:
adaptations regarding input and output
modalities, grouping structures and the
provision of various widget sets;
Content layer: adaptations are
supported by the data handling

Presentation layer: GPII mechanisms by
user interface parameterization; Structure
and content layers: URC mechanisms by
user interface integration

UI Handlers handle fine-grained
adaptation in the presentation, the
structure and the content layer.

C09: Support for
multimodal user
interaction

Defined data format which allows to
transport different data types in the
transformation process

Out of scope for URC/GPII;
multimodality can be added by any code,
library or framework

Automatic selection of different UI
Handlers managing different I/O
channels

C10: Support of
standards

UPnP, XML, MariaXML, HTML5,
CSS, JS, CTT, XSL, WSDL, OSGi;
Can contribute to the W3C working
group on MBUI

ISO/IEC 24752; openURC Alliance
maintaining Technical Reports for the
URC ecosystem; XML, UPnP Remote
User Interface, CEA-2014, Bonjour,
ISO/IEC 24751

Data model: RDF, OWL, XForms;
UI Preferences: ETSI ES 202 746,
ISO/IEC 24751-2

144 C. Mayer et al. / A comparative study of systems for the design of flexible user interfaces

scope (GPII/URC) vs. strong support (universAAL).
Regarding multimodality, it can be clearly seen that
the systems have a different focus – especially for
GPII/URC for which it is out of scope. Details can be
found in Table 1 and Section 5.9.

6.2. Best suited application areas and system
constraints

Based on the similarities and differences, one can
distinguish between application areas best suited for
the different systems while highlighting constraints.

The abstract description of the user interaction or
user interfaces by task models and XForms (AALuis
and universAAL), and the automatic generation there-
upon, allow for the provision of a consistent look and
feel for any application provided by the system. This
is especially helpful for older adults to give them the
same feeling and interaction options with the possibil-
ity to adapt to their preferences. A problem of auto-
matic generation is that it needs a trade-off between
flexibility to cover as many use cases as possible, and
usability and accessibility. In contrast, manually de-
signed user interfaces (GPII/URC) facilitate tailoring
the user interfaces for special needs, services and spe-
cial user groups. This allows flexibility in the design
of user interfaces, especially with focus on usability.
Thus, one should balance pros and cons if the focus
is on the same look and feel for different applications
but with the slight problem of reducing usability and
accessibility (universAAL and AALuis), or if the fo-
cus is on tailored user interfaces for each application
and target group, but with the drawback of additional
development efforts due to the large number of user
interfaces to be developed (GPII/URC).

Another difference is the fact that GPII/URC is
mainly designed to control appliances and devices as
targets while AALuis and universAAL mainly focus
on digital services. On the one side, the user interface
sockets (GPII/URC) represent the functionality of the
targets. On the other side, the interaction with the digi-
tal service is modelled by the CTT (AALuis), or via the
UI Bus which includes a basic, ontological model for
representing the abstract user interfaces and a means
for exchanging messages between UI Handlers and
services (universAAL).

A major difference between AALuis and univer-
sAAL, as examples of automatic user interface gener-
ation, and GPII/URC is the fact that for AALuis and
universAAL, the user interface is generic for the ap-
plication and specific to the I/O controller. This means

that, when a new service is added to the system, it can
be accessed without requiring new code for user inter-
faces. Furthermore, it allows for a simple modality and
device change at runtime. In contrast, for GPII/URC
the user interface is specific for the application and the
I/O controller. This means that, upon extending a sys-
tem by new targets, new user interfaces must be made
available to control the new targets. Note that there
are also means within GPII/URC for generating user
interfaces automatically, leading to generic user inter-
faces for the application, but this is not the main pur-
pose of the system. Additional I/O controllers can be
added in AALuis and universAAL by providing new
transformation rules and UI Handlers, respectively. In
GPII/URC, these are added by the provision of addi-
tional pluggable interfaces for each application.

Another distinction between the three systems is
the additional effort needed to use it, and where in
the lifecycle this effort occurs. This is directly related
to the first two steps of the generic interface adapta-
tion framework. In AALuis, the overall efforts for us-
ing various user interfaces on different I/O controllers
are shifted toward the service developer, as the cre-
ation of a task model for each application. Thus, a ser-
vice developer must learn the CTT notation once be-
fore getting started. Further transformation rules can
be developed by user interface designers and develop-
ers if needed, but are not necessary for initial usage
of the system, since existing transformation rules can
be reused. For GPII/URC, the efforts are more equally
distributed between a service (target) developer who
defines the socket description and develops the tar-
get application, and one or more user interface experts
who design interfaces for each target and controller
platform. In universAAL, the efforts are focused on the
abstract description of the user interaction via the UI
Bus by the service developer and the usage of the ex-
isting UI Handlers, which are realized in Java and can
be extended. The initial effort is mainly related to get-
ting to know the universAAL platform and the under-
lying concept of ontologies and XForms. In summary,
the efforts are clearly distributed differently.

There are differences with regard to how the sys-
tems bind to their back-ends, i.e., the applications pro-
viding the functionality. AALuis supports the integra-
tion of local services as separate OSGi bundles, or re-
mote services as loosely coupled Web services. For the
latter option, there is no explicit connector develop-
ment needed. Thus, there is no service development in
the same system necessary, which allows service de-
velopers to use existing platforms (so they do not need

C. Mayer et al. / A comparative study of systems for the design of flexible user interfaces 145

to migrate to a different development environment). In
GPII/URC, a service developer needs to implement a
target adapter on the UCH platform (currently in Java)
to provide the binding. In universAAL, the applica-
tion’s connection to the universAAL system is realized
by using the service bus via an OSGi bundle. Thus, the
application developer needs to integrate his/her devel-
opments into the universAAL platform. Summarized,
one can say that in AALuis there is no need for addi-
tional binding, i.e., developers do not need to develop
anything within the AALuis system when connecting
a Web service application, rather only to provide the
task model. In contrast, in GPII/URC and universAAL,
programming is needed to integrate applications into
the systems.

Another difference in the systems is the division of
roles in the three systems. In GPII/URC, there is a
clear separation between the development and design
efforts. This implies that user interface designers can
provide user interfaces for the system. AALuis and
universAAL do not follow a strict separation of roles.
To provide new user interfaces for additional I/O de-
vices, new transformation rules and UI Handlers, re-
spectively, have to be implemented.

6.3. Work towards harmonization

Harmonization of the three systems can help them
to mutually benefit from each others’ strengths. Har-
monization can happen at various levels with differ-
ent efforts. Based on the defined criteria and the com-
parison, the following possibilities for convergence are
identified and envisioned.

6.3.1. Conversion between abstract descriptions of
the user interface

The three systems cover different application areas
(see Section 6.2). To mutually benefit from their ad-
vantages and to allow an interchangeable usage of the
three systems, an interface for interlinking the systems
on any level should be sought. Providing a single, com-
mon, abstract way to describe of the user interaction
and interface is not considered to be reasonable, since
all concepts have advantages and drawbacks and hence
a harmonization would lead to a loss of flexibility. The
abstract description is realized in different forms and
thus a possible compromise is the creation of (semi-)
automated conversion tools.

The idea is to use the CTT notation for the descrip-
tion of the task model, because there is good tool sup-
port for the generation and also a runtime simulator
available (CTTE [22]). CTT could be the input for the

generation of a user interface socket description, which
could be used to connect manually designed user in-
terfaces. Conversely, task models or an AUI in Mari-
aXML could be generated from the socket description
which could, in turn, be the starting point for the au-
tomatic user interface generation. The same conver-
sion tools could be developed to create a user interface
description using XForms. All these conversion tools
would allow the front-end of one system to be used
by the others. In summary, this would finally allow for
the use of manually designed user interfaces and auto-
matic generated ones within all three approaches.

6.3.2. Standardization of context models and common
set of tools for maintenance

All three approaches use similar context models
covering information about the user, the runtime plat-
form and the environment, but unfortunately based on
different formats and standards. GPII develops a reg-
ister of terms for the description of user preferences
and platform and environmental characteristics, which
will result in a future version of ISO/IEC 24751. Us-
ing common terms and values for the models includ-
ing user preferences, device characteristics and envi-
ronmental factors would allow for the exchange (im-
port/export) of user preferences and device character-
istics between the platforms. Furthermore, the con-
nection of systems for sharing environmental context
would be possible, e.g., using the universAAL context
bus as input for any adaptations in the other systems. A
community process for registration of common terms
via the GPII registry server and using a common user
preference server would support this idea. A vision of
common context models is to share and use the same
tools for the maintenance of a user’s preference set and
to access a common server with descriptions of device
characteristics.

6.3.3. Sharing resources
Sharing resources and supporting third party contri-

butions are of great importance for all three systems,
but the provision and description of user interface re-
sources is handled in distinct ways. A common vo-
cabulary for the description of user interface resources
via metadata, e.g., realized by key-value pairs, is envi-
sioned to allow for the import and export of resources
such as labels, images and videos from one platform to
the other. A starting point for the creation process can
be the resource property vocabulary [48] by openURC.
Besides sharing the resources between systems, a com-
mon description would offer the possibility to use a
joint platform as a common resource server for upload-

146 C. Mayer et al. / A comparative study of systems for the design of flexible user interfaces

ing and downloading resources for user interface adap-
tations via user interface integration.

6.4. Limitations of the study

Finally, a number of important limitations need to be
noted. First, this comparative study does not provide
quantitative data for the comparison of the systems.
The definition of benchmarks and metrics would allow
a more objective comparison, but were out of scope
since the focus was on a conceptual comparison. An
evaluation through competitive benchmarking, like in
the EvAAL competitions for AAL systems [1], would
help to obtain quantitative data with respect to e.g., ef-
fort needed to use the systems, usability of the (gener-
ated) user interfaces, et cetera. Furthermore, the com-
parison focuses on technical aspects and does not in-
clude means to compare the systems from the perspec-
tive of the user. Finally, the developers’ perspective is
not analyzed from a cost perspective in our compar-
ison. To do so, an empirical study would be needed,
which is also out of scope of the presented work.

7. Conclusion

The purpose of the current study was to provide a
generic framework for the design of flexible user in-
terfaces, and to analyze the three systems AALuis,
GPII/URC and universAAL within this framework in
a detailed comparative study. In this investigation, the
aim was to assess differences and similarities of the
systems based on ten criteria. As a result, the best-
suited application areas, system constraints and pos-
sibilities of harmonization of the systems were elabo-
rated.

The following conclusions can be drawn from the
present study. First, although independently devel-
oped, all three approaches show similarities especially
with respect to the context of use, the resource provi-
sion, the adaptation processes and the commitment to
standards. Second, there are differences in the realiza-
tion of these issues, and especially the tools provided
to support the developer and the user. Finally, the sys-
tems differ greatly in their abstract description of the
user interaction and interface, and the automatic gener-
ation of user interfaces or the usage of pluggable user
interfaces.

These findings provide the following insights for fu-
ture research. A common, abstract way to describe the
user interaction and user interface would be desirable,
but perhaps unattainable, due to the various strengths

of the different approaches. The creation of (semi-) au-
tomatic conversion tools is envisioned, to retain the
strengths of all concepts. Concerning context of use
and the context models, a joint standardization effort
is needed to allow for the exchange between different
systems. This would yield a new opportunity to use a
common set of tools for the maintenance of a user’s
preference set, to access a common server with de-
scriptions of device characteristics and to share envi-
ronmental context. Finally, a common format for the
description of resources is required to allow for im-
port and export of resources such as labels, images and
videos from one platform to the other.

To overcome the limitations of a conceptual compar-
ison and allow for a quantitative comparison, bench-
marks and metrics for an objective comparison should
be part of future work. Furthermore, the user’s point of
view regarding usability and accessibility of the user
interfaces, and the ease of use for developers to get an
impression of cost efficiency of the systems should be
evaluated in additional (empirical) studies.

All future efforts targeting a harmonization of the
systems can provide valuable input to, can be influ-
enced by and should be coordinated with the W3C
working group on model-based user interfaces [45].

Acknowledgements

The comparison of the different design systems for
flexible user interfaces was initiated by the authors af-
ter a number of presentations and discussions about the
three systems at various workshops and conferences
(dissemination activities by the associated projects).
The idea was to deepen the exchange of concepts and
to intensify the discussions about collaboration possi-
bilities. Based on this, the study at hand was started
by an intensive face-to-face workshop which focused
mainly on the technical aspects of user interfaces and
their design. The results were summarized and used as
a starting point for this joint paper, which aims at for-
malizing the results thus revealed. The paper was fur-
ther developed by several bilateral meetings, discus-
sions and several virtual workshops.

The project AALuis is co-funded by the AAL Joint
Programme (AAL-2010-3-070) and the following Na-
tional Authorities and R&D programs in Austria, Ger-
many and The Netherlands: bmvit, program benefit,
FFG (AT), BMBF (DE) and ZonMw (NL).

Work on URC and GPII has been funded by
the US Dept. of Education, NIDRR, under Grants

C. Mayer et al. / A comparative study of systems for the design of flexible user interfaces 147

H133E030012 and H133E080022 (RERC on IT Ac-
cess), and by the European Commission, under the
FP6 Grant Agreement 033502 (i2home) and the FP7
Grant Agreement 289016 (Cloud4All), and by the
Saarland government under the contract T/2-EFI-001-
04/05/2013 (SUCH).

Regarding universAAL, the research leading to
these results has received funding from the Euro-
pean Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement n° 247950
(universAAL).

The opinions in this paper are those of the authors
and not necessarily those of the funding agencies.

References

[1] J.A. Álvarez-García, P. Barsocchi, S. Chessa and D. Salvi,
Evaluation of localization and activity recognition systems for
ambient assisted living: The experience of the 2012 EvAAL
competition, Journal of Ambient Intelligence and Smart Envi-
ronments 5(1) (2013), 119–132.

[2] J.M. Boyer, XForms 1.1. W3C Recommendation 20 October
2009, http://www.w3.org/TR/xforms/, Oct. 2009 [accessed:
02/2014].

[3] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouil-
lon and J. Vanderdonckt, A unifying reference framework for
multi-target user interfaces, Interacting with Computers 15
(2003), 289–308.

[4] CEA, CEA-2014-A: Web-based Protocol and Framework for
Remote User Interface on UPnP Networks and the Internet
(Web4CE), Technical report, 2007.

[5] J. Coutaz, L. Nigay, D. Salber, A. Blandford, J. May and
R.M. Young, Four easy pieces for assessing the usability
of multimodal interaction: The care properties, in: InterAct,
Vol. 95, 1995, pp. 115–120.

[6] C. Criteria, Common Criteria, http://www.
commoncriteriaportal.org/, Feb. 2014 [accessed: 02/2014].

[7] E. den Ouden, Development of a design analysis model for
consumer complaints: Revealing a new class of quality prob-
lems, PhD thesis, Technische Universiteit Eindhoven, Eind-
hoven, March 2006.

[8] B. Dumas, D. Lalanne and S. Oviatt, Multimodal interfaces: A
survey of principles, models and frameworks, in: Human Ma-
chine Interaction, D. Lalanne and J. Kohlas, eds, Lecture Notes
in Computer Science, Vol. 5440, Springer, Berlin, Heidelberg,
2009, pp. 3–26.

[9] ETSI, ETSI ES 202 746, Human Factors (HF), Personalization
and User Profile Management, User Profile Preferences and In-
formation, Technical report, Feb. 2010.

[10] A.M.M. Gil, D. Salvi, M.T.A. Waldmeyer, P.A. Jimenez and
A. Grguric, Separating the content from the presentation in
AAL: The universAAL UI framework and the swing UI
handler, in: Ambient Intelligence-Software and Applications,
Springer, 2013, pp. 113–120.

[11] S. Hanke, C. Mayer, O. Höftberger, H. Boos, R. Wichert,
M.-R. Tazari, P. Wolf and F. Furfari, universAAL – an open
and consolidated AAL platform, in: Ambient Assisted Living,

R. Wichert and B. Eberhardt, eds, Springer, Berlin, Heidelberg,
2011, pp. 127–140.

[12] ISO/IEC, ISO/IEC 24751-1:2008, Information technology –
individualized adaptability and accessibility in e-learning, ed-
ucation and training – Part 1: Framework and reference model,
Technical report, Sept. 2008.

[13] ISO/IEC, ISO/IEC 24751-2:2008, Information technology –
individualized adaptability and accessibility in e-learning, ed-
ucation and training – Part 2: ‘Access for all’ personal needs
and preferences for digital delivery, Technical report, Sept.
2008.

[14] ISO/IEC, ISO/IEC 24752-1:2014, Information technology –
user interfaces – universal remote console, Part 1: General
framework, 2014.

[15] J.A. Larson, T. Raman, D. Raggett, M. Bodell, M. Johnston,
S. Kumar, S. Potter and K. Waters, W3C multimodal interac-
tion framework, W3C NOTE, 6, 2003 [accessed: 09/2014].

[16] Q. Limbourg, J. Vanderdonckt et al., Comparing Task Models
for User Interface Design, Vol. 6, Lawrence Erlbaum Assoc.,
2004, pp. 135–154, Chapter 6.

[17] N. Marquardt and S. Greenberg, Informing the design of prox-
emic interactions, Pervasive Computing, IEEE 11(2) (Feb.
2012), 14–23.

[18] C. Mayer, M. Morandell, M. Gira, K. Hackbarth, M. Petzold
and S. Fagel, AALuis, a user interface layer that brings device
independence to users of AAL systems, in: Computers Help-
ing People with Special Needs, K. Miesenberger, A. Karshmer,
P. Penaz and W. Zagler, eds, Lecture Notes in Computer Sci-
ence, Vol. 7382, Springer, Berlin, Heidelberg, 2012, pp. 650–
657.

[19] C. Mayer, M. Morandell, M. Gira, M. Sili, M. Petzold,
S. Fagel, C. Schüler, J. Bobeth and S. Schmehl, User interfaces
for older adults, in: Universal Access in Human-Computer
Interaction. User and Context Diversity, C. Stephanidis
and M. Antona, eds, Lecture Notes in Computer Science,
Vol. 8010, Springer, Berlin, Heidelberg, 2013, pp. 142–150.

[20] C. Mayer, M. Sili, M. Gira, M. Morandell, S. Fagel, A. Hilbert,
C. Schüler and I. Cernei, Avatar enriched user interfaces for
older adults, in: GLOBAL HEALTH 2013, the Second Interna-
tional Conference on Global Health Challenges, 2013, pp. 1–
4.

[21] G. Meixner, M. Seissler and M. Orfgen, Specification and ap-
plication of a taxonomy for task models in model-based user
interface development environments, International Journal on
Advances in Intelligent Systems 4(3 and 4) (2012), 388–398.

[22] G. Mori, F. Paternò and C. Santoro, CTTE: Support for devel-
oping and analyzing task models for interactive system design,
IEEE Trans. Softw. Eng. 28(8) (Aug. 2002), 797–813.

[23] B. Myers, S.E. Hudson and R. Pausch, Past, present, and fu-
ture of user interface software tools, ACM Transactions on
Computer-Human Interaction (TOCHI) 7(1) (2000), 3–28.

[24] A. Norcio and J. Stanley, Adaptive human-computer interfaces:
A literature survey and perspective, IEEE Transactions on Sys-
tems, Man and Cybernetics 19(2) (Mar. 1989), 399–408.

[25] openURC Alliance, Index of Technical Reports, http://www.
openurc.org/TR/, Dec. 2013 [accessed: 02/2014].

[26] OpenURC, OpenURC Alliance e.V., http://www.openurc.org/,
March 2013 [accessed: 03/2014].

[27] openURC, Resource Property Vocabulary 1.0. Latest specifica-
tion, http://openurc.org/TR/res-prop-vocab1.0/, Dec. 2013 [ac-
cessed: 02/2014].

http://www.w3.org/TR/xforms/
http://www.commoncriteriaportal.org/
http://www.commoncriteriaportal.org/
http://www.openurc.org/TR/
http://www.openurc.org/TR/
http://www.openurc.org/
http://openurc.org/TR/res-prop-vocab1.0/

148 C. Mayer et al. / A comparative study of systems for the design of flexible user interfaces

[28] openURC, Resource Server HTTP Interface 1.0 (DRAFT),
http://www.openurc.org/TR/res-serv-http1.0-20131126/, Nov.
2013 [accessed: 02/2014].

[29] R. Oppermann, Adaptively supported adaptability, Interna-
tional Journal of Human-Computer Studies 40(3) (1994), 455–
472.

[30] M. Oshry, R. Auburn, P. Baggia, M. Bodell, B. David,
D.C. Burnett, E. Candell, J. Carter, S. McGlashan, A. Lee,
B. Porter, and K. Rehor, Voice Extensible Markup Lan-
guage (VoiceXML) 2.1, http://www.w3.org/TR/voicexml21/,
June 2007 [accessed: 02/2014].

[31] F. Paterno, Model-Based Design and Evaluation of Inter-
active Applications, 1st edn, Springer-Verlag, London, UK,
1999.

[32] F. Paternò, ConcurTaskTrees: An engineered approach to
model-based design of interactive systems, in: The Handbook
of Analysis for Human-Computer Interaction, Lawrence Erl-
baum Associates, 2002, pp. 483–500.

[33] F. Paternò, C. Mancini and S. Meniconi, ConcurTaskTrees:
A diagrammatic notation for specifying task models, in: IN-
TERACT 1997 Proc. of the IFIP TC13 International Confer-
ence on Human-Computer Interaction, Chapman & Hall, 1997,
pp. 362–369.

[34] F. Paternò and C. Santoro, A logical framework for multi-
device user interfaces, in: Proc. of the 4th ACM SIGCHI Sym-
posium on Engineering Interactive Computing Systems, ACM,
2012, pp. 45–50.

[35] F. Paternò, C. Santoro and L.D. Spano, MARIA: A universal,
declarative, multiple abstraction-level language for service-
oriented applications in ubiquitous environments, ACM Trans.
Comput.-Hum. Interact. 16(4) (Nov. 2009), 19:1–19:30.

[36] M. Peissner, D. Häbe, and A. Schuller, MyUI deliverable D2.2.
Adaptation concept and Multimodal User Interface Patterns
Repository, Technical report, 2012, Available at http://www.
myui.eu/deliverables/MyUI_D2-2_final.pdf.

[37] D. Raneburger, G. Meixner and M. Brambilla, Platform-
independence in model-driven development of graphical user
interfaces for multiple devices, in: Software Technologies,
J. Cordeiro and M. van Sinderen, eds, Communications in
Computer and Information Science, Vol. 457, Springer, Berlin,
Heidelberg, 2014, pp. 180–195.

[38] K. Sousa, H. Mendonça and J. Vanderdonckt, Towards
method engineering of model-driven user interface develop-
ment, in: Task Models and Diagrams for User Interface De-
sign, Springer, 2007, pp. 112–125.

[39] C. Stocklöw, A. Grguric, T. Dutz, T. Vandommele and A. Kui-
jper, Resource management for multimodal and multilingual
adaptation of user interfaces in ambient assisted living envi-
ronments, in: Universal Access in Human-Computer Interac-
tion. Applications and Services for Quality of Life, C. Stephani-
dis and M. Antona, eds, Lecture Notes in Computer Science,
Vol. 8011, Springer, Berlin, Heidelberg, 2013, pp. 97–106.

[40] M.-R. Tazari, F. Furfari, Á. Fides-Valero, S. Hanke, O. Höft-
berger, D. Kehagias, M. Mosmondor, R. Wichert and P. Wolf,
The universAAL reference model for AAL, in: Handbook of
Ambient Assisted Living, Vol. 11, 2012, pp. 610–625.

[41] P. Thakur and B. Rosa, URC-HTTP Protocol 2.0. Draft Tech-
nical Report 2012-10-22, OpenURC Alliance, http://openurc.
org/TR/urc-http-protocol2.0-20121022/index.html, Oct. 2012
[accessed: 02/2014].

[42] J. Tidwell, Designing Interfaces, O’Reilly, 2010.
[43] G. Vanderheiden and G. Zimmermann, Use of user interface

sockets to create naturally evolving intelligent environments,
in: Proc. of the 11th Int. Conf. on Human-Computer Interaction
(HCII 2005), 2005.

[44] G.C. Vanderheiden, J. Treviranus, M. Ortega-Moral, M. Peiss-
ner and E. de Lera, Creating a Global Public Inclu-
sive Infrastructure (GPII), in: Universal Access in Human-
Computer Interaction. Design for All and Accessibility Prac-
tice, C. Stephanidis and M. Antona, eds, Lecture Notes in
Computer Science, Vol. 8516, Springer International Publish-
ing, Jan. 2014, pp. 506–515.

[45] W3C, Model-based user interfaces (MBUI) working
group, http://www.w3.org/2011/mbui/, Feb. 2014 [accessed:
02/2014].

[46] W3C, The Forms Working Group, http://www.w3.org/
MarkUp/Forms/, Jan. 2014 [accessed: 02/2014].

[47] W. Wahlster, Towards symmetric multimodality: Fusion and
fission of speech, gesture, and facial expression, in: KI
2003: Advances in Artificial Intelligence, A. Günter, R. Kruse
and B. Neumann, eds, Lecture Notes in Computer Science,
Vol. 2821, Springer, Berlin, Heidelberg, 2003, pp. 1–18.

[48] W. Wahlster, SmartKom: Foundations of Multimodal Dialogue
Systems (Cognitive Technologies), Springer-Verlag Inc., New
York, 2006.

[49] M. Weiser, The computer for the 21st century, SIGMOBILE
Mob. Comput. Commun. Rev. 3(3) (July 1999), 3–11.

[50] B. Wöckl, U. Yildizoglu, I. Buber, B. Aparicio Diaz, E. Krui-
jff and M. Tscheligi, Basic senior personas: A representative
design tool covering the spectrum of European older adults,
in: Proc. of the 14th International ACM SIGACCESS Confer-
ence on Computers and Accessibility, ASSETS ’12, ACM, New
York, NY, USA, 2012, pp. 25–32.

[51] B. Wöckl, U. Yildizoglu, I. Buber-Ennser, B. Aparicio Diaz,
and M. Tscheligi, Elderly personas: A design tool for AAL
projects focusing on gender, age and regional differences, in
Proc. of the 3rd AAL Forum: Partner-Ships for Social Innova-
tions in Europe, Smart Homes 2012, Lecce, Italy, September
26–28, 2011, pp. 125–130.

[52] G. Zimmermann, J.B. Jordan, P. Thakur and Y. Gohil,
GenURC: Generation platform for personal and context-driven
user interfaces, in: Proc. of the 10th International Cross-
Disciplinary Conference on Web Accessibility, W4A ’13, ACM,
New York, NY, USA, 2013, pp. 6:1–6:4.

http://www.openurc.org/TR/res-serv-http1.0-20131126/
http://www.w3.org/TR/voicexml21/
http://www.myui.eu/deliverables/MyUI_D2-2_final.pdf
http://www.myui.eu/deliverables/MyUI_D2-2_final.pdf
http://openurc.org/TR/urc-http-protocol2.0-20121022/index.html
http://openurc.org/TR/urc-http-protocol2.0-20121022/index.html
http://www.w3.org/2011/mbui/
http://www.w3.org/MarkUp/Forms/
http://www.w3.org/MarkUp/Forms/

	Motivation
	Related work
	Introduction to user interface adaptation
	User interface adaptation aspects
	Context of use
	Adaptable versus adaptive user interface
	A framework for user interface adaptation
	Steps of user interface adaptation

	Introduction to the selected systems for user interface adaptation
	AALuis
	GPII/URC
	Universal Control Hub (UCH)
	Resource server
	GPII personal preference set
	Integration of URC and GPII technologies

	universAAL
	Summary

	Comparison of the three systems
	Form of abstract user interaction description (C01)
	Support for user interface design (C02)
	Third party contributions (C03)
	Context of use influencing the adaptation (C04)
	Maintenance of user model (C05)
	User interface integration and/or user interface parameterization (C06)
	Support for adaptability and/or adaptivity (C07)
	User interface aspects affected by the adaptation (C08)
	Support for multimodal user interaction (C09)
	Support of standards (C10)

	Discussion
	Similarities and differences
	Best suited application areas and system constraints
	Work towards harmonization
	Conversion between abstract descriptions of the user interface
	Standardization of context models and common set of tools for maintenance
	Sharing resources

	Limitations of the study

	Conclusion
	Acknowledgements
	References

