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Abstract. The potentially attractive exploitation of Ambient Intelligence (AmI) seeks improving performance and quality of
life of people inside workplaces (e.g., offices, manufacturing work centers, homes). To succeed at making the implementation
of AmI fruitful it is important to understand and objectively quantify the logical relationship among the following relevant
elements: AmI key enabling technologies, AmI features, basic workplace functions or tasks, and performance measures of the
activities of the workplace. Such relationships are fully characterized by ill-structuredness, subjectivity and vagueness. In this
article we structure these ill-defined relationships and offer a generalized conceptual model as a foundation for understanding and
objectively quantifying such relationships. We then propose fuzzy numbers as an adequate means for expressing the vagueness
that is inherent with the subjective nature of the AmI features, technology impacts and characteristics, and relationships with
workplace performance measures. The fuzzy numbers are adequately employed through the Analytical Hierarchically Process
(AHP) in the form of a Fuzzy-AHP model. We give some example applications from a manufacturing system workplace. The
results of the AmI technologies – performance measure assessment frameworks – can be used as a guide in designing smart
workplaces and as a valuable insight in adopting the most significant AmI technologies.

Keywords: Smart environment/workplaces, Ambient Intelligence (AmI), Multi-criteria Decision Analysis (MCDA), manufactur-
ing systems, Fuzzy Analytical Hierarchical Process (Fuzzy-AHP)

1. Introduction

AmI [1] are emerging technologies and concepts
that have a high potential for improving the qual-
ity of life and performance in various types of en-
vironments, especially in workplaces. The prospec-
tive improvements that could be gained from apply-
ing AmI to the functional performance of people and
systems as a whole in the workplace are sought. AmI
aims to create an adaptive, friendly and personal-
ized digital environment that understands, learns, rea-
sons and interacts properly and intelligently with user
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needs. This achievement can therefore have positive
effects on both the users’ and the system’s perfor-
mance.

Some authors have given several definitions to AmI,
which have been summarized in Cook et al. (2009) [2].
Cook et al. (2009) [2] and Augusto [3] posed a com-
mon definition of AmI: “A digital environment that
proactively, but sensibly, supports people in their daily
lives.” Furthermore, Cook et al. (2009) emphasized the
aspects of intelligence and learning in AmI realization.
They pointed out that while Ambient Intelligence in-
corporates aspects of context-aware computing, disap-
pearing computers, and pervasive/ubiquitous comput-
ing into its sphere, there is also an important aspect of
intelligence in this field. As a result, AmI incorporates
artificial intelligence research into its purview, encom-
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passing contributions from machine learning, agent-
based software, and robotics. In our article, based on
the summarized definitions in [2], we offer an inclu-
sive definition of the AmI environment: the “AmI en-
vironment is a system of unobtrusively networked in-
telligent objects with intelligent and friendly interfaces
that can recognize the presence of people and their
context and that can learn, adapt and appropriately re-
spond to their needs, habits, gestures, voices, and emo-
tions.”

In fact, AmI is considered to be the composition
of three emergent technologies: Ubiquitous Comput-
ing, Ubiquitous Communication and Intelligent User
Interfaces. The aim of the integration of the aforesaid
technologies is to make wider the interaction between
human beings and information technology equipment
through the use of an invisible network of ubiquitous
computing devices that compose dynamic computa-
tional ecosystems that are capable of satisfying the
user’s requirements. The realization of AmI concepts
will lead to establishing a collaborative working en-
vironment, where virtualized entities will communi-
cate to each other. These entities can be humans, ar-
tificial agents, web/grid services, virtualized entities
representing the real things (not only human beings),
or descriptions of human knowledge, among others.
These entities will be able to interact with one an-
other in an AmI environment to leverage the full poten-
tial of network-centric environments for creativity im-
provement, boosting innovation, and realizing produc-
tivity gains [4]. Such networks will provide the pos-
sibility for individuals to experience interaction with
human and artificial agents in their working environ-
ments. AmI, by means of ubiquitous computing and
communication technologies, is anticipated to have a
large amount of impact on future technologies, busi-
ness paradigms and systems, especially in manufactur-
ing and decision support systems. Because of this re-
ality, there is currently a strong emerging desire of re-
searchers and practitioners to investigate the impact of
implementing AmI on the performance of systems and
people in various types of environment. This desire
motivates researchers to study and characterize the re-
lationships among the AmI enabling technologies, the
characteristics of the AmI environment and the perfor-
mance of the systems and people living and working
within such an AmI environment.

A considerable amount of research has been con-
ducted in the field of AmI. Mostly, the literature fo-
cuses on certain aspects of AmI, on how an ambi-
ent intelligent environment and frameworks could be

created, the key technologies that enable AmI, the
subjective evaluation of AmI advantages and the role
of Artificial Intelligence in providing and implement-
ing AmI. The recent research record extensive relies
on intelligent multi-agent systems. For example, Ser-
rano & Botia in 2010 [5] introduced a new methodol-
ogy that was based on the use of Multi-Agent-Based
Simulations (MABS) for the testing and validation of
AmI-based Ubiquitous Computing (UbiCom) systems.
They pointed out that the motivation for this methodol-
ogy is its application to UbiCom large-scale systems,
in which large numbers of users are involved in ap-
plications that address dangerous environments. Hu et
al., in 2011 [6], proposed a multi-agent framework to
support applications development of ambient systems.
They stated that in the programming model of the pro-
posed framework, ambient systems can be developed
by collaborations between mobile agents and service
(or resident) agents, where resident agents provide ap-
plication services on devices and mobile agents pro-
vide communications services on behalf of the owner
applications. Tapia et al. in 2011 [7] presented the in-
tegration of the Hardware-Embedded Reactive Agents
(HERA) Platform into the Flexible and User Ser-
vices Oriented Multi-agent Architecture, called (FU-
SION@), which is a multi-agent architecture for de-
veloping AmI systems; this architecture integrates in-
telligent agents with a service-oriented architecture ap-
proach. Tapia et al. stated that because of this integra-
tion, FUSION@ has the ability to manage both soft-
ware and hardware agents using self-adaptable hetero-
geneous wireless sensor networks. Santofimia et al.
in 2011 [8] proposed a treatment of two essential as-
pects of systems for ambience intelligence: event man-
agement and response generation, through the use of
an ambient intelligence semantic model that describes
what actions and events are taking place, how they
are connected and how computational systems should
think about their meaning. Bosse et al. in 2012 [9]
presented the development of a toolbox that can be
used by a modeler to design Ambient Intelligence ap-
plications. This toolbox contains a number of model-
based reasoning methods and approaches to control
reasoning in the AmI environment. Dipsis & Stathis in
2012 [10] pointed out that the cost of state-of-the-art
devices and robots is critical for the uptake of Ambi-
ent Intelligence (AmI) and that one way to use low-
cost hardware for both devices and robots is to run
smart software remotely as agents deployed on com-
putationally rich environments. They considered that
the devices and the robots can be seen as the avatars
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of agents, while the way that devices and agents are
related might be considered to be an Ambient Ecology.

Other researchers were devoted to experimentation
on the realization of AmI environments, including the
work conducted by [11] to promote multimodal in-
teractions. They presented a novel approach based on
model-driven development to seamlessly integrate tex-
tual information and knowledge resources and to au-
tomatically and effortlessly adapt question-answering
systems to be useful for restricted-domain AmI envi-
ronments, such as e-Science. Other related work by De
Paola et al. in 2012 [12] described the implementa-
tion of a test-bed that provided the hardware and soft-
ware tools for the development and management of
AmI applications based on wireless sensor and actu-
ator networks, with the main goal being energy sav-
ing for global sustainability. They presented a sam-
ple application that addresses temperature control in
a work environment through a multi-objective fuzzy
controller, while accounting for users’ preferences and
energy consumption.

Relevant to this research in the field of manufactur-
ing, the AmI concepts and technologies have been ap-
plied to several areas, such as business, engineering,
and industry. Relevant to this research, Kovács et al.
in 2006 [13] and Kopácsi et al. in 2007 [14] intro-
duced some basic research results that were achieved
in the application of Ambient Intelligence for improv-
ing Product Life-cycle Management for manufactur-
ing companies and service engineering for service-
oriented companies. Maurtua et al. in 2006 [15] pre-
sented the research activities of analyzing technologi-
cal, human and social needs and implications for AmI
in the manufacturing field.

With respect to the uncertainty and the use of fuzzy
logic, which is one of the tools proposed in our re-
search (and more deeply in attempting to address the
uncertainty and subjectivity that is associated with un-
derstanding relationships between AmI features and
the AmI technologies in the workplace environment),
some research that involves the utilization of fuzzy
logic has been conducted. Doctor et al. in 2005 [16]
presented a novel approach for realizing the vision of
ambient intelligence in ubiquitous computing environ-
ments (UCEs). This approach is based on embedding
type-2 fuzzy intelligent agents in UCEs. These agents
can handle the different sources of uncertainty and im-
precision in UCEs, to obtain a good response. Acam-
pora & Loia in 2008 [17] proposed a ubiquitous fuzzy
computing method for Ambient Intelligence, to ad-
dress the reverse interactions, from devices to users, in

contrast to the prior attention on the interaction from
users to devices.

An extensive study of the literature has revealed that
nearly no research has been performed that focuses on
the influence of AmI on the performance of manufac-
turing systems or, in general, workplace environments.
A large step has been achieved toward assessing the in-
fluence of AmI on managerial decision support in the
workplace through the research conducted in [18], in
which conceptual models were developed for model-
ing the relationships among AmI enabling technology,
AmI enabled features and the performance measures
of managerial decision support (MDS). The developed
models constitute the basic framework for further de-
velopment in this respect within this research. Indeed,
also very few or even no research attempts have fo-
cused on developing formal and objective models to
quantify the relationship between AmI attributes and
the performance of people and systems. Research at-
tempts to achieve a deeper move toward being able
to assess the impact of the ambient intelligence tools
and technologies on the performance of manufacturing
system functions that were built in the work were con-
ducted by Aly & Vrana in 2011 [19], where an objec-
tive assessment model was presented to quantify the
influence of the AmI features on the managerial deci-
sion support workplace.

This article presents a generalized model for the
quantification of the impacts of AmI features and at-
tributes on the performance of any workplace. The
model hierarchically structures the relationships be-
tween AmI technologies and the workplace perfor-
mance measures. However, because the relationships
of the impacts of AmI technologies on the work-
place performance measures and their significances are
mainly subjective or qualitative, and so are the AmI
features, which are also subjective or qualitative con-
cepts (e.g., adaptability, context awareness, and friend-
liness). Because human judgment is viewed as uncer-
tain, vague, or inexact, one way is to resort to human
experts to linguistically (qualitatively) quantify and as-
sess their values using a psychometric numerical scale.
One common and efficient method to manipulate and
quantify the inexactness or vagueness due to subjec-
tivity is to employ fuzzy sets (i.e., to express individ-
ual variables as fuzzy quantities). Fuzzy-AHP has im-
pactful advantages, which are the capability to con-
sider a non-homogenous mix of quantitative and qual-
itative (subjective) factors and concepts and the capa-
bility to account for the vagueness that is associated
with quantifying intangible or subjective concepts. The
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proposed model effectively enables handling a wide
range of subjective and vague concepts that are hi-
erarchically embedded in the subtle relationship be-
tween AmI features and the performance measures of
the workplace. Thus, one can understand the various
impacts of every AmI technology and feature on the
workplace performance, which consequently could be
utilized more wisely and efficiently. These goals will
be achieved through a Hierarchical fuzzy-AHP model
that adequately fits the given decision-making prob-
lem through modeling the hierarchical relationship. It
permits manipulating many subjective and vague con-
cepts through the use of an AHP pair-wise comparison
of fuzzy values that represent the significance of the
AmI technologies and the features of the functionali-
ties and performance measures. The article structures
such a relationship and proposes a Fuzzy Analytical
Hierarchical Process (Fuzzy-AHP) model for measur-
ing the vague influence of AmI on the manufacturing
system performance measures, as a typical example
workplace application that still has not been investi-
gated.

This article is organized as follows. Section 1 in-
troduces the main interest of this article in addition
to the results of a recently conducted relevant lit-
erature review. Section 2 reviews the key AmI at-
tributes and technologies. In Section 3, the impact of
the proposed AmI generalized hierarchical model on
the workplace performance is introduced. Section 4
presents the Fuzzy-AHP model for quantitatively as-
sessing the impact of AmI technologies on the perfor-
mance of the workplace. An illustration case study ex-
ample is provided to demonstrate the effectiveness of
the proposed model at objectively mapping the influ-
ence of the AmI technologies on the workplace perfor-
mance through a hierarchical relationship and Fuzzy-
AHP in Section 5. Lastly, a conclusion is stated in Sec-
tion 6.

In the next section, the basic AmI features and key
enabling technologies are highlighted.

2. AmI attributes and key enabling technologies

The objective of AmI is to broaden the interaction
between human beings and digital information tech-
nology through the use of ubiquitous computing de-
vices. Conventional computing primarily involves user
interfaces (UIs), such as a keyboard, mouse, and vi-
sual display unit, while a large ambient space that en-
compasses the user is not utilized as much as it could

be. In this section, we review the first component of
the vague relationship between AmI technologies and
workplace performance measures, which are the dis-
tinct AmI attributes or features that have been identi-
fied and are summarized in [18].

The term AmI was defined by the Advisory Group to
the European Community’s Information Society Tech-
nology Program STAG in 2005 [1], as “the conver-
gence of ubiquitous computing, ubiquitous communi-
cation, and interfaces adapting to the user” [21]. Ubiq-
uity involves the idea that something exists or is ev-
erywhere at the same time on a constant level, for ex-
ample, hundreds of sensors placed throughout a house-
hold or in a factory where some number of agents
are combined into the network, while the network can
monitor the operation of household equipment, ma-
chine tools or the production of any future product.
AmI incorporates properties of distributed interactiv-
ity (e.g., multiple interactive devices, remote interac-
tion capabilities), ubiquitous computing (the “invisi-
ble” computer concept), and nomadic or mobile com-
puting. AmI can provide the user with a virtual space
that enables flexible and natural communication with
the computing environment or with other users, pro-
viding input and perceiving feedback by using pro-
portionally all of the available senses and communica-
tion channels. AmI, on the other hand, uses this space,
e.g., in the form of shape, movement, scent and sound
recognition. This information media became possible
through new types of interfaces and will allow a dras-
tically simplified and more intuitive use of devices.
Wireless networks will be the dominant technology
for communication between these devices. The com-
bination of simplified use and its ability to communi-
cate will eventually result in increased efficiency for
users and will create value, leading to a higher de-
gree of ubiquity for the computing devices. Exam-
ples of such devices range from common items such
as pens, watches and household appliances to sophis-
ticated computers and production equipment. There-
fore, AmI features are avatars of utilization of AmI
key enabling technologies. The AmI key technolo-
gies can be summarized into 6 different complemen-
tary technologies: sensors, smart actuators, wireless
networks, securities/privacy technologies and human
computer interaction (HCI) technologies, as depicted
in Fig. 1.

The review of AmI technologies and their relation-
ships to AmI attributes has been presented in [20]. The
subjective study of the conducted literature and Inter-
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Fig. 1. The Key AmI enabling technologies.

net resources survey [20–22] has clearly identified sev-
eral distinct features of AmI, as follows (see Fig. 2):

– Proactive response: this type of response can be
accomplished through learning users’ behaviors
and preferences when interacting with the system
and anticipating future moves and desires.

– Adaptive response: this type of response in-
volves the perception of the system as intelligent
by people who naturally interact with the system,
while the system automatically adapts to their
preferences.

– Context-awareness: context-awareness provides
computing environments that have the ability to
usefully adapt to the services or information that
they provide. It is the ability to implicitly sense
the users’ needs and automatically derive them.
Context-aware applications are more attentive, re-
sponsive and aware of their users’ identity and
state and their users’ environment.

– User friendly interfaces: user interfaces should
exhibit simplicity of learning, communication
and intuitive usability by relatively low-skills or
general-skilled users.

– Handling different sources of uncertainty and
imprecision: application systems should be de-
signed to address diverse sources of vagueness,

uncertainty, and imprecision; this type of source
frequently occurs in today’s real world.

– Unobtrusive intelligence: applications systems
should exhibit implicit, flexible, seamless and
natural intelligence to users.

– Ubiquitous computing: this type of computing
is accomplished through the presence of pleasant
computing devices everywhere in the system.

– Ubiquitous communication: access to network
and computing facilities everywhere.

– Multimodal and broad interaction: broad inter-
action through enabling: shape, movement, scent
and sound recognition and outputs between hu-
man beings and digital information technology.

Fig. 2. The nine main features of AmI.

An extensive review and classification of AmI ap-
plications, technologies and research can be found in
(Hong et al. (2008), Augusto (2008)) [20,21].

The next section presents the generalized hierarchi-
cal conceptual model of AmI’s impact on workplace
performance.

3. The generalized hierarchical model of AmI
impacts on the workplace performance

The key appealing aspect of an AmI implementa-
tion is to improve the performance and conditions in
the workplace. This aspect could be more effectively
achieved through understanding and structuring the re-
lationships between AmI technologies and the perfor-
mance measures of a workplace; this aspect is still an
open question in research studies.

We can imagine that a workplace is composed of
several subsystems, each of which has a specific set



656 S. Aly et al. / A generalized model for quantifying the impact of Ambient Intelligence on smart workplaces

Fig. 3. Elements of the AmI impact on the workplace relationship.

Fig. 4. The conceptual model of AmI impact on the workplace.

of functions, and those functions could be, in turn, di-
vided into tasks and further divided into subtasks. Fig-
ure 3 describes briefly this set of conceptual relation-
ships. In Fig. 3, upon implementation of AmI tech-
nologies, the realization of AmI attributes or features
(adaptivity, context awareness, multimodality, among
others) becomes possible, which individually or coop-
eratively affects the function and task performances of
the workplace subsystems and results in the whole sys-
tem performance outcome.

In fact, the first attempt to develop an objective re-
lationship among AmI features from one side to the
performance of the workplace has been performed in
Aly & Vrana (2009) [18]. This research was conducted
within the project Ambient Intelligence for Managerial
Decision Support (AMIMADES) (2006–2009). In Aly
& Vrana (2011) [17], we had extended the conceptual
AmI models proposed in Aly & Vrana (2009) [16] into
an objective model through constructing a hierarchi-
cal model to structure such inherently subjective and
vague relationships and through employing fuzzy sets.
In this study, we intend to further extend and general-
ize the studied relationship to be useful for applications
in various types of workplaces.

The relationship among AmI key enabling technolo-
gies and the workplace measures of performance can
be logically structured as composed of the three-stage
sub-relationships among three groups, which are the
following:

– The mapping (i.e., the significance relationship)
from AmI key enabling technologies into AmI at-
tributes/features.

– The significance relationship between AmI at-
tributes/features and the workplace key perfor-
mance functions.

– The significance or importance relationship be-
tween the workplace’s key functions and its per-
formance measures.

The three stage conceptual relationships model is
depicted in Fig. 4. One important challenging problem
with the model shown in Fig. 4 is that it comprises
mainly subjective (i.e., qualitative) aspects, which ex-
ert inherent vagueness on the quantification and objec-
tivity of the relationships and accurate computation of
their outputs. However, still the proposed model con-
tributes to simplifying the main AmI technology per-
formance relationships through hierarchically structur-
ing them. The justification and effective implementa-
tion of AmI technologies should be based on an objec-
tive quantification of their impact on the subject sys-
tem or the workplace. To be able to effectively and
beneficially employ the AmI technologies on improv-
ing the performance and quality of such a workplace,
it is necessary to understand the impact of those tech-
nologies in realizing the AmI features and positively
affecting the performance of the functional compo-
nents or subsystems at the workplace. This task cannot
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Fig. 5. The generalized hierarchical model of assessing AmI impact on the workplace.

be accomplished easily directly, but it might be accom-
plished by restructuring the relationships into their log-
ical intermediates. Such restructuring could be simpler
because the complexity in understanding and measur-
ing the relationship will strongly decrease when bro-
ken down into smaller/partial relationships.

To objectively assess the impact of AmI on the
workplace performance and given the hierarchical
nature of the relationship and multitudes of AmI
technologies, AmI features, workplace functions, and
workplace performance measures, the model in Fig. 4
can now be more objectively and conveniently de-
picted as in Fig. 5. Figure 5 describes an assessment
decision-making problem of AmI impact on the work-
place performance. It consists of layers, each of which
comprises one of four elements of the studied AmI im-
pact relationship. The goal of the problem is placed
at the top, followed by the elements of the relation-
ship. The depicted hierarchy is now adequate for im-
plementing several hierarchical decision-making tools
and, among them, the most common and widely used
tool, the Analytical Hierarchy Process (AHP) [23],
which will be utilized along with fuzzy logic in a
Fuzzy-AHP model to assess the impact of AmI on the
performance in the workplace.

The top of the above hierarchical tree is the main
goal, which is to measure the impact of the AmI on the
workplace performance. This goal is composed of the
following conceptual levels:

– Level α: the performance measures (αi) on the
functions performed in the workplace; m is the
total number of measures

– Level β: the key functions (βj) performed in the
workplace, n is the total number of functions

– Level γ : the AmI features or aspects (γk); o is the
total number of AmI features

– Level δ: the AmI key enabling technologies (δl);
p is the total number of assessed AmI technolo-
gies

In this research, we propose a Fuzzy-AHP [23]
model as an adequate tool for handling the proposed
hierarchical structure; this tool is full of subjective con-
cepts that could be quantified only using a linguistic
description and psychometric numerical scale based on
a human expert’s judgment. Fuzzy logic is an effective
technique for handling vague and inexact quantitative
and qualitative assessments that lead to vague concepts
and relationships, and therefore, the proposed Fuzzy-
AHP model is highly suited to tackling the hierarchical
structure and the vague subjective concepts simultane-
ously.

Fuzzy logic theory is not a goal of this study; in-
stead, it serves as a well-proven formal theoretical
method for expressing ambiguity, which is also inher-
ent in quantifying the ambient intelligence impact on
smart workplaces. To help readers who are not famil-
iar with fuzzy set theory, we have added Appendix B
for a brief introduction to fuzzy sets and fuzzy num-
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bers and their relevant operations. The purpose of Ap-
pendix B is to improve the understanding of the role
of fuzzy numbers in expressing the uncertainties that
are involved in assessing subjective, vague concepts
and relationships. Appendix B will also help in under-
standing the Fuzzy-AHP procedure mathematics that
is used in this article.

The next section reviews and introduces Fuzzy-
AHP, which will be used to quantify the vague concept
of the hierarchical relationship model.

4. A Fuzzy-AHP model for measuring the impact
of AmI on the manufacturing workplace’s
performance

In this article, fuzzy numbers will be used to quan-
tify vague or inexact experts’ judgments on the sig-
nificance relationships among the elements of the four
levels of the proposed assessment framework: AmI
technologies, AmI features, workplace functions and
workplace performance measures.

AHP was used in [22] for evaluating decision sup-
port systems under multi-criteria goals. Fuzzy-AHP
extends Saaty’s AHP by employing fuzzy logic in its
mathematical procedure. In 2008, Aly and Vrana [23]
developed a fuzzy version of Saaty’s AHP method.

In this section, we present an application of a devel-
oped Fuzzy-AHP for modeling the vague and complex
relationships among AmI technologies and workplace
performance criteria. As Fig. 5 indicates, the proposed
Fuzzy-AHP hierarchy will include 4 levels. The top
level (level 0) is the goal of the hierarchy, which is as-
sessing the influence of AmI on the workplace perfor-
mance. Then, the next level (level α) is the major as-
sessment criteria; those criteria are the workplace per-
formance measures aforementioned in this article. The
second level (level β) contains the main functions or
tasks that are performed in the workplace. The third
level (level γ ) contains the AmI features and, lastly, the
lowest level (level δ) includes the AmI key enabling
technologies.

The basic notion behind the arrangement of the
above Fuzzy-AHP hierarchy, which constitutes one ad-
ditional achievement of this article, is that the position-
ing of the AmI technology level as the lowest level in
the hierarchy will lead to and make it possible to com-
pute their overall priorities or significance with respect
to the workplace performance measures. The consecu-
tive evaluation of priorities via the intermediate levels
(i.e., the AmI features and workplace functions) and

the utilization of the simple pair-wise expert compar-
isons using fuzzy numbers or alternatively fuzzy lin-
guistics highly contributes to minimizing the assess-
ment complexity caused by the subjectivities that are
inherent in the constituents of the four levels of the hi-
erarchy. This relationship will be illustrated more for-
mally later in this article. In the next sub-section, we
review the computational procedure of Fuzzy-AHP de-
veloped in [23] and state how it could be utilized by
the problem addressed in this research.

4.1. The Fuzzy-AHP procedure

Aly & Vrana in 2008 [23] proposed and success-
fully utilized a fuzzy version of Saaty’s AHP method
that can be considered to be a fusion of the most com-
mon Fuzzy-AHP procedures that were recently devel-
oped and agreed upon. In this article, Fuzzy-AHP can
be utilized to assess the influence of AmI on the work-
place performance. The following text explains how
the Fuzzy-AHP procedure can be computationally ap-
plied to the problem being addressed.

In Fuzzy-AHP, fuzzy numbers are used with pair-
wise comparisons to compute the preference rating
of each compared pair of concepts, function or crite-
ria that are included in the Fuzzy-AHP hierarchy in
Fig. 5. Thus, all of the elements in the judgment matri-
ces and weight vectors are represented by fuzzy num-
bers.

Using fuzzy numbers, the expert decision-maker
can evaluate the relative importance of various ele-
ments with the three levels of the Fuzzy-AHP hierar-
chy in Fig. 5, which pertaining to workplace perfor-
mance measures (level 1), decision support functions
(level 2), and AmI features (level 3). Thus, fuzzy judg-
ment matrices are built using fuzzy numbers rather
than crisp numbers, as was the case in AHP [24]. The
Fuzzy-AHP procedure is as follows:

– Step 1: In a fuzzy environment, the crisp judg-
ment scale used in comparing the relative im-
portance of the compared factors should be first
converted into the fuzzy judgment scale, which
is made of fuzzy numbers. This scale, as given
in Table 1, has been proposed and described in
[25], and was also recently utilized in several re-
search studies on the application of fuzzy-AHP,
including [29]. The scale simply transforms the
crisp values of the original AHP importance in-
tensity scale in the range [1, 9] regularly into
three corresponding values (l, m, u), as in the ta-



S. Aly et al. / A generalized model for quantifying the impact of Ambient Intelligence on smart workplaces 659

Table 1

Linguistic scales for the intensity importance of the pair-wise com-
parisons matrix is made across the Fuzzy-AHP for managerial AmI

Linguistic scale
for the importance

Abbreviation Triangular
fuzzy
number

Reciprocal
triangular
fuzzy number

Just equal/same of
i over j

Sm (1, 1, 1) (1, 1, 1)

Equal importance ei (1, 1, 2) (1/2, 1, 1)

Between Equal
and weak
importance of i
over j

bew (1, 2, 3) (1/3, 1/2, 1)

Weak importance
of i over j

wi (2, 3, 4) (1/4, 1/3, 1/2)

Between weak
and Strong
importance of i
over j

bws (3, 4, 5) (1/5, 1/4, 1/3)

Strong importance
of i over j

si (4, 5, 6) (1/6, 1/5, 1/4)

Between strong
and demonstrated
importance of i
over j

bsd (5, 6, 7) (1/7, 1/6, 1/5)

Demonstrated
importance of i
over j

di (6, 7, 8) (1/8, 1/7, 1/6)

Between
demonstrated and
absolute
importance of i
over j

bda (7, 8, 9) (1/9, 1/8, 1/7)

Absolute
importance of i
over j

ai (8, 9, 9) (1/9, 1/9, 1/8)

ble. Then, Table 1 shows the fuzzy numbers and
their reciprocals from the original AHP scale.
The relative importance intensity of workplace
performance criteria, decision support functions
and AmI features will be assigned through ei-
ther individual or multiple experts. Then, a fuzzy
positive reciprocal matrix is constructed as fol-
lows:

Ã = [ãij ] (1)

and the geometric mean of each row is computed
ãij = (lij , mijuij ):

r̃i =
n∏

j=1

ãij (2)

The normalized weight w̃i is determined using the
following formula [25]:

w̃i =
(

li∑n
i=1 ui

,
mi∑n
i=1 mi

,
ui∑n
i=1 li

)
(3)

– Step 2: Consistency check: The expert deci-
sion maker must redo the ratios when the com-
parison matrix fails to pass the consistency test.
The value of λmax(CR) is computed based on
the modal value of the resulting fuzzy numbers,
through employing the original Saaty’s procedure
but using the operations on fuzzy numbers. Then,
if CR > 0.1, the fuzzy judgment matrix must
be revised until reaching or being below the 0.1
consistency value.

– Step 3: Synthesizing: The computed priorities
obtained for each element at a lower level of the
hierarchy is first multiplied, respectively, to the
computed weights of the elements at the higher
level, and then, it is summed up over all of the ele-
ments of the higher level to obtain the final weight
or priority for each element.

– Step 4: Ranking: Given the final weights of each
element in the Fuzzy-AHP hierarchy expressed
in a fuzzy number form, we now must defuzzify
these fuzzy priorities to be able to rank each ele-
ment (i.e., either AmI feature in the lowest level,
decision support function in the third level, or
a workplace performance measure at the second
level) in a non-fuzzy form. This task could be
accomplished through using the Best Non-fuzzy
Performance BNP values defuzzification method
from Chen et al. (2008) [26]. The defuzzified
value for the triangular fuzzy performance score
can be calculated simply, by using fuzzy num-
ber’s centroid, as follows:

BNP = C(ãij ) = l + m + u

3
(4)

The above defuzzified value is used to rank the com-
pared fuzzy numbers.

In the next section, we illustrate how the proposed
hierarchical model can be computationally applied us-
ing Fuzzy-AHP on the assessment of the significance
relationship between AmI technologies and workplace
performance measures. Some example applications in
the manufacturing workplace are used to illustrate
how the proposed hierarchical model could be imple-
mented.
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5. Application of the generalized assessment
model in a manufacturing workplace

In this section, we refer to the first prominent appli-
cation of AmI technologies in manufacturing, the Am-
bient Intelligence Laboratory AMILAB [15], and we
consider it to be a case study of an example manu-
facturing workplace application for illustrating the ap-
plicability of our proposed model in the manufactur-
ing workplaces; this concern has not been sufficiently
tackled in the literature before. The manufacturing en-
vironment of the AMILAB [15] built at Teckniker
(Spain) has a high speed NC milling machine (a ma-
chine used for cutting profiles within processed metal
work pieces that has its cutting mill controlled through
a computer numerical control program) and a 6-axis
robot. The AMILAB case study is described in detail
below.

Given the AMILAB case study, the four levels of the
proposed hierarchical model are the following:

The AMI at the AMILAB is composed of the following
technologies:

– Interface technologies (voice recognition systems,
head-mounted display and data gloves)

– Location and tracking systems based on RFID
tags and sensor networks

– Wearable and portable computing devices
– Multi-agent systems for tracking, interfacing and

NC control

The intended AmI features at the AMILAB: The syn-
thesized collection of AMI technologies is intended to
realize the following AmI features:

– Context awareness (user preferences, users’ cur-
rent activities, user locations, user profiles and de-
vices at hand, people and service availabilities)

– Learning and adaptability to the user’s context
– Multimodal, naturally broadened interaction
– Ubiquity (computing and communication)

This arrangement means that these features have the
highest priority and are desirable for being realized,
but it does not mean that the other AmI features can-
not be useful. However, the significance of the other
features could also be investigated.

The functions/tasks at AMILAB: The manufactur-
ing system at AMILAB, which has a high-speed NC
milling machine and a 6-axis robot, should techni-
cally perform the following basic tasks when interact-
ing with a worker:

– Accessing and interfacing with the high speed NC
Machine

– Setting up the machine
– Inputting the NC parts program and various other

tooling data
– Maintaining the NC machine
– Monitoring processing operations and their out-

comes
– Controlling the 6-axis robot: controlling the load-

ing and unloading tasks of the robot

The relevant manufacturing systems performance mea-
sures: The general performance measures were de-
fined in [26], which can also be used to assess the per-
formance at the AMILAB. They are as follows:

– Time measures: average batch processing time,
average lead time, changeover time, cycle time,
machine downtime, mean flow time, on-time de-
livery, setup time, tact time, and throughput
time.

– Cost measures: overhead cost, scrap cost, setup
cost, tooling cost, total quality cost, unit labor
cost, unit manufacturing costs, unit material cost,
and work in progress.

– Quality measures: average outgoing quality
limit, incoming quality, MTTF, not right the first
time, process capability index, return rate, re-
work %, scrap %, vendor quality rate, and war-
ranty claim %.

– Flexibility measures: component reusability, de-
livery flexibility, machine flexibility, number of
different parts, process flexibility, process simi-
larity, routing flexibility, supply chain flexibility,
total system flexibility, and volume flexibility.

– Productivity measures: assembly line effective-
ness, direct labor productivity, machine effec-
tiveness, network effectiveness, overall equip-
ment effectiveness, return on assets, stock turn,
throughput efficiency, total productive mainte-
nance, and value-added per employee.

5.1. Application of Fuzzy-AHP for assessment of AmI
technology impacts on the manufacturing
workplace performance

Here, we apply the Fuzzy-AHP model to the config-
ured hierarchy of the generalized model of the manu-
facturing workplace. The Fuzzy-AHP is adequate and
effective in understanding and analyzing the complex
vague relationship among AmI technologies, features
and manufacturing workplace functions and perfor-
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Fig. 6. The assessment hierarchy of the generalized model using Fuzzy-AHP.

mance measures. This capability will be achieved as
follows:

– The structure of the Fuzzy-AHP hierarchy iden-
tically fits the developed conceptual hierarchy of
the studied AmI technologies-performance rela-
tionship.

– The use of Fuzzy-AHP enables resorting to expert
judgment that is an effective and adequate option
for manipulating qualitative and vague values

– Fuzzy-AHP quantifies vague subjective concepts
of various factors and quantities in the hierarchy
through fuzzy numbers.

– The fuzzified AHP pair-wise intensity impor-
tances are considered and understood to be signif-
icant relationships of every quantity at one level
with the other quantities at the next upper level.

– Exploiting and interpreting the significance val-
ues on both partial and overall relationship bases
among and across the related levels.

– Computing synthesized priorities computed at the
four levels of the hierarchy and computing the
meaning of the final significance of the weights
of the AmI technologies with respect to manufac-
turing workplace measures.

A fully detailed complete numerical example expla-
nation of a computational procedure of Fuzzy-AHP is
beyond the scope of this article, because it is a mainly
systematic, number-crunching procedure with space
limitations as well. However, a detailed step-by-step
example can be found in [23].

Next, let us illustrate how the Fuzzy-AHP can be uti-
lized to determine the importance of AmI technologies
and features on the functions and the performance of
the manufacturing workplace. We give a simple exam-
ple about how the results of the evaluation of Fuzzy-
AHP could be analyzed and can contribute to indicat-
ing the influence of the AmI key enabling technolo-
gies on the performance measures of the manufactur-
ing workplace.

In the illustrative case study example that we show,
we consider the AMILAB [15] and how the general-
ized hierarchy could be applied. The AMILAB exper-
imental laboratory described in the previous section
can now be taken as a case example to show how to
quantify the impact of AmI features on the measures of
performance of the lab. This task can now be accom-
plished through applying the described generalized hi-
erarchy in Fig. 5. We can build the specific hierarchy
for the relationship with the following:

– Level α: The manufacturing performance mea-
sures.

– Level β: The basic manufacturing functions/tasks.
– Level γ : The AmI features/attributes.
– Level δ: The AmI key enabling technologies.

The assessment hierarchy is shown below in the
schematic in Fig. 7.

For convenience, let us use the following corre-
sponding abbreviations for the Fuzzy-AHP levels in
Fig. 7:
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Fig. 7. The flowchart of the application of the Fuzzy-AHP procedure.

Level α: The manufacturing performance measures:
Setup time (α1), Throughput time (α2), Setup cost
(α3), Unit labor costs (α4), Work in Process (WIP)
(α5); Process capability (α6); Percent scrap (α7); Pro-
cess flexibility (α8); Machine flexibility (α9); Machine
productivity (α10); and Labor productivity (α11).

Let the final fuzzy priority of each performance
measure with respect to the main goal be (W̌αi) (i =
1, 2, . . . , 11),

Level β: The key manufacturing system function:
Machine access (β1); Machine setup (β2); Data input
(β3); NC machine maintenance (β4); Process monitor-
ing (β5); and Controlling robot (β6).

Let the final priority of each be (W̌βj ) (j = 1, 2,

. . . , 6), and the priority of βj with respect to each ith
performance measure is W̌βji .

Level γ : The AmI attributes/features: Proactivity
(γ1); Adaptability (γ2); Context awareness (γ3); Un-
certainty handling (γ4); Multimodality (γ5); Ubiqui-
tous computing (γ6); Ubiquitous communication (γ7);
Friendliness (γ8); and Unobtructiveness (γ9).

Let the final fuzzy priority of γk (k = 1, 2, . . . , 9)
with respect to each j th system function be W̌γkj .

Level δ: The AmI technologies: Voice recognition
system (δ1); Head-mounted display (δ2); Data gloves
(δ3); Location/tracking system (δ4); Wearable comput-
ing devices (δ5); Portable computing devices (δ6); and
Multi-agent system (δ7). Let the fuzzy priority of δl ,
(l = 1, 2, . . . , 7) with respect to each kth AmI feature
be W̌δlk .

It should be noted that the priorities to be computed
could be interpreted as either importances or signifi-
cances for the relationships among the hierarchical el-
ements.

The Fuzzy-AHP procedure starts with building a
team of experts who have relevance, knowledge and
expertise in AmI technologies and manufacturing sys-
tems. Several approaches could be used to build this
team of experts. The recommended approach is to form
a multidisciplinary team of experts, who could be se-
lected based on three criteria: knowledge, relevance
and experience. These experts should act through im-
plementing the developed tools by the authors de-
scribed in [23]. It is recommended that the experts’
team meets together and participates together in mak-
ing brain-storming sessions for addressing the antici-
pated impacts of AmI technologies and their embod-
ied features on the functional activities and the asso-
ciated performance measures. This arrangement will
greatly help generating the sought interdisciplinary
knowledge of AmI manufacturing that is needed to
address such complex decision-making problems and
to improve their assessment decision-making capabil-
ity on the AmI impacts. The decision-makers should
also become familiar with the designed Fuzzy-AHP
scale. Then, entire evaluation decision-making tasks
throughout the hierarchy could be shared among the
individuals according to their desires, relevance, capa-
bilities and background knowledge. Conflicts of opin-
ion occur among experts, specifically when the im-
pact of AmI features on system functions is resolved
through the use of the geometric mean of the assigned
values of the experts [28]. Similarly, multiple expert
groups could be built to raise the reliability of the de-
cision process outcome. Then, eventually the opinions
of the participating groups of experts are synthesized
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Table 2

The pair-wise comparison matrix for the importance of the 11 manufacturing system performance measures

Manufacturing performance measures Priority Fuzzy weights (Priority) W̌αi

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11

α1 – xbew ai di wi si Bsd bws bda ai bew (0.13,0.21,0.33)

α2 – ai bda bws bsd di si ai ai wi (0.19,0.27,0.4)

α3 – xbws xbda xbsd xsi xdi xwi xbew xai (0.008,0.01,0.02)

α4 – xsi xwi xbew xbws bew wi xbsd (0.02,0.03,0.05)

α5 – wi bws bew bsd di xbew (0.07,0.11,0.19)

α6 – bew xbew bws si xbws (0.04,0.06,0.1)

α7 – xwi wi bws xsi (0.03,0.04,0.07)

α8 – si bsd xwi (0.05,0.08,0.13)

α9 – bew xdi (0.01,0.02,0.03)

α10 – xbda (0.01,0.02,0.03)

α11 – (0.1,0.16,0.25)

CR = 0.075 � 0.1

or combined using the geometric mean, as described
in [28].

The flowchart on Fig. 7 summarizes the Fuzzy-AHP
assessment computational procedure for the AmI tech-
nologies impact.

Now, the Fuzzy-AHP procedure is ready to be ap-
plied. Using the scale in Table 1, the team of experts
starts to compare the hierarchy elements level by level
with respect to each factor at the next higher level. For
simplicity and for the purpose of illustration and ad-
ditionally because of the limitations in space, we con-
sider the example opinion of one expert group and only
the assessment with respect to the most important mea-
sure of performance of the manufacturing workplace,
as will be indicated through the example computation.
A sample of computations of a Fuzzy-AHP procedure
are shown hereinafter.

Level α: Comparing the manufacturing performance
measures (evaluating the performance measures with
respect to the main hierarchical goal):

It is apparent from the table that the “Throughput”,
α2 performance measure has the highest crisp impor-
tance or priority when computed using the BNP for-
mula (4), as follows:

BNPα2 = uα2 + mα2 + lα2

3

= 0.19 + 0.27 + 0.4

3
= 0.287

A normalized crisp value is computed through sum-
ming the BNPs of all of the α’s and then re-dividing
the values by the sum. The normalized value of the pri-

ority of α2 is Wα2 = 0.25. See the Appendix for a de-
tailed computation of the crisp normalized priorities of
the performance measures αj (Table 19).

Let us focus (for briefing and illustration purposes)
on this performance measure and compute the signifi-
cances or importances of the other elements in the hi-
erarchy with respect to it.

Level β: Comparing key manufacturing system func-
tions: (evaluating key manufacturing functions with
respect to the throughput α2): Machine access (β1);
Machine setup (β2); Data input (β3); NC machine
maintenance (β4); Process monitoring (β5); and Con-
trolling robot (β6). Table 3 shows the experts’ assigned
intensities for the compared manufacturing functions
(W̌βj2) and the computed priorities with respect to the
α2 throughput measure.

Level γ : The AmI attributes/features: Proactivity
(γ1); Adaptability (γ2); Context awareness (γ3); Un-
certainty handling (γ4); Multimodality (γ5); Ubiqui-
tous computing (γ6); Ubiquitous communication (γ7);
Friendliness (γ8); and Unobtructiveness (γ9).

Let the final priority of γk (k = 1, 2, . . . , 9) with
respect to each j th system function be Wγkj .

The experts’ assignments are given in the Appendix
(Tables 4–9).

Level δ: The AmI technologies: Voice recognition
system (δ1); Head-mounted display (δ2); Data gloves
(δ3); Location/tracking system (δ4); Wearable com-
puting devices (δ5); Portable computing devices (δ6);
and Multi-agent system (δ7). Let the priority of δl ,
(l = 1, 2, . . . , 7) with respect to each kth AmI feature
be Wδlk .
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Table 3

The pair-wise comparison matrix for the significance of the 6 manufacturing system functions with respect to the Throughput performance
measure

α2: Throughput time Manufacturing system key functions Fuzzy weights (Priority) W̌βji

β1 β2 β3 β4 β5 β6

β1 – bew xwi bws wi xbew (0.09,0.16,0.3)

β2 – xbws wi bew xwi (0.06,0.0.1,0.2)

β3 – bsd si bew (0.2,0.38,0.64)

β4 – xbew xsi (0.03,0.04,0.08)

β5 – xbws (0.04,0.06,0.12)

β6 – (0.14,0.25,0.46)

CR = 0.02 � 0.1 (OK).

Level γ : The AmI attributes/features: Proactivity
(γ1); Adaptability (γ2); Context awareness (γ3); Un-
certainty handling (γ4); Multimodality (γ5); Ubiqui-
tous computing (γ6); Ubiquitous communication (γ7);
Friendliness (γ8); and Unobtructiveness (γ9).

Let the final priority of γk (k = 1, 2, . . . , 9) with
respect to each j th system function be Wγkj .

The experts’ assignments are given in the Appendix
(Tables 4–9).

Level δ: The AmI technologies: Voice recognition
system (δ1); Head-mounted display (δ2); Data gloves
(δ3); Location/tracking system (δ4); Wearable com-
puting devices (δ5); Portable computing devices (δ6);
and Multi-agent system (δ7). Let the priority of δl ,
(l = 1, 2, . . . , 7) with respect to each kth AmI feature
be Wδlk .

The expert assignments are given in the Appendix
(Tables 9–18). After applying the experts’ pair-wise
comparisons and given the computed final weight (pri-
orities), a substantial amount of relationship informa-
tion can be gained. The final overall priorities of the
AmI technologies (for the purpose of illustration and
considering only the most important performance mea-
sure α2, which is “Throughput time”) can now be syn-
thesized. This task can be accomplished through com-
puting level-by-level the final priorities with respect to
the upper performance measure levels, as described in
[2,23,28]. The computations are as follows:

1. Synthesizing the final priorities of the AmI fea-
tures w.r.t. the throughput performance measures:

W̌γ
α2
k =

6∑
J=1

W̌γ
βj

k ∗ W̌β
α2
J (5)

W̌γ
α2
1 = W̌γ

β1
1 ∗ W̌β

α2
1 + W̌γ

β2
1 ∗ W̌β

α2
2

+ W̌γ
β3
1 ∗ W̌β

α2
3 + W̌γ

β4
1 ∗ W̌β

α2
4

+ W̌γ
β5
1 ∗ W̌β

α2
5 + W̌γ

β6
1 ∗ W̌β

α2
6

= (0.04, 0.08, 0.13) ∗ (0.09, 0.16, 0.3)

+ (0.09, 0.16, 0.27) ∗ (0.06, 0.1, 0.2)

+ (0.06, 0.11, 0.19) ∗ (0.2, 0.38, 0.64)

+ (0.13, 0.2, 0.4) ∗ (0.03, 0.04, 0.08)

+ (0.19, 0.31, 0.5) ∗ (0.04, 0.06, 0.12)

+ (0.03, 0.05, 0.09) ∗ (0.14, 0.25, 0.46)

W̌γ
α2
1 = (0.04, 0.11, 0.35)

Then, W̌γ
α2
2 up to W̌γ

α2
9 are similarly computed as

in Table 20 in the Appendix.

2. Synthesizing: final significance priorities of AmI
technologies w.r.t. the “Throughput” performance
measure α2:

W̌δ
α2
k =

9∑
k=1

W̌δ
γk

l ∗ W̌γ
α2
k (6)

W̌δ
α2
1 = W̌δ

γ1
1 ∗ W̌γ

α2
1 + W̌δ

γ2
1 ∗ W̌γ

α2
2

+ W̌δ
γ3
1 ∗ W̌γ

α2
3 + W̌δ

γ4
1 ∗ W̌γ

α2
4

+ W̌δ
γ5
1 ∗ W̌γ

α2
5 + W̌δ

γ6
6 ∗ W̌γ

α2
6

+ W̌δ
γ7
1 ∗ W̌γ

α2
7 + W̌δ

γ8
1 ∗ W̌γ

α2
8

+ W̌δ
γ9
1 ∗ W̌γ

α2
9

= (0.03, 0.05, 0.07) ∗ (0.04, 0.11, 0.35)

+ (0.11, 0.22, 0.42) ∗ (0.04, 0.07, 0.31)

+ (0.2, 0.35, 0.58) ∗ (0.04, 0.09, 0.27)

+ (0.06, 0.1, 0.2) ∗ (0.02, 0.05, 0.16)

+ (0.03, 0.05, 0.08) ∗ (0.2, 0.06, 0.18)
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+ (0.09, 0.16, 0.3) ∗ (0.05, 0.13, 0.4)

+ (0.14, 0.25, 0.46) ∗ (0.06, 0.19, 0.56)

+ (0.06, 0.1, 0.19) ∗ (0.04, 0.12, 0.38)

+ (0.02, 0.03, 0.06) ∗ (0.06, 0.16, 0.48)

W̌ δ
α2
1 = (0.04, 0.15, 0.84)

The remaining computations of the AmI technology
priorities can be found in Table 21 in the Appendix.

The fuzzy weights can now be defuzzified using the
BNP formula Eq. (4). The normalized crisp value of
the significance priorities Wβ,Wγ , and Wδ are com-
puted as in Tables 20–22. Then, the results indicate that
the normalized BNPs with respect to the “Throughput”
performance measures were found to be as follows:

β level (Manufacturing system functions): The high-
est priority normalized BNP belongs to β3, “CNC ma-
chine maintenance”, which has a normalized
BNPβ3 = 0.37. This finding means that this function
(when compared to other functions) is considered to
be the most significant function for the improvement
of the “Throughput” α2, a performance measure.

γ level (AmI key features): The highest priority that
normalized BNP belongs to is γ7, “Ubiquitous Com-
munication”, which has a normalized BNPγ 7 = 0.18.
This finding means that this key AmI feature, when
compared to other features, is considered to be the
most significant for the improvement of the “Through-
put” α2, a performance measure.

δ level (AmI technologies): The highest priority nor-
malized BNP belongs to δ2, “Head-mounted display”,
which has a normalized BNPδ2 = 0.22. This finding
means that this key AmI technology, when compared
to the other AmI technologies, is considered to be the
most significant or has the highest impact on the im-
provement of the “Throughput” α2 performance mea-
sure.

The above results represent the final significance or
importance priorities that were computed with respect
to the most important computed performance measure,
“Throughput”. However, this case example could be
extended to measure the significance priorities of the
AmI technologies, AmI features and systems’ function
with respect to the other performance measures. Then,
the values of all of the assessed elements in all of the
levels can be synthesized to determine the overall sig-
nificance priorities with respect to all of the perfor-

mances measured through the same described synthe-
sizing formulas, which is similar to Eqs (5) and (6).

The computed priorities of the pair-wise comparison
results of this hierarchical assessment procedure are
very beneficial, prior to designing the smart workplace
and the utilization of AmI technologies in adding val-
ues to the measures of performance. These priority re-
sults of the assessments provide very rich information
content about the significance and importance priori-
ties between different elements in the hierarchy. These
are the AmI technologies, AmI features, the key man-
ufacturing function and, lastly, the performance mea-
sures. In this way, the computed priorities give insights
about the significance and influence of AmI technolo-
gies or the following:

– The realized AmI features.
– Their significance to the key workplace functions.
– The final judgment yardstick; the performance

measures of the workplace.

Over and above, the computed priorities among var-
ious elements, and with respect to other upper-level el-
ements, provides valuable information on the signifi-
cance, importance and influence relationships between
elements at the same level and between those elements
and other elements that are at successively higher lev-
els. This information constitutes very valuable insight
prior to designing the workplace and prior to adopting
those AmI technologies as components that are spe-
cific to our application.

6. Conclusions

Ambient Intelligence (AmI) is a promising notion
for improving the performance of manufacturing sys-
tem environment functions. To consistently and justi-
fiably implement AmI technologies in the manufactur-
ing environment, it is crucial to study, understand and
assess the impact of these newly emerging technolo-
gies on the performance of various actors and tasks
in such an environment. However, due to subjectivity
or intangibility, ill-structuredness and, consequently,
inherent vagueness, it is difficult to accurately quan-
tify and measure the impact of AmI technologies on
the manufacturing environment performance. Gener-
ally speaking, such relationships between AmI tech-
nologies and features and the functional performance
of the people and system are still an open question.
Answering this question is valuable with respect to
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wisely and effectively exploiting AmI in useful direc-
tions.

This article intends to take a large step toward quan-
tifying the influence of AmI features and attributes on
the performance of managerial decision support. The
article first logically structured and generalized the re-
lationships among AmI technologies and the perfor-
mance measures of any workplace. We then focused
on the manufacturing environment as a typical com-
plex workplace, which has not been sufficiently ad-
dressed in previous recent AmI applications literature.
We then proposed a Fuzzy Analytical Hierarchical
Process (Fuzzy-AHP) model as an adequately match-
ing technique for measuring and quantifying and pri-
oritizing the vague influence of various AmI technolo-
gies and features on the performance in the manufac-
turing environment workplace.

The use of Fuzzy-AHP offers the following advan-
tages:

– The ability to use fuzzy numbers and linguistic
values in expert judgments to address the assess-
ment complexity and vagueness and to be simpli-
fied through pair-wise comparisons.

– The arrangement of the AmI technologies at
the lowest level and the manufacturing perfor-
mance measures at the upper-most level enables
computing the final priority of each these AmI
technologies with respect to the overall perfor-
mance of the manufacturing system and comput-
ing the individual priorities as well for each per-
formance criterion. This computation effectively
contributes to answering the major question of
this research.

– The use of the intermediate level of AmI features
and manufacturing systems functions naturally to
solve the problem and reduce the complexity of
the studied relationship.

The proposed approach can be adequately used in
the absence of more accurate techniques of assess-
ment, in identifying the most important AmI technolo-
gies for each function and the performance measure of
any workplace. It can also highlight the most important
or crucial AmI features and functions for the overall
performance of the workplace as a whole. In fact, the
proposed approach provides very rich information on
both the overall and the specific assessment basis of the
evaluated factors and measures. Accordingly, based on
this analysis, AmI key enabling technologies can be
selected. Lastly, the proposed approach is practical and
provides a good solution given the infeasibility of hav-
ing optimum-yielding techniques that can quantify a
non-homogenous mix of mainly qualitative or subjec-
tive factors and characteristics of quantitative perfor-
mance measures.
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Appendix A

Table 4

The pair-wise comparisons matrix for the significance of the 9 AmI features with respect to the Machine access function

β1: Machine access AmI’s key features

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 Fuzzy weights

(priority) W̌γ
β1
k

γ1 – xwi xsi xbew bew xbws si bws wi (0.04,0.08,0.13)

γ2 – xwi bew bws xbew di bsd di (0.1,0.16,0.28)

γ3 – bws bsd bew ai bda di (0.19,0.31,0.48)

γ4 – wi xwi bsd si bws (0.08,0.14,0.25)

γ5 – xsi bws wi bew (0.03,0.05,0.08)

γ6 – bda di bsd (0.11,0.18,0.32)

γ7 – xbew xwi (0.012,0.02,0.03)

γ8 – xbew (0.02,0.025,0.04)

γ9 – (0.02,0.03,0.06)

CR = 0.054 � 0.1 (OK).
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Table 5

The pair-wise comparisons matrix for the significance of the 9 AmI features with respect to the Machine setup function

β2: Machine setup AmI’s key features

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 Fuzzy weights

(priority) W̌γ
β2
k

γ1 – xwi xsi bsd bew bws xbew di si (0.09,0.16,0.27)

γ2 – si bda bws bsd bew ai di (0.19,0.31,0.5)

γ3 – bws xbew bew xbws si wi (0.04,0.07,0.13)

γ4 – xsi xwi xdi bew xbew (0.02,0.025,0.04)

γ5 – wi xwi bsd bws (0.06,0.11,0.19)

γ6 – xsi bws bew (0.03,0.05,0.09)

γ7 – bda bsd (0.13,0.2,0.4)

γ8 – xwi (0.01,0.02,0.03)

γ9 – (0.02,0.04,0.06)

CR = 0.035 � 0.1 (OK).

Table 6

The pair-wise comparisons matrix for the significance of the 9 AmI features with respect to the Data input function

β3: Data input AmI’s key features

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 Fuzzy weights

(priority) W̌γ
β3
k

γ1 – bew wi bws si bsd xbws xwi xbew (0.06,0.11,0.19)

γ2 – bew wi bws si xsi xbws xwi (0.04,0.07,0.13)

γ3 – bew wi bws xbsd xsi xbws (0.03,0.05,0.09)

γ4 – bew wi xdi xbsd xsi (0.02,0.04,0.06)

γ5 – bew xbda xdi xbsd (0.02,0.03,0.04)

γ6 – xai xbda xdi (0.01,0.02,0.03)

γ7 – bew wi (0.19,0.3,0.5)

γ8 – bew (0.13,0.22,0.4)

γ9 – (0.09,0.16,0.27)

CR = 0.0345 � 0.1 (OK).

Table 7

The pair-wise comparisons matrix for the significance of the 9 AmI features with respect to the Process monitoring function

β4: Process monitoring AmI’s key features

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 Fuzzy weights

(priority) W̌γ
β4
k

γ1 – si bsd bws di wi bew bda xbew (0.13,0.2,0.4)

γ2 – bew xbew wi xwi xbws bws xbsd (0.03,0.05,0.09)

γ3 – xwi bew xbws xsi wi xdi (0.02,0.04,0.06)

γ4 – bws xbew xwi si xsi (0.04,0.07,0.13)

γ5 – xsi xbsd bew xbda (0.02,0.025,0.04)

γ6 – xbew bsd xbws (0.06,0.1,0.19)

γ7 – di xwi (0.09,0.16,0.27)

γ8 – xai (0.01,0.02,0.03)

γ9 – (0.19,0.31,0.5)

CR = 0.035 � 0.1 (OK).
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Table 8

The pair-wise comparisons matrix for the significance of the 9 AmI features with respect to the Process monitoring function

β5: Process monitoring AmI’s key features

lγ1 γ2 lγ3 γ4 lγ5 γ6 lγ7 γ8 lγ9 Fuzzy weights

(priority) W̌γ
β5
k

γ1 – di bew bda wi bws ai si bsd (0.19,0.31,0.5)

γ2 – xbsd bew xsi xbws wi xwi xbew (0.02,0.04,0.06)

γ3 – di bew wi bda bws si (0.13,0.22,0.4)

γ4 – xbsd xsi bew xbws xwi (0.02,0.025,0.04)

γ5 – bew di wi bws (0.09,0.16,0.27)

γ6 – bsd bew wi (0.06,0.1,0.19)

γ7 – xsi xbws (0.01,0.02,0.03)

γ8 – bew (0.04,0.07,0.13)

γ9 – (0.03,0.05,0.09)

CR = 0.035 � 0.1 (OK).

Table 9

The pair-wise comparisons matrix for the significance of the 9 AmI features with respect to the Controlling robot function

β6: Controlling robot AmI’s key features

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 Fuzzy weights

(priority) W̌γ
β6
k

γ1 – bew wi bws xbew xbsd xsi xbws xwi (0.03,0.05,0.09)

γ2 – bew wi xwi xdi xbsd xsi xbws (0.02,0.04,0.06)

γ3 – bew xbws xbda xdi xbsd xsi (0.02,0.03,0.04)

γ4 – xsi xai xbda xdi xbsd (0.01,0.02,0.03)

γ5 – xsi xbws xwi xbew (0.04,0.07,0.13)

γ6 – bew wi bws (0.19,0.3,0.5)

γ7 – bew wi (0.09,0.16,0.27)

γ8 – bew (0.06,0.11,0.19)

γ9 – (0.19,0.31,0.5)

CR = 0.0345 � 0.1 (OK).

Table 10

The pair-wise comparisons matrix for the significance of the 7 AMILAB technologies with respect to the Proactivity AmI feature

γ1: Proactivity AmI’s key enabling technologies

δ1 δ2 δ3 δ4 δ5 δ6 δ7 Fuzzy weights
(priority) W̌δ

γ1
l

δ1 – xbsd xwi xdi xwi sm wi (0.03,0.05,0.07)

δ2 – wi xsi wi si di (0.15,0.22,0.31)

δ3 – xbsd sm wi si (0.073,0.11,0.15)

δ4 – bsd di bda (0.33,0.46,0.62)

δ5 – wi si (0.07,0.11,0.15)

δ6 – wi (0.03,0.05,0.07)

δ7 – (0.02,0.02,0.04)

CR = 0.057 � 0.1 (OK).
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Table 11

The pair-wise comparisons matrix for the significance of the 7 AMILAB technologies with respect to the Adaptivity AmI feature

γ2: Adaptivity AmI’s key enabling technologies

δ1 δ2 δ3 δ4 δ5 δ6 δ7 Fuzzy weights
(priority) W̌δ

γ2
l

δ1 – xbew bws wi bew wi bew (0.11,0.22,0.42)

δ2 – si bws wi bws wi (0.18,0.33,0.59)

δ3 – xbew xwi xbew xwi (0.03,0.05,0.1)

δ4 – xbew sm xbew (0.04,0.07,0.15)

δ5 – bew sm (0.07,0.13,0.25)

δ6 – xbew (0.04,0.07,0.15)

δ7 – (0.07,0.13,0.25)

CR = 0.01 � 0.1 (OK).
Table 12

The pair-wise comparisons matrix for the significance of the 7 AMILAB technologies with respect to the Context awareness AmI feature

γ3: Context awareness AmI’s key enabling technologies

δ1 δ2 δ3 δ4 δ5 δ6 δ7 Fuzzy weights
(priority) W̌δ

γ3
l

δ1 – bew wi bws si bsd di (0.2,0.35,0.58)

δ2 – bew wi wi si di (0.14,0.24,0.43)

δ3 – bew wi wi si (0.09,0.16,0.3)

δ4 – bew wi bda (0.06,0.1,0.2)

δ5 – bew wi (0.04,0.07,0.13)

δ6 – bew (0.03,0.05,0.08)

δ7 – (0.02,0.03,0.06)

CR = 0.025 � 0.1 (OK).
Table 13

The pair-wise comparisons matrix for the significance of the 7 AMILAB technologies with respect to the Uncertainty handling AmI feature

γ4: Uncertainty handling AmI’s key enabling technologies

δ1 δ2 δ3 δ4 δ5 δ6 δ7 Fuzzy weights
(priority) W̌δ

γ4
l

δ1 – bew wi bws xbew xwi xbws (0.06,0.1,0.2)

δ2 – bew wi xwi xbws xsi (0.04,0.07,0.13)

δ3 – bew xbws xsi xbsd (0.03,0.045,0.08)

δ4 – xsi xbsd xdi (0.02,0.03,0.055)

δ5 – xbew xwi (0.09,0.16,0.3)

δ6 – xbew (0.13,0.24,0.43)

δ7 – (0. 2,0.35,0.6)

CR = 0.025 � 0.1 (OK).
Table 14

The pair-wise comparisons matrix for the significance of the 7 AMILAB technologies with respect to the Multimodality AmI feature

γ5: Multimodality AmI’s key enabling technologies

δ1 δ2 δ3 δ4 δ5 δ6 δ7 Fuzzy weights
(priority) W̌δ

γ5
l

δ1 – bew xbsd xsi xbws xwi xbew (0.03,0.05,0.08)

δ2 – xdi xbsd xsi xbws xwi (0.02,0.03,0.06)

δ3 – bew wi bws si (0.2,0.35,0.6)

δ4 – bew wi bws (0.14,0.24,0.43)

δ5 – bew wi (0.09,0.16,0.3)

δ6 – bew (0.06,0.1,0.2)

δ7 – (0.04,0.07,0.13)

CR = 0.025 � 0.1 (OK).
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Table 15

The pair-wise comparisons matrix for the significance of the 7 AMILAB technologies with respect to the Ubiquitous computing AmI feature

γ6: Ubiquitous computing AmI’s key enabling technologies

δ1 δ2 δ3 δ4 δ5 δ6 δ7 Fuzzy weights
(priority) W̌δ

γ6
l

δ1 – bew wi bws si xbew xwi (0.09,0.16,0.3)

δ2 – bew wi xsi xwi xbws (0.06,0.1,0.2)

δ3 – bew wi xbws xsi (0.2,0.35,0.6)

δ4 – bew xsi xbsd (0.04,0.07,0.13)

δ5 – xbsd xdi (0.02,0.03,0.06)

δ6 – xbew (0.13,0.24,0.43)

δ7 – (0.2,0.35,0.58)

CR = 0.025 � 0.1 (OK). Table 16

The pair-wise comparisons matrix for the significance of the 7 AMILAB technologies with respect to the Ubiquitous communication AmI feature

γ7: Ubiquitous communication AmI’s key enabling technologies

δ1 δ2 δ3 δ4 δ5 δ6 δ7 Fuzzy weights
(priority) W̌δ

γ7
l

δ1 – xbew wi bws si bws bsd (0.14,0.25,0.46)

δ2 – bew wi bws si bsd (0.16,0.3,0.54)

δ3 – xbew wi bew bws (0.06,0.12,0.25)

δ4 – bws wi si (0.09,0.17,0.32)

δ5 – xbew bew (0.03,0.05,0.09)

δ6 – wi (0.04,0.07,0.14)

δ7 – (0.02,0.03,0.06)

CR = 0.034 � 0.1 (OK).
Table 17

The pair-wise comparisons matrix for the significance of the 7 AMILAB technologies with respect to the Friendliness AmI feature

γ8: Friendliness AmI’s key enabling technologies

δ1 δ2 δ3 δ4 δ5 δ6 δ7 Fuzzy weights
(priority) W̌δ

γ8
l

δ1 – bew wi bws xbws xwi xbew (0.06,0.1,0.19)

δ2 – bew wi xsi xbws xwi (0.04,0.07,0.13)

δ3 – bew xbsd xsi xbws (0.03,0.05,0.08)

δ4 – xdi xbsd xsi (0.02,0.03,0.06)

δ5 – bew wi (0.2,0.4,0.6)

δ6 – bew (0.14,0.24,0.43)

δ7 – (0.09,0.16,0.3)

CR = 0.025 � 0.1 (OK).
Table 18

The pair-wise comparisons matrix for the significance of the 7 AMILAB technologies with respect to the Unobtrusivity AmI feature

γ9: Unobtructiveness AmI’s key enabling technologies

δ1 δ2 δ3 δ4 δ5 δ6 δ7 Fuzzy weights
(priority) W̌δ

γ9
l

δ1 – xbsd xbws xsi xdi xbew xwi (0.02,0.03,0.06)

δ2 – wi bew xbew si bws (0.14,0.24,0.43)

δ3 – xbew xbws wi bew (0.06,0.1,0.2)

δ4 – xwi bws wi (0.09,0.16,0.3)

δ5 – bsd si (0.2,0.35,0.58)

δ6 – xbew (0.03,0.0.05,0.08)

δ7 – (0.04,0.07,0.13)

CR = 0.025 � 0.1 (OK).
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Table 19

Final synthesized crisp priorities for the AMILAB manufacturing performance measures

αi α1 α2 α3 α4 lα5 α6

W̌αi (0.13,0.21,0.33) (0.19,0.27,0.4) (0.008,0.01,0.2) (0.02,0.03,0.05) (0.07,0.11,0.19) (0.04,0.06,0.1)

Normalized Crisp
Priority Wαi

0.19 0.25∗ 0.06 0.03 l0.1 0.17

γk α7 α8 α9 α10 α11

W̌αi (0.03,0.04,0.07) (0.05,0.08,0.13) (0.01,0.02,0.03) (0.01,0.02,0.03) (0.1,0.16,0.25)

Normalized Crisp
Priority Wαi

0.04 0.08 0.02 0.02 0.15

∗BNP

Table 20

Final synthesized fuzzy priorities for the system functions w.r.t. the α2 “throughput” performance measure

βj β1 β2 β3 β4 β5 β6

W̌β
α2
j

(0.09,0.16,0.3) (0.06,0.1,0.2) (0.2,0.38,0.64) (0.03,0.04,0.08) (0.04,0.06,0.12) (0.14,0.25,0.46)

Normalized Crisp
Priority Wβ

α2
j

0.16 0.11 0.37∗ 0.05 0.07 0.26

∗BNP

Table 21

Final synthesized fuzzy priorities for the AmI technologies w.r.t. the α2 “throughput” performance measure

γk γ1 γ2 γ3 γ4 γ5

W̌γ
α2
k

(0.04,0.11,0.35) (0.04,0.07,0.31) (0.04,0.09,0.27) (0.02, 0.05, 0.16) (0.2, 0.06,0.18)

Normalized Crisp
Priority Wγ

α2
k

0.12 0.095 0.09 0.05 0.06

γk γ6 γ7 γ8 γ9

W̌γ
α2
k

(0.05, 0.13, 0.4) (0.06, 0.19, 0.56) (0.04, 0.12, 0.38) (0.06, 0.16, 0.48)

Normalized Crisp
Priority Wγ

α2
k

0.13 0.18∗ 0.12 0.16

∗BNP

Table 22

Final synthesized fuzzy priorities for the AmI technologies w.r.t. the manufacturing performance measures

δl δ1 δ2 δ3 δ4 δ5

W̌δ
α2
l

(0.04,0.15,0.84) (0.05,0.22,1.24) (0.07,0.14,0.79) (0.05,0.11,0.63) (0.043,0.12,0.64)

Normalized Crisp
Priority Wδ

α2
l

0.15 0.22∗ 0.15 0.12 0.12

δl δ6 δ7

W̌δ
α2
l

(0.035,0.11,0.65) (0.03,0.12,0.67)

Normalized Crisp
Priority Wδ

α2
l

0.12 0.12

∗BNP
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Appendix B

Fuzzy sets and fuzzy numbers

Fuzzy set theory provides a framework for handling
uncertainties. Zadeh (1965) [30] initiated fuzzy set the-
ory. In a non-fuzzy set, every object is either a mem-
ber of the set or is not a member of the set, but in
fuzzy sets, every object is, to some extent, a member
of a set, and to some extent, a member of another set
[31]. Thus, unlike crisp sets, membership is a continu-
ous concept in fuzzy sets. Fuzzy set theory is used in
support of linguistic variables, and the ambiguity in a
problem and is widely applicable in information gath-
ering, modeling, analysis, optimization, control, deci-
sion making and supervision.

Fuzzy quantities such as fuzzy sets are usually used
to express ambiguous quantities. There are two com-
mon types of fuzzy quantities (with respect to their
membership function): the Triangular fuzzy quantity
(i.e., the fuzzy quantity with a triangular membership
function) and the Trapezoidal fuzzy quantity (i.e., the
fuzzy quantity with a trapezoidal membership func-
tion). In the fuzzy set literature, we can often see con-
cepts such as fuzzy number and fuzzy interval. Fuzzy
number represents a special type of fuzzy quantity that
has a membership function that reaches a value of 1
at only one point and is below 1 elsewhere. It follows
from the definition that the triangular fuzzy quantity is
a fuzzy number. A fuzzy quantity is referred to as a
fuzzy interval if the membership function reaches the
value of 1 in a certain interval and is below 1 outside
of this interval. A Trapezoidal fuzzy quantity is, thus,
by definition, a fuzzy interval.

A fuzzy number Ã expresses the meaning ‘about A’.
The triangular membership function of a fuzzy number
can be expressed by a trinity (l, m, u), i.e., lower (l),
modal (m), and upper (u) values of a triangle base. A
fuzzy number is defined as follows:

Definition. A fuzzy number X on R is defined to be
a fuzzy number if its membership function μx : R →
[0, 1] is equal to:

μx =

⎧⎪⎨
⎪⎩

1
m−l

x − l
m−l

, x ∈ [l, m]
1

m−u
x − u

m−u
, x ∈ [m,u]

0 otherwise

(B.1)

where l < m < u. A fuzzy number, as expressed by
Eq. (B.1), is denoted by (l, m, u).

Fig. B.1. The membership of a fuzzy triangular number.

A fuzzy membership function and the definition of
a fuzzy number are shown in Fig. B.1.

While a fuzzy number has a triangular membership
function that is expressed by three numerical values
(l, m, u), in the case of a fuzzy interval, the fuzziness
is expressed through four values (a, b, c, d) (determin-
ing the shape of the trapezoidal membership function),
with b and c having equal and maximum member-
ship. In fact, a trapezoidal membership function is used
when there is a range between the values b and c, in
which there is the highest degree of membership (equal
to 1).

Some basic relevant operations on fuzzy numbers
that were developed and used in [24], [25] are de-
fined as follows. For any two fuzzy numbers: Ã =
(a1, a2, a3), B̃ = (b1, b2, b3):

Ã ⊕ B̃

= (a1 + b1, a2 + b2, a3 + b3) for addition

Ã ⊗ B̃

= (a1 ∗ b1, a2 ∗ b2, a3 ∗ b3) for multiplication

Ã/B̃ = (a1/b3, a2/b2, a3 ∗ b1) for division

1/Ã = (1/a3, 1/a2, 1/a1) for reciprocal

(Ã)n = (an
1 , an

2 , an
3 ) for power.
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