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Abstract. The cognitive load placed on users by both the proactive and spontaneous provisioning of service functionality and
by the physical activities performed in ambient intelligence environments can lead to the depletion of their mental resources.
This paper demonstrates how burdening the inappropriate selection of service functionality can be for users by conducting a
semi-naturalistic and controlled user test to investigate the significance of the cognitive resource depletion problem in specific
ambient intelligence environments. A dynamic service binding and scheduling mechanism is provided based on different types
of interference and on mental resources and their demand requirements. A technical evaluation is conducted by simulating the
mechanism over a set of various abstract service compositions, making use of real datasets of user interactions with diverse HCI
services and daily physical activities. The results show that this mechanism ensures less cognitively taxing, unobtrusive service
composition provisioning.
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1. Introduction

Two decades have passed since Mark Weiser de-
scribed his vision of users interacting with pervasive
technologies “almost at a subconscious level”, and one
decade has passed since Mahadev Satyanarayanan in-
corporated the idea of minimal user distraction into
the research agenda of ubiquitous computing [56,61].
Many researchers have seen the area of service com-
position in ambient intelligence (AmI) environments
as a natural framework to realize this idea, given its
explicit goal of delivering ubiquitous services from a
user-centric perspective rather than through systemic
channels. Moreover, the literature tends to focus on the
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architectural infrastructure required by heterogeneous
AmI environments to discover, coordinate, and adapt
context-aware service functionality based on, among
other features, quality-of-service (QoS) requirements
and user activities [8,16,24,40]. Nevertheless, there ex-
ists the need to assess the cognitive load placed on
users by the proactive and spontaneous provisioning of
service functionality. This research topic is currently
in its infancy [23,32,53].

Service compositions contain services that pro-
vide explicit interaction with users [57]. Examples in-
clude services that are needed to visualize maps, lis-
ten to music or sense vibrations. Users interact with
these human-computer interaction (HCI) services us-
ing multiple operations, which are called HCI tasks.
For instance, the functionality delivered by a document
editor on a smartphone requires that users search for

1876-1364/15/$35.00 © 2015 – IOS Press and the authors. All rights reserved



38 A. Jimenez-Molina and I.-Y. Ko / Cognitive resource-aware unobtrusive service provisioning in ambient intelligence environments

options on the screen, push buttons after an option has
been found, wait for the option to load, read the infor-
mation delivered by the option, mentally process such
information, determine a path to follow for navigation,
push buttons again, and more.

When a user concurrently performs a primary phys-
ical activity, such as walking or hurrying on a busy
street, and a collection of HCI tasks, they need to allo-
cate mental resources,1 which divides their attention.
Cognition uses mental resources as the main assets to
perform decision making, reasoning, perception, etc.
[63]. These assets are available in limited quantities
in human information processing systems, which sup-
pose a limit on the joint demand of cognitive resources
[46]. The core mental resources assigned during infor-
mation processing are attention, perception, long-term
memory, working memory, and motor control [27,49].
Therefore, both the HCI tasks and the user’s primary
physical activity compete for the same amount of lim-
ited mental resources.

The side effects of this competition on the user’s
performance are termed as cognitive resource deple-
tion (CRD) in the area of cognitive psychology [63].
This leads to distractions; increases errors, stress, and
frustration; and reduces the ability to perform men-
tal planning, problem solving, and decision making
[20,42,45]. In particular, recent studies have shown
how annoying technostress is to users [38,39,48]. A
naturalistic and controlled user test is conducted to
demonstrate how burdening the inappropriate selection
of service functionality can be for users in AmI envi-
ronments. This study demonstrates the relevance of the
CRD problem in such environments.

The emotional pressure caused by these stressful
conditions hampers the user’s engagement and mental
resources, as shown by a growing body of knowledge
that highlights the interdependence between emotion
and cognition [52,58], decreasing the ability of a user
to perform physical activities and HCI tasks. Because
this behavioral effectiveness is governed by a set of
cognitive processes, the above problem can be avoided
by delivering unobtrusive service functionality. Specif-
ically, services that aggregate cognitive demands, to-
gether with the cognitive demands of physical activi-
ties, should not overwhelm the user.

Such a challenging issue is addressed in this paper
by a novel cognitive ergonomics mechanism for iden-
tifying service functionality during runtime in accor-

1“Mental”, or “cognitive”, resources are used interchangeably
throughout this article.

dance with situational demands of mental resources by
user’s activities and HCI tasks. The proposed approach
is based on two theories from cognitive psychology:
the human processing system theory of Navon et al.
[46] and the multiple-resource theory (MRT) of Wick-
ens [63]. The former is based on the idea of a lim-
ited amount of underlying resources available at any
moment in the human processing system [44]. These
mental resources are demanded at different degrees by
time-sharing activities during any given situation. In
contrast, the MRT highlights the competition and in-
terference among mental resources allocated in differ-
ent physical/cognitive structures. It is based on a prac-
tical description of the different mental resources re-
quired by activities. According to this model, the per-
formance of time-shared activities is sensitive to their
combined difficulty and overlapping of common men-
tal resources.

The major technical contributions of this paper are
twofold. First, a service selection mechanism that uti-
lizes a cognitive-resource-aware description of physi-
cal activities and HCI tasks is proposed. Second, this
model is leveraged to dynamically bind and sched-
ule abstract service components to concrete services
by considering different types of interference among
mental resources and mental resource demands either
in sequential or concurrent service interaction behav-
iors. A technical evaluation is conducted by simulating
the dynamic binding and scheduling mechanism over
a set of various abstract service components, making
use of real datasets of user interactions with diverse
HCI services and daily physical activities. The results
demonstrate that the mechanism is effective in terms
of finding appropriate HCI services to instantiate time-
shared abstract services and physical activities. More-
over, the mechanism scales well in a mobile setting.

This paper is organized as follows. Section 2 de-
scribes and analyzes work related to this research.
Section 3 provides the required background on the
CRD problem and the psychology concepts utilized in
this research. This background is explained through
an example scenario. In addition, this section shows
how to compute the degrees of interference and cog-
nitive resource demands. Section 4 consists of a semi-
naturalistic, controlled user study with real users that
is used to assess the relevance of the CRD problem in
AmI environments. Section 5 introduces the cognitive-
resource-aware dynamic service binding and schedul-
ing mechanism utilized to identify concrete HCI ser-
vices in light of concurrent service functionality and
physical activities. Section 6 shows the experimental
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results that were obtained by simulating the mecha-
nism on real datasets of user interactions with service
functionality. Section 7 discusses the major findings,
contributions to the state of the art and disadvantages
of the approach. Finally, Section 8 concludes the paper.

2. Related work

The following research fields are meaningful to this
work. Multimodal interfaces (MUIs) concern deliver-
ing HCI functionality without cognitive conflict at the
user interface level. Interruption management special-
izes in delivering functionality with the correct timing
to avoid interruptions, and the last area concerns the
optimal, dynamic selection of services for instantiating
abstract compositions. To the best of our knowledge,
this approach is the first to integrate the benefits of all
of these areas.

2.1. Multimodal interfaces

The goal of MUIs is to reduce the user’s effort in
terms of perceiving their effects in different interactive
contexts. This approach makes use of the user-centred
design to assess the interactivity between users and
ubiquitous services from a perspective of users’ goals
[29,37,60]. MUIs are based on multiple input streams,
which require parallel cognitive processing. This is
risky in the sense of leading to interference among the
attributes of mental resources. MUIs enable users to
enhance their perceptual and verbal response capabili-
ties during an interaction with an interface [21]. MUIs,
such as speech, pen, touch, and gesture interfaces, are
meaningful in the domain of HCI in terms of optimiz-
ing the delivery of service functionality to avoid cog-
nitive interference among the modality attributes (au-
ditory, visual, or touch) of mental resources. As shown
in [50], over 95% of users are shown to prefer mul-
timodal interactions over unimodal interactions. This
study also shows that a user-centric design for an MUI
helps to decrease the cognitive load on users [51].
Kong et al. [34] proposes a human-centric approach for
an adaptive MUI that consists of mapping a modality
space to a user’s preferences space. The major draw-
back of this approach is the need to define the interac-
tion scenario in advance.

Nevertheless, all of these approaches do not address
the challenge of adaptively delivering an MUI in accor-
dance with both user behavior while interacting with
HCI tasks and the physical activity in which the user is

involved. They assess, in an exclusive manner, either
the mental resources derived from the user’s activity,
from computing interfaces, or from QoS requirements
defined in advance.

In contrast, in this paper the mental resources from
all of these sources are assessed, considering not only
the modality attribute but also other types of attributes,
as described in Section 3.

2.2. Interruption management and job design

Interruption management is one of the major chal-
lenges in reducing mental workloads [26]. Although
application notifications facilitate user tasks, they can
significantly lower performance in terms of the user’s
ongoing task [6,19,22,35,36,54]. The burden of notifi-
cation is significantly smaller when the services are de-
livered to a user whose mental workload is light. This
is why the goal of interruption management systems is
to manipulate the notification delivery time to decrease
the cost of mental interruption. As shown in [12], a no-
tification while the user is engaged in a primary task
can reduce task performance by 30%. The same au-
thor shows in [11] that the cost of interruption can
be lowered by delivering the notification at moments
of lower mental workload. These moments occur at
subtask boundaries or during task switching. However,
these systems can only react using the predesigned as-
sociation between a notification and the user task. In
addition, they do not include multiple time-shared ser-
vices.

The notification platform system shown in [19] is an
interruption management system that allows users to
tailor their costs of interruptions. The drawback to this
approach is the static association between situations
and software. Therefore, the major drawback is reac-
tivity. Specifically, notification platform systems can
only react in the manner that the strategy has defined
in advance. In addition, the system does not consider
what service functionality to deliver to decrease the
mental workload; rather, it considers when to deliver
it. Using the dynamic service binding and schedul-
ing mechanism, this paper focuses on both aspects, as
shown in Section 5.

Job design approaches are popular in industrial do-
mains such as aviation, manufacturing, and automotive
industries [44,45]. Their goal is to set an optimal cog-
nitive load for software to reduce the mental effort ex-
pended by operators of process control systems. Such
studies utilize a cognitive task analysis based on a the-
ory of cognitive task load that includes (1) percentage
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Table 1

Comparative analysis of the related work

Approach Activity-aware Cognitive Resources
Modeling

Dynamicity Metrics to
Assess CRD

Mobile AmI
Environment

MUI Systems Limited. A dimension
of the interaction
context

No. Only the
modality attribute

Yes. Interaction
context aware

No. Focused on
decreasing users’
cognitive load

Limited. Preferably
MUI in desktop
environments

Interruption
Management

Limited. Subtask
boundaries, task
switching

No. Users tailor their
cost of interruption,
or reason about
moments of lower
mental workload

No. Only react in
the way the strategy
was predefined in
advance

No. Only tries to
decrease the cost of
mental interruption

Yes. Specially to
manage notifications
to the user

Job Design in
industry

Limited. Makes a
decomposition of the
activity into the
percentage of time
occupied, the level of
information
processing, and the
number of task-set
switches

No. Only an
estimation of the level
of information
processing

No. Requires
cognitive task
analysis in design
time. Do not adapt
the application
during runtime

Limited.
Multidimensional on
the percentage of time
occupied, the level of
information
processing, and the
number of task-set
switches

No. Naval ship
control centre,
avionics, in-vehicle
information systems
(driving safety)

Service binding
and
reconfiguration

Yes. Context aware
QoS based service
composition
approaches

No. This is our
contribution

Yes. Binding and
re-binding of
abstract service
compositions

No. This is our
contribution

Yes. But mainly
focused on Web
services in general

of time occupied in the operation, (2) level of infor-
mation processing required by the operation, and (3)
the number of task-set switches performed while en-
gaged in the operation. The major drawback is that this
model has only been shown to be successful for long-
term tasks with very stable task-set switch frequencies.
There is no evidence of its practicality in short-term,
multiple-interaction HCI tasks.

2.3. Dynamic service binding and reconfiguration

This is an important category of study for the re-
quirements of dynamically binding and scheduling ser-
vices. The literature has tended to focus on the instan-
tiation of abstract service compositions at runtime. The
selection of the service is performed using an opti-
mization problem based on various parameters such as
the Quality of Service (QoS) [41]. Because user behav-
ior, the environmental context, and services in AmI en-
vironments are highly dynamic, services must be con-
tinuously monitored and reconfigured [17].

The approach of this paper has partially been in-
spired, although in a different domain, by the influ-
ential studies of Ardagna & Pernici [9] and Alrifai &
Risse [7]. The former work ensures the optimality of
the service components by periodically performing ad-
ditional reconfigurations. The reconfiguration period is
adjusted throughout the service process based on devi-

ations from the environmental context. The latter pro-
poses a heuristic to find close-to-optimal service com-
positions.

Despite efforts to address these challenges, to the
best of our knowledge, this paper is the first attempt
to propose the dimension of cognitive resources as a
first-order class to ensure human-processable service
functionality.

Table 1 summarizes the span approaches in the lit-
erature review.

3. Background

The following simple scenario shows the technical
challenges that need to be addressed to avoid CRD
while time-sharing a primary physical activity and HCI
tasks:

Scenario Juan is rushing to a meeting downtown. He
listens to music while walking through the busy streets
trying to find the restaurant. He realizes that he is close
to the meeting point but cannot determine the exact
location of the restaurant. He decides to interrupt his
physical activity, stepping aside on the street, takes out
his smartphone, launches a map application, and types
in the address of the restaurant. After waiting too long
for the address, he finally arrives at the meeting; unfor-
tunately, he is late. Because he was listening to music
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Fig. 1. The human processing system, the multiple resource competition framework (adapted from [63]), and an illustrative scenario sample.

and looking for directions, he missed the sound of the
alarm notifying him of the meeting time.

Pablo is going to meet Juan. He also needs direc-
tions, but he verbally accesses the map application.
This is launched as the media player volume is low-
ered, and a voice recognition application directly in-
puts Pablo’s query. Pablo receives audio directions to
the restaurant as he walks and listens to his favorite
song. Pablo notices the alarm and runs to the location
three minutes prior to the appointment time. The alarm
application had switched to vibration mode because
Pablo was receiving a considerable amount of auditory
stimuli.

Juan and Pablo arrived to the restaurant, but both so-
lutions are very different in terms of their users’ ex-
periences. Juan had to interrupt his primary activity
to manually perform different HCI tasks, thus wasting
time. In contrast, Pablo never interrupted his primary
activity and was smoothly aided to the restaurant, thus
arriving on time.

Based on the MRT, it is clear that the CRD that may
arise from certain configurations of time-shared HCI
tasks and a user’s activities can lead to a decrement of
user performance in AmI environments. Moreover, in
the 1980s, Wickens found empirical evidence of three
cognitive dimensions that may lead to cognitive inter-

ference when they are shared by multiple mental re-
sources [63]. This interference results in different lev-
els of time-sharing efficiency during competition for
the available mental resources. For instance, Juan tries
to see the map application while attempting to avoid
collisions on the sidewalk. Both activities use vision
(focal and ambient), a non-sharable input modality.

As shown in Fig. 1, the first dimension consists of
three processing stages: perceptual, cognitive or cen-
tral processing, and responsive. Evidence from the
field of psychology shows that perceptual and cogni-
tive stages use common mental resources – sensation
to intake external stimuli, attention to arrange sensed
information, central executive for abstract control of
cognition, and working memory to retain short-term
information, among other resources. The simultane-
ous demand of perceptual, cognitive, or both percep-
tual and cognitive dimensions of mental resources pro-
duces processing stage interference. For instance, as
exemplified in Fig. 1, the HCI task of understanding
the trajectory of the route provided by the map appli-
cation (cognitive stage) interferes with the HCI task of
understanding the lyrics of the song that Juan is lis-
tening to (also cognitive stage). Both require working
memory. In contrast, the responsive stage uses a sepa-
rated set of resources, such as motor control, for walk-
ing or typing on tiny screens.
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Fig. 2. Cognitive resource aware activity and service description
model.

The second dimension consists of the perceptual
modalities of mental resources. These modalities ex-
plain why the time-sharing performance of activities
is better when sensing two stimuli with visual and au-
ditory input modalities – i.e., cross-modal time shar-
ing. In addition, they explain why the intra-modal in-
take of stimuli negatively affects performance, pro-
ducing input modality interference such as auditory-
auditory (when Juan misses the sound of the alarm no-
tifying him that the meeting time is approaching while
he listens a song), visual-visual, or tactile-tactile in-
terference. In contrast, processes operating in different
codes – either verbal or manual/spatial and regardless
of their processing stages – utilize mental resources
that are structurally separated. In this sense, process-
ing code interference will arise if a user simultaneously
tries to drive and manually dial their smartphone. Both
the primary physical activity of driving and the HCI
task of dialing require a manual processing code.

The major aspects of the MRT and the human sys-
tem of information processing have been embedded
into a cognitive-resource-aware activity and service
description model, which is described in a previous
work [30]. This description enriches the service profile
by adding a cognitive layer and is shown in Fig. 2.

The core elements of the model consist of the cog-
nitive resource type, the physical activity, the HCI

task, and the service functionality. The input modali-
ties, processing stages, and processing codes are added
as properties of the cognitive-resource-type object. In
contrast, the delivery of service functionality may re-
quire HCI tasks and in turn cognitive resources char-
acterized for these properties.

3.1. Computing the degree of cognitive resource
interferences

The cognitive interference found by Wickens can be
explained in the framework of the domain of this paper
as follows:

– Input Modality Interference: This occurs when re-
sources from the physical activity and the HCI
task have the same input modality. If this occurs,
the perceptual dimension stops processing, thus
interrupting the HCI task. For each input modal-
ity, this interference value is set to complete if the
physical activities and HCI tasks simultaneously
present the same input modality. They are set to
none otherwise.

– Processing Stage Interference: This accounts for
interference involving the three processing stages.
Intra-stage interference is only produced at one
processing stage, while cross-stage interference
simultaneously involves perceptual and cognitive
stages. The degree of interference for (1) percep-
tual stage and cognitive stage interference can be
described as complete, partial or none, while for
(2) the response stage, the interference can be de-
scribed as complete or none. For each process-
stage interference p in (1), the value for p is com-
plete if the physical activities and HCI tasks si-
multaneously demand the same processing stage
dimension. This is set to none otherwise. The
value for each processing-stage interference q in
(2) is complete if the sum of the demands of the
physical activity and HCI tasks for cognitive re-
sources exceeds the processing capacity of q, par-
tial if it does not, and none otherwise.

– Processing Code Interference: Intra-stage code
interference involves HCI tasks and physical ac-
tivities using cognitive resources with the same
processing code operating at the same process-
ing stage, while for cross-stage code interference,
the cognitive resources have the same processing
code at two different processing stages. For each
processing code, the interference value is com-
plete if the physical activities and HCI tasks us-
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ing cognitive resources have the same processing
code. They are none otherwise.

3.2. Computing the degree of cognitive resources
demand

The performance of physical activities and/or HCI
tasks by a given user is directly proportional to the
availability of their mental resources to the extent that
the depletion of these resources limits the realization
of the activity [46].

Hence, a service composition should consider the
availability of mental resources to ensure that its de-
ployment will be beneficial to the user and not over-
whelming. This can be ensured by verifying that the
total amount of mental resources demanded by physi-
cal activities and HCI tasks are less than the user’s total
processing capacity.

The existing literature [46] assumes that this thresh-
old is a fixed amount and that it can also be calcu-
lated empirically for highly demanding situations such
as hurrying through a busy street. Metrics to assess
the demand of mental resources range from subjective
measures – e.g., the SWAT scale and the NASA TLX
scale [55] – to physiological measures – e.g., heart-rate
variability, pupil dilation, and visual scanning [25].
This is consistent with the idea of a limited human cen-
tral processor and also gives an upper bound for the
determination of feasible HCI tasks to be concurrently
performed with a given physical activity. More details
are given in Section 5.

4. Relevance of the problem: Attention allocation
analysis

A semi-naturalistic and controlled user test is used
to investigate the significance of the CRD problem in
AmI environments. Specifically, this user test attempts
to demonstrate how burdening the inappropriate selec-
tion of service functionality can be for real users in
such environments.

Twenty Engineering students (age range = 18–28,
gender: 30% female and 70% male) are used in two
test cases composed of time-shared physical activities
and HCI services deployed on a smartphone. The first
group (the baseline) consists of highly cognitively de-
manding HCI services and activities as well as cogni-
tively interfering activities and HCI services. In con-
trast, the second group is designed to not include in-
terference and to exhibit low cognitive demands. The
following is an example of test cases in the first group:

– The participant has a conversation at a coffee
shop with the experimenter on a topic of interest
to the participant in an effort to encourage her to
express own opinions. Simultaneously, the partic-
ipant listens to music with lyrics in her mother
tongue from headphones plugged into the smart-
phone (only one earphone was used) while she
drinks a cup of coffee provided by the experi-
menter.

– The participant has to search for specific books
indicated by the experimenter from the bookshelf
of the campus library. The participant listens to
music in the same manner.

While time sharing with these activities, the partici-
pant interacts with the following sequence of HCI seg-
ments composed of HCI tasks, which are performed
using a smartphone:

– Reading an instruction to watch a video
– Watching a video
– Tagging the video (selecting existing tags and

writing new ones)
– Writing comments about the video
– Reading instructions about selecting friends to

share the video with
– Selecting friends from a list

In contrast, for the second group of test cases, a par-
ticipant performs the above HCI tasks while engaged
in the following activities:

– The participant in the same coffee shop only
drinks but neither listens to music nor participates
in a conversation.

– The participant seated at a laboratory desk simply
controls her space.

4.1. Methodology

Eye movement measures are conducted, widely
used in the HCI area, to elicit distractions in dual or
multi-task interactions. Specifically, it is observed how
users divide their attention to perform physical ac-
tivities while simultaneously interacting with sponta-
neously delivered service functionality compositions.
The rationale is that attentional processes are what
govern the allocation of mental resources in the human
information processing system. Moreover, techniques
that monitor peripheral signifiers exposed to the en-
vironment, such as a visual gaze, are among the few
techniques that can be used to assess the human in-
formation processing system [53]. On the other hand,
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the justification for monitoring the user’s visual gaze
is that holding the user’s attention improves the per-
formance of both the HCI tasks of an HCI service
[49,53] and the mobility activities in a given situation
[10,22,44,45,63]. Specifically, the adequate allocation
of attention is an important enabler that determines the
success of a user-centric task. The objective is to assess
the effects of CRD on the user’s performance caused
by inappropriate configurations of HCI services and
activities.

The following characteristics of the user’s visual
gaze are monitored: (1) the duration of continuous at-
tention to the smartphone at each segment of interac-
tion (HCI segment), which is measured in seconds; (2)
the number of attention-switches to the environment at
each HCI segment, which is measured as a frequency;
and (3) the duration of attention-switches before re-
turning to the HCI segment on the smartphone, which
is measured in seconds.

The first metric enables an estimation of how much
time mental resources are allocated to intake the ser-
vice functionality, to process it in the central executive
stage, and/or to rehearse and execute an adequate re-
sponse either vocally or manually/spatially. Long du-
rations of continuous attention to HCI segments on a
smartphone constitute an estimated assessment that the
user is not interrupted by activity demands. In addi-
tion, this is evidence that the limited capacity of the
processing system is not affected by information over-
load coming from both the HCI segments and/or the
activities.

The second metric estimates the interference in-
tensity among mental resources demanded by activi-
ties and HCI segments. Specifically, a high number of
switch-off instances from the smartphone would indi-
cate that the same mental resources allocated to the
HCI segments are required to satisfy the execution of
the activities.

Finally, the third metric assesses the importance the
user gives to the activities, overriding the HCI seg-
ments. Long attention-switching durations before re-
turning to the smartphone indicate that the user’s at-
tention is captured by the activities. This may due to
the cognitive demand of the activities or due to other
external factors such as the user’s preferences or inter-
ests.

4.2. Procedure

To gather data, it is used a mini-camera attached to a
holder, which video tapes the fingers’ interaction with

the smartphone, as shown in Fig. 3a. This camera is lo-
cated at an appropriate distance above the smartphone
screen to ensure an angle that completely covers the
smartphone screen. The visual gaze is videotaped by a
mini-camera held by the experimenter placed in situ to
shadow the user.

At the beginning of each test case, the participant
was asked to read and sign an agreement of participa-
tion. This document stated that the information gath-
ered from the user study would be used anonymously.
It also stated that the personal behavior inferred from
the study would be kept private. This document also
contained a section containing personal data such as
age, gender, occupation, and experience with smart-
phones or cellphones. The participant was then trained
for approximately ten minutes with a small set of HCI
tasks. Most of the participants already had experi-
ence with such interactions on an Android smartphone;
however, this training was strictly repeated for all the
users. This training was performed for the first test case
in which the participant was involved in the study. Dif-
ferent participants started with different test cases to
avoid the effect of automaticity on interactions with the
smartphone.

After the completion of the training upon the first
scene in which the participant was involved, she/he
was informed that a set of spontaneously delivered
“applications” and their respective instructions would
appear on the screen. She/he simply needed to adhere
to the instructions and perform the indicated steps as
well as possible while simultaneously completing the
“physical activity” in which she/he was supposed to be
involved. The terms “applications” and “physical ac-
tivities” are used in a colloquial manner to avoid jar-
gon and unnecessary technicalities. The circuit of the
test cases varied amongst different participants. After
the completion of one test case, the participant, the ex-
perimenter, the assistant user, and the apparatus were
moved to the location of the next test case. The com-
plete circuit took each participant approximately three
hours to complete. After the completion of all of the
test cases, participants were informed of the purpose of
the user study but were asked not share the content and
purpose of it with anyone else (especially with people
they might know who would also participate in the fu-
ture).

4.3. Data analysis and results

A set of 80 movie files captures the interactions
with the smartphone and the visual gazes of the users
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Fig. 3. (a) Apparatus. The results of the attention allocation Analysis: (b) the percentage of continuous attention given to the smartphone at
each HCI segment is higher for the group of non-cognitively demanding and interfering test cases (second group), (c) the average number of
attention-switches to the environment at each segment is lower for the second group, (d) the duration of the attention-switches before returning
to the HCI segment at the smartphone is also lower for the second group.

throughout each test case. From these movie files, the
participants’ behaviors for 480 HCI segments were ex-
tracted. Each segment is carefully analyzed by visual
inspection to gather the data necessary to obtain the
values of the three metrics. The following data was
obtained: (1) the start time of each HCI segment; (2)
the end time of each HCI segment; (3) the exact time
the participant begins their visual interaction with the
smartphone after an HCI segment has started (the value
of which may not necessarily coincide with the start-
ing time of the HCI segment); (4) the start time of each
attention-switch from the smartphone to the environ-
ment, and (5) the end time of each attention-switch
from the smartphone to the environment. The precision

level was ensured based on the minute:second:frame
format.

Figure 3b shows the average amount of time (in
percent) participants attend to the smartphone at each
HCI segment for both the baseline (mean = 69.1%,
min = 55.89%, max = 83.08%, SD = 10.6%) and the
non-cognitively demanding and non-interfering sec-
ond group of test cases (mean = 91.5%, min = 69.3%,
max = 97.54%, SD = 11%). It is clear that the partic-
ipants tend to allocate a greater amount of their atten-
tion to the smartphone in the second group. The im-
provement in a less cognitively demanding HCI ser-
vice segment such as Select Persons is approxi-
mately 15%; however, in a highly demanding segment
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such as Write and Select Tags, the difference
can be as high as 46%. The average improvement can
be as high as 22.4%.

Note that in the baseline, participants interact with
a music player HCI service. This HCI service is per-
formed while the other HCI service segments are per-
formed. Moreover, the listening HCI task required by
the music-playing HCI service strongly demands se-
lective attention, whose input modality is auditory. The
processing code of this selective attention resource is
verbal. In addition, this HCI task demands, to a lesser
extent, a perceptual mental resource, whose processing
code is also verbal. Both mental resources, selective
attention and perception, belong to a perceptual pro-
cessing stage. Finally, this HCI task also strongly de-
mands the central executive processing – also known
as working memory – mental resource. The processing
code of the working memory for this case is verbal, and
its processing stage is cognitive. Thus, because having
a conversation demands the same type of mental re-
sources, there is competition for these resources that
justifies the degradation of the continuous attention to
the smartphone.

The same applies to the mental resource interfer-
ence. There was a verbal-type processing code interfer-
ence between the user’s activity – having a conversa-
tion – and the HCI tasks of writing and selecting tags,
reading instructions, watching a video, commenting on
a video, and listening to music.

This processing code conflict affected both the
central executive processing stage and the respon-
sive stage. The justification for this is that to re-
hearse a response to the interlocutor in a conversa-
tion and simultaneously understand the content of
HCI segments – such as instructions to follow, read-
ing short texts, searching for specific peoples’ names
in a display, or understanding the lyrics of songs –
the participant needed to process information in a
vocal dimension with the central executive system
using working memory as well as long-term mem-
ory.

The average improvement in the number of atten-
tion switches to the environment was 59.5%. The du-
ration of attention switches before returning to the HCI
segment saw an average improvement of 67.2% (see
Figs 3c and 3d).

The question that arises is how to select the ap-
propriate service functionality for a user without cog-
nitively burdening the user in terms of the joint per-
formance of HCI tasks and a primary physical activ-
ity.

5. Dynamic (re)binding and scheduling:
Interleaving user interactions and service
selections

Initially, it is assumed, based on the state of the art
of context-aware activity recognition in AmI environ-
ments, that the primary physical activity with which
the user is engaged can be recognized during runtime
and with high precision. This has been realized by
ubiquitous intelligence, which aggregates increasingly
rich sensing information extracted from public spaces,
space semantics, and personal schedules, among other
types of context information [31,33]. These technolo-
gies are making it easier to spontaneously configure
and deliver service compositions to users in AmI envi-
ronments.

Second, it is assumed that service compositions that
are represented in the BPEL (Business Process Execu-
tion Language) and that are stored in a service com-
position repository consist of sequential and parallel
constructs of abstract services coordinated by control-
flow patterns (AND-Split/Join, XOR-Split/Join, OR-
Split/Join, etc.) [62]. Service instance functionality is
described in WSDL (Web services description lan-
guage) documents, which are stored in a UDDI (Uni-
versal Description Discovery and Integration) registry.
In addition, it is assumed that each service instance
belongs to a list of functional equivalent services rep-
resenting a specific abstract service type. This equiv-
alence applies to both the functionality and the QoS,
which are represented in the interface of each service
instance.

Some existing concepts were extended into the ser-
vice engineering area to apply the cognitive-resource-
aware approach to the service selection problem. The
first distinction refers to implicitly/explicitly interact-
ing services [57]. The former consists of services run-
ning in the background. The latter are services with
which the user interacts (HCI services) by performing
a set of HCI tasks.

Each HCI task is associated with a cognitive dimen-
sion of service (CoS) profile, which provides a descrip-
tion of its cognitive dimensions, as determined by ser-
vice developers through easy-to-conduct task analyses.

Another important distinction is that of service con-
currency. This refers to a collection of time-shared
abstract services from different branches of a paral-
lel construct. The task selector stochastically estimates
the most probable time window of concurrent execu-
tion for these abstract services based on the proba-
bility density functions of the user’s interaction time
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Fig. 4. Overview of the binding and scheduling mechanism.

with specific concurrent HCI services while engaged
in a specific primary physical activity. These interac-
tion times are stored by a monitoring module as his-
torical data. The functions can be updated, and a fitted
statistical model can be found at runtime by mining the
historical data. To avoid cold-start data generation, a
fitted model can be obtained either from collective in-
telligence about users’ sessions with service composi-
tions in AmI environments or from publicly available
datasets, such as the Intel Computer Use Research re-
port, which contains information on 263,612 user ses-
sions with commonly used ubiquitous services [4].

Figure 4 shows that the mechanism dynamically
(re)binds and schedules services by iteratively inter-
leaving user interactions and service selections. All
the steps run on a mobile client, except the select and
schedule services step, which runs on the server side.

5.1. Service composition analysis

In the first phase, the BPEL file containing the ser-
vice composition extracted from the service repository
is translated into a directed acyclic graph (DAG) rep-

resentation to make it easier to fulfill the coordination
of abstract services. This DAG is used to extract exe-
cutable paths in accordance with the control flow pat-
terns that express the abstract service coordination. As
shown in Fig. 5, executable paths represent all possi-
ble alternatives of the composition execution. Thus, se-
quential and/or parallel constructs are extracted from
each executable path. Each of these constructs feeds
the next phase to bind service instances to its abstract
services.

The mechanism applies different types of binding
and scheduling strategies depending on the structure of
the composition, which is implemented in the second
phase of the mechanism.

5.2. Cognitive demand and interferences assessment

5.2.1. Simple and sequential structure
Let us first refer to a chain of services that run in

the background but that end in an HCI service as a
cohesive service sequence. In contrast, let us also refer
to a chain of cohesive, data-flow-dependent sequences
as a dependent cohesive sequence.
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Fig. 5. Details of service composite analysis phase.

The simplest structure of a composition consists of
a sequential behavior with one cohesive service se-
quence. In such a case, for each service instance can-
didate, the occurrence of input modality interference
between the physical activities and the cohesive ser-
vice sequence is initially checked. The second step as-
sesses the processing stage and the conflicts in the pro-
cessing code. Depending on the combination of val-
ues for these types of conflicts, the mechanism follows
different conditional steps. For instance, if no inter-
ference is verified, the cohesive service sequence is a
valid sequence. However, if partial interference exists,
the mechanism computes the total amount of resources
demanded by the cohesive service sequence in con-
junction with all of the physical activities. Thus, the
mechanism determines if this value exceeds the user’s
total processing capacity.

An extension of the simplest case is when there
are data-flow dependencies among cohesive service
sequences, which implies that they cannot be time

shared. Otherwise, the dependencies, i.e., the order of
precedence as stated in the composition, would be vi-
olated. However, this dependent sequential analysis is
quite similar to the simple sequential behavior. Specif-
ically, the analysis needs to be repeated for each of the
cohesive service sequences.

5.2.2. Deserialization of sequences without
dependencies

A different case consists of a series of cohesive ser-
vice sequences without data-flow dependencies, that
is, sequences that may be delivered independently. The
goal in this case is to attempt a deserialization of the
series of cohesive sequences for each service instance
candidate. The rationale can be explained by consid-
ering the benefits of presenting concurrent functional-
ities that aggregately do not surpass the limit imposed
by the user’s total processing capacity. This is sup-
ported by the principle of progressive disclosure [47],
which is widely used in human-computer interaction



A. Jimenez-Molina and I.-Y. Ko / Cognitive resource-aware unobtrusive service provisioning in ambient intelligence environments 49

and which states that “to help maintain the focus of a
user’s attention” [5], it is necessary to sequence “infor-
mation and actions across several screens to reduce the
potential of overwhelming the user” [5]. The logic be-
hind this approach is “about ramping up the user from
simple to more complex actions” [5]. Therefore, by ap-
plying this principle, there emerges a need to prioritize
cohesive service sequences in terms of their cognitive
demands. Once the serial cohesive service sequences
have been ranked, a breadth-first algorithm identifies
the service cohesive sequences that can be deserial-
ized.

Details of the algorithms for sequential structures
and deserialization are provided in the previous work
[30].

5.2.3. Concurrent structure
In this paper, the previous work is extended by pro-

viding an optimization-based approach to solving the
case of a concurrent structure. Moreover, using a par-
allel construct, the first step consists of computing its
service concurrencies based on the probability density
functions described above. This computation defines a
set of concurrencies composed of the HCI abstract ser-
vices that need to be bound at this iteration.

The problem of finding the best cognitive-resource-
aware service composition is an optimization prob-
lem in terms of service concurrency. This is performed
by extracting the cognitive dimension values from the
CoS profile of each HCI task of each service instance
to assess the total demand of mental resources and
their interference.

Therefore, concurrencies are utilized as an input for
a binary linear programming problem (BILP) [7] that
attempts to select an optimal set of HCI service in-
stances such that (1) the total mental resource demand
by the HCI service instances (composed of the solu-
tion found by the solver) and the user’s physical activ-
ity is minimized and (2) at each concurrency, no inter-
ference exists among the three dimensions of the men-
tal resources demanded by the HCI tasks of the HCI
service instances and the user’s physical activity.

As explained in Section 3, according to the MRT,
the total mental resource demand by multiple, time-
shared activities can be calculated as the sum of the
mental resources demanded by each activity. This as-
sumption reflects the additive nature of the cognitive
burden a user faces when performing time-shared ac-
tivities [46]. Therefore, our model computes the to-
tal demand as the sum of the cognitive resources de-
manded by the physical activities and the HCI tasks.

In turn, the resources demanded by the physical activ-
ities are the sum of the average resources demanded
by each physical activity. The total demand of the HCI
tasks functions in the same manner. All demands are
computed using a three-level coding metric, which is
adequate to account for the important variances of ac-
tivity interference in accordance with [63]. Cognitive
attributes have been extracted from [49].

By solving the BILP problem, the service selection
mechanism identifies a set of background and HCI ser-
vice instances that generate feasible, relaxed, or non-
feasible solutions based on the availability of service
instances in the search space. These service instances,
their start times evaluated on the basis of their temporal
latencies, and their estimated durations derived from
the probability density functions define the scheduled
execution plan to be orchestrated and are used to pro-
vide less cognitively taxing HCI service instances to
the user.

5.3. Monitoring

A user’s behavior is monitored by identifying any
termination event of the user’s interaction with the
HCI service instances. Whenever a termination event
is identified, the status of each service contained in
the execution plan of this iteration is updated. Such
a status may correspond to terminated, sched-
uled but not executed, or running. To en-
sure generality, more than one service instance can be
catalogued using the terminated status. This is be-
cause even though the probability is low, it may be pos-
sible that more than one interaction with the service
instances is terminated simultaneously.

A subsequent iteration of the mechanism is trig-
gered with the set of terminated service instances,
the set of running service instances, and the set
of scheduled but not executed service in-
stances. This new iteration consists of computing the
new structure of concurrencies that emerge by consid-
ering the set of service instances whose status is ei-
ther scheduled but not executed or run-
ning and the set of abstract services of the service
composition that are the neighbors of the set of service
instances with the terminated status.

5.4. Formulating the BILP problem

Let S be the set of abstract service types contained in
the set of concurrencies of a specific iteration, whereby
the available service instances must be bound and
scheduled. An abstract service type t is denoted as St



50 A. Jimenez-Molina and I.-Y. Ko / Cognitive resource-aware unobtrusive service provisioning in ambient intelligence environments

and is composed of a set of service instances. In addi-
tion, let st

g be a service instance g of St . The following
variables are defined to compute the cognitive resource
demand:

– U = (A1, A2, . . . , An): A situation composed of
activities Ai

– R: Totality of human cognitive system resources
– Ru = (Pu,Gu,Eu) ⊆ R: Cognitive resources

required by the activities of the situation
– Pu: Perceptual cognitive resources required by

the activities of the situation
– Gu: Cognitive resources required by the activities

of the situation
– Eu: Responsive resources required by the activi-

ties of the situation
– Ri ⊆ Ru: Cognitive resources demanded by the

activity Ai

– d
j
i : Demand of cognitive resource rj by activity

Ai

– Rs = (Ps,Gs, Es) ⊆ R: Cognitive resources re-
quired by the service instance s

– Ts = (t1, t2, . . . , tm): HCI tasks required by the
service instance s

– Rk ⊆ Rs : Cognitive resources demanded by the
HCI task tk

– d
k,g,t
j : Demand of cognitive resource rj by the

HCI task tk of the service g of the abstract service
type t

On the other hand, the following variables are de-
fined to compute the amount of cognitive interference:

– input_moda
i : 1 if the activity Ai produces the in-

put modality a to the user, 0 otherwise
– input_moda

g,t : 1 if the service g of the abstract
service type t produces the input modality a to
the user, 0 otherwise

– pro_codeb
i : 1 if the activity Ai has the processing

code b, 0 otherwise
– pro_codeb

g,t : 1 if the service g of the abstract ser-
vice type t has the processing code b, 0 otherwise

– pro_stagec
i : 1 if the activity Ai has the processing

stage c, 0 otherwise
– pro_stagec

g,t : 1 if the service g of the abstract ser-
vice type t has the processing stage c, 0 otherwise

Finally, the decision variable for service g is de-
fined as Xt

g such that Xt
g = 1 if this service instance

is selected as the abstract service type St ; otherwise,
Xt

g = 0.
The objective function of the BILP problem consists

of the minimization of the summation of the cognitive

demands produced by the HCI tasks of each selected
service instance Xt

g and each activity Ai in the situa-
tion U . Therefore, it is expressed as follows:

Minimize

Activity Demand︷ ︸︸ ︷( ∑
i:Ai∈U

∑
j :rj ∈Ri

di
j

)

+

HCI Tasks Demand︷ ︸︸ ︷( ∑
t :St∈S

∑
g:st

g∈St

∑
k:tk∈TS

∑
j :rj ∈Rk

dk,g,t ∗ Xt
g

)
(1)

The service instances that are selected need to en-
sure that no cognitive interference is produced, which
can be verified by adding the input modality, process-
ing code, and processing stage set of constraints as fol-
lows:

∑
i:Ai∈U

∑
a∈IM

input_moda
i

+
∑

a∈IM

∑
g:st

g∈St

∑
t :St∈S

input_moda
g,t ∗ Xt

g � 1,

(2)∑
i:Ai∈U

∑
b∈PC

pro_codeb
i

+
∑

b∈PC

∑
g:st

g∈St

∑
t :St∈S

pro_codeb
g,t ∗ Xt

g � 1, (3)

∑
i:Ai∈U

∑
c∈PS

pro_stagec
i

+
∑
c∈PS

∑
g:st

g∈St

∑
t :St∈S

pro_stagec
g,t ∗ Xt

g � 1. (4)

To ensure that the summation of the cognitive de-
mands from the HCI tasks of the selected HCI service
instances does not surpass the limit of the human cog-
nitive capacity represented by the threshold TD∗, the
following cognitive demand global constraint is added:

∑
t :St∈S

∑
g:st

g∈St

∑
k:tk∈TS

∑
j :rj ∈Rk⊆Rs

dk,g,t ∗ Xt
g

� TD∗ −
∑

i:Ai∈U

∑
j :rj ∈Ri⊆Ru

di
j . (5)

It is worth noting that without a loss of generality,
the activity demand term can be omitted in both the ob-
jective function and the cognitive demand global con-
straint.
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To ensure the selection of one service instance per
abstract service type St , the following allocation con-
straints is added to the formulation:∑

g:st
g∈St

Xt
g = 1, ∀t : St ∈ S. (6)

Finally, the non-negativity constraints are added as
follows:

Xt
g � 0, ∀g : st

g ∈ St , ∀t : St ∈ S. (7)

This BILP problem can be solved using any solver
strategy, as explained in Section 6. This produces a
set of selected, available service instances whose HCI
tasks do not produce cognitive demands beyond the
limit of the human cognitive capacity and do not pro-
duce cognitive interference among the cognitive re-
source demands. The mechanism includes a relax-
ation strategy, which allows second-best solutions that
slightly surpass the maximum cognitive capacity. This
strategy is applied when a solution cannot be found.

6. Technical evaluation

6.1. Implementation

The cognitive-resources-aware HCI abstract service
binding and scheduling mechanism has been imple-
mented as an independent module of the task-oriented
service framework described in [31]. The mechanism
has been applied to a set of various abstract service
components. This has been performed by a simulation
program written in Java version 1.6 and Android 4.1.2.
The GraphML input capabilities of the Jung Java li-
brary version 2.0.1 has been utilized to implement the
translation to a DAG [2]. The BILP problem is imple-
mented using the open-source Lp-Solve optimization
solver, Java library version 5.0 [13].

The open source Colt Java libraries version 1.2.0 [1]
and the open-source SimJava Java libraries version 2.0
[28] have been utilized to implement the probability
density functions of the user’s interaction time with
different HCI service types.

The observer pattern has been utilized to implement
the iterative interaction between the service engine
and the modules that realize the cognitive-resource-
aware abstract service binding and scheduling algo-
rithm. This “is a software design pattern in which an
object, called the subject, maintains a list of its depen-
dent, called observers, and notifies them automatically
of any state changes, usually by calling one of their

methods” [3]. Thus, the algorithm (denoted here as the
observer) subscribes to any termination of a user’s in-
teraction with a running HCI service instance, as ver-
ified while monitoring the orchestration of the service
instance execution plan by the service engine (denoted
here as the subject).

The experiments are conducted on a MacPro server
that runs the OSX Lion Server with a 3.2 GHz quad-
core Intel processor and 8 GB of RAM. A Samsung
Galaxy S3 smartphone is used as the client.

6.2. Data generation

Different sets of input data were generated to feed
the simulation:

– A set of different HCI abstract service types to be
used to generate the abstract service components.

– A probability density function per each HCI ab-
stract service type, which is utilized to estimate
the user’s interaction time for each type.

– A set of abstract service components from the
HCI abstract service types and general back-
ground abstract services.

– A set of background service instances and a set of
HCI service instances for each HCI abstract ser-
vice type and their respective cognitive attributes.

– A set of user activities and their respective cogni-
tive attributes.

The first and second datasets are generated based on
the Intel Computer Use Research report [4]. As men-
tioned in Section 5, this dataset contains information
on 263,612 user sessions. A session is composed of
the time spent using various service instances from dif-
ferent categories. These data were obtained by moni-
toring the behavior of 136 Android smartphone users
through tracking software installed on their mobile de-
vices.

The interaction time between a user and an HCI ser-
vice instance is described by fitting a probability den-
sity distribution function to the empirical data for each
abstract service type (see Table 2). To statistically eval-
uate the time usage patterns for each abstract service
type (not the session composition), datasets for each
service type are assumed to be independent of each
other. The data treatment and analysis that were con-
ducted are presented in the following:

1. For each abstract service type, only the sessions
wherein the type is used are considered.

2. A basic summary of the data is obtained by plot-
ting the kurtosis and skewness for each dataset.
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Table 2

Probabilistic distributions obtained from the Intel dataset

Abstract Service Type Distribution Shape Scale Mean Log SD Log

Communication Weibull 0.8314 102.79 – –

Browsing Weibull 0.6858 192.91 – –

Games Weibull 0.6924 579.35 – –

Home Screen Lognormal – – 2.8485 1.35

Location Based Weibull 0.7453 144.01 – –

Media Lognormal – – 4.4846 1.71

Other Lognormal – – 2.8384 1.55

Based on this graph, three probability density
distribution functions are chosen as the best-
fitting candidates for the dataset, as proposed in
[18].

3. The three candidate probability density distri-
bution functions are tested in terms of their
goodness-of-fit to the dataset based on the fol-
lowing criteria:

(a) The Kolmogorov-Smirnov and Cramer-von
Mises statistics are used to measure the sim-
ilarity between the empirical distribution
function of the sample and the cumulative
function of the fitted functions.

(b) The Akaike and Bayesian information crite-
rion is used to measure the loss of informa-
tion when the sample is represented by the
candidate distribution functions.

4. With the above information, the best candidate is
chosen, and its parameters are calculated using
the maximum likelihood method (see Table 2).
Figure 6 shows, as an example, the results of the
fitting procedure applied to the session times of a
specific gaming service. Note from the upper-left
graph that the Weibull (0.69, 579.3) probability
density function fits the empirical data shown in
the superimposed histogram very well. This dis-
tribution is in agreement to the same extent when
this statistical fitting is analyzed from the cumu-
lative density function point of view, as shown
in the bottom-left graph. The upper-right graph
shows that the sample quantiles fit the theoretical
quantiles reasonably well. Finally, the last graph
shows that the theoretical and sample probabili-
ties also fit perfectly.

One thousand random abstract service components
were generated using the seven abstract HCI service
types. Each abstract service component is formed
by sequential, parallel, switch, or loop constructs.

Fig. 6. Weibull (0.69, 579.3) probability distribution goodness-of-fit
for data of a specific gaming service session time. Graphs from top
to bottom and left to right: (i) Empirical data histogram and continu-
ous Weibull distribution; (ii) cumulative density function (CDF) for
the empirical data (circles) and the Weibull distribution (continuous
line); (iii) quantile distribution for the sample data versus the quan-
tile distribution for the Weibull fitted probability distribution, and
(iv) observed probability distribution for the sample data versus the
observed probability distribution for the Weibull fitted probability
distribution.

For each of the HCI abstract service types, a set
of 100 HCI service instances were generated, which
were later decomposed into eleven HCI tasks with
known cognitive attributes extracted from [49] fol-
lowing the encoding of Wickens mentioned in Sec-
tion 5.2.3. The user behavior is represented as a user
performing a set of physical activities in a given situa-
tion.

Two hundred test cases were defined as the combi-
nations of two levels of the approach and 100 different
sizes of available service instance candidates per each
HCI abstract service type. The approach was divided
in two levels as follows:
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Fig. 7. Metric comparison before and after relaxation, with and without interference constraints: a) success ratio of concurrency bindings;
b) optimality of concurrency bindings; c) human cognitive capacity saving; d) processing time with and without interference constraints.

– Level 1: Minimization of the cognitive demand
aspect, constrained by the maximum cognitive
demand.

– Level 2: Includes level 1 and is constrained by
the cognitive interference aspect (input modality,
processing code, and processing stages interfer-
ence).

Table 3 shows the metrics considered for each as-
pect.

6.3. Experimental results

Figure 7a shows the success ratio of the concurrency
bindings. This is approximately the percentage of con-
currency bindings that do not exceed the maximum
threshold defined by human cognitive capacity. It is
used the threshold defined in [63].

Table 3

Evaluation aspects and criteria

Aspect Criteria

Cognitive
Demand

– Success Ratio of Concurrency Bindings

– Human Cognitive Capacity Saving

– Optimality of Concurrency Bindings

Cognitive
Interferences

– Input Modality Interferences

– Processing Code Interferences

– Processing Stage Interferences

The success ratio for level 1 does not depend on the
number of available HCI service instance candidates.
For any number of candidates, the level 1 approach is
able to find approximately 85% of the optimal solu-
tions. However, this is at the risk of possible cognitive
interference.



54 A. Jimenez-Molina and I.-Y. Ko / Cognitive resource-aware unobtrusive service provisioning in ambient intelligence environments

This figure also shows the success ratio that can be
obtained if the relaxed concurrency bindings are also
considered (100%). The relaxed concurrency bindings
consist of those solutions provided by the BILP prob-
lem when the maximum human cognitive capacity
threshold is relaxed. Specifically, these solutions are
the second-best solutions that can be obtained with
the overhead of over-demanding the human cognitive
capacity of the user. This promising behavior of the
level-1 approach means that solutions to the BILP
problem exist. In this sense, the proposed relaxation
strategy is demonstrated to be effective at this level.

Level 2 exhibits with a bigger risk of not finding any
feasible solution and has a success ratio of between
75% and in some points is slightly superior to 80%.

In summary, even though this level completely
avoids all the cognitive interference (input modality,
processing code, and processing stage interference),
there is overhead: a clear risk of providing infeasible,
over-cognitively demanding concurrency bindings.

Figure 7b shows that the optimality of the service
concurrency bindings that are relaxed to find feasible
solutions decreases at level 2, while that of the relaxed
concurrency bindings for the level 1 approach is steady
at 40%.

The optimality using the level 2 approach barely
achieves 30%. Therefore, at this level, the mechanism
is not appropriate for providing acceptable service con-
currency bindings because many second-best solutions
are extremely cognitively taxing to the user. The op-
timality of the relaxed, second-best solutions is poor.
However, these drawbacks are offset by the total elim-
ination of cognitive interference.

Figure 7 c) shows the human cognitive capacity sav-
ings in percent. It is clear that the concurrency bindings
obtained after the relaxation are over demanding. The
human cognitive capacity savings of the concurrency
bindings obtained using the level 1 approach before re-
laxation, i.e., using optimal solutions, nearly achieves
60% and behaves stably regardless of the availability
of HCI service instance candidates. Theoretically, this
means that the user only utilizes slightly more than
40% of his or her capacity in both the interaction with
the HCI services and the performance of the physical
activity. In contrast, the concurrency bindings obtained
after the relaxation strategy are over demanding in all
cases but never greater than a 10% extra cognitive de-
mand on the user.

This is not a bad solution in the sense that, as
demonstrated by Oulasvirta et al. [49], users are al-
ways able to define their own strategies to correctly ad-

dress situations with low levels of excessive demand,
such as by holding the phone and driving or biking and
talking on the phone, without compromising the per-
formance of their activities and interactions with the
HCI services. Therefore, in terms of the criteria of hu-
man cognitive capacity savings, the level-1 approach is
shown to be effective as well as in terms of the success
ratio.

7. Discussion

This paper presents a novel, multidisciplinary ap-
proach to address the problem of CRD in the provision
and consumption of unobtrusive service compositions
in AmI environments. As shown in the recent litera-
ture, the technostress caused by this problem hampers
users’ engagement by draining mental resources, lead-
ing to a poor performance in both physical activities
and HCI tasks. This interdependence between cogni-
tion and emotion justifies the examination of the cog-
nitive context of a user as an integral part of the large
umbrella posed by affective computing.

Physical activities and HCI tasks simultaneously de-
mand multiple cognitive resources. This joint demand
impinges on the limits of human cognitive capacity.
In addition, the attributes of these resources may in-
terfere with each other. Both the mental resource de-
mand and interference produce a decrement in time-
sharing efficiency when multiple activities are per-
formed by a user. The relations among physical activ-
ities, HCI tasks and mental resources are represented
in a cognitive-resources-aware model based on knowl-
edge of the human information processing system and
multiple resource theory. This model enables one to
assess the cognitive resources demanded by HCI tasks
and physical activities using the CoS profile. In ad-
dition, this model and its profiles enable one to de-
termine the interference among multiple cognitive re-
source demands. The procedure used to identify cog-
nitive resource demands and interference among their
attributes for a specific activity or HCI task turns out
to be a generalizable method because the CoS profile
is generated in advance by conducting a task analysis.
This is a practical approach, having considered that the
state of the art of cognitive-resources-aware computing
has yet to address the difficulty of assessing the cog-
nitive processes of the human information processing
system from the periphery. Current studies that make
use of sensors – such as mobile eye trackers, elec-
trocardiograms, and electroencephalogram headsets –
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that capture cognitive loads bound to cognitive pro-
cesses have been shown to only be meaningful in con-
trolled settings [14,15,25]. They are still not generaliz-
able to the diversity of physical activities and context
changes in real-world scenarios.

In addition, this paper introduces a dynamic service
binding and scheduling mechanism for the sequential
and concurrent structures of a service composition. In
this mechanism, the time window of the concurrent ex-
ecution of abstract services is stochastically estimated
in accordance with the probability density functions of
interaction times. When the mechanism is applied to
a real user, such functions should be trained from per-
sonal interaction data. This is something not shown, at
least for now. However, this does not affect the valid-
ity of the measurements because a rigorous statistical
fitting was conducted from experimental datasets. The
same is valid for the user activities, which are extracted
from a real-world time-use survey dataset. While ran-
domizing service components guarantees variability of
settings, it is also true that this procedure assumes that
every setting is possible, which may not necessarily
be true. To overcome this limitation, the set of service
components was pruned by considering that humans
can keep 7±2 chunks of information in their working
memory, as stated in [43]. To produce a conservative
scenario, more than 5 branches in a parallel construct
were not allowed.

One of the limitations of the technical evaluation is
that the personal characteristics of a user cannot be
captured, such as automaticity when using certain ser-
vices and the influence of fatigue on the availability of
cognitive resources. A user test to embrace such char-
acteristics is required, which is something this research
is currently performing and will be reported soon in
the future work.

8. Conclusion

The major technical contributions of this work are
as follow: (1) a cognitive-resource-aware activity and
service description model has been described; (2) two
theories from cognitive psychology have been trans-
formed into a computational model; and (3) an effec-
tive and scalable algorithm for dynamically binding
and scheduling service instances with abstract service
compositions considering cognitive resources has been
proposed.

As part of the framework for future research, there
exists the opportunity to enrich this approach by

adding new factors, such as emotion sensing [59], the
automaticity that certain users may have when per-
forming some HCI tasks, the influence that user fa-
tigue may have on such performance, and the compu-
tation of mental workloads using multiple bio-sensors
to measure physiological variables, that may affect the
performance of time-shared activities to the binding
and scheduling algorithm. In particular, this research
is currently collecting data from a heart-rate monitor,
a mobile head-mounted eye-tracker, an electrocardio-
gram, and a head-mounted electroencephalogram. The
goal is to compare individual and hybrid classifiers
based on their ability to assess mental workloads in a
generalizable manner.

In addition, a more complete user study is currently
being conducted by applying the NASA TLX mental
load Questionnaire and the above physiological mea-
surements [55]. Moreover, the mechanism is being in-
tegrated with a context manager to automatically trig-
ger the optimization.
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