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Abstract. As the number of elderly people in our society increases, the need of assistive technologies in home becomes urgent. 

Existing techniques allow elderly people to be better assisted through monitoring what goes on in smart homes and inferring 

their activities from sensor data via a recognition model. However, there are various cases that existing models have difficul-

ties in accommodating relational data. In this paper, we present an application of probabilistic graphical model – Latent-

Dynamic Conditional Random Field – to detect the goals of the individual subjects when observations have long range depen-

dencies or multiple overlapping features. To validate the proposed method, we apply it to recognize activities in two different 

datasets which were collected in smart homes. The results demonstrate that Latent-Dynamic Conditional Random Fields favor-

ably outperform other models, especially when there are extrinsic dynamic activities changes and intrinsic actions (sub-

activities). 
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1. Introduction 

By augmenting everyday artifacts with computa-

tion, sensing, and communication abilities, ambient 

intelligence (AmI) is emerging as omnipresent com-

puting technology that can anticipate people’s goals 

and intentions with contextual sensor data, and hence 

free them from tedious routine tasks in their daily 

lives at home and work [1]. One form of the many 

possible realizations of AmI [2] are smart homes, 

where AmI technology can not only monitor the 

functional health of residents who is independently at 

home, but also learn Activities of Daily Living 

(ADLs) they performed [3].  

As the number of elderly people in our society in-

creases, the need of such assistive technologies in the 

home becomes urgent. China has been an aging so-

ciety since 1999, and in November 2010, had 178 

million people over 60 years old, 119 million over 65, 

respectively accounting for 13.26% and 8.87% of the 

total population [4]. As age-related changes in the 

brain cause some decline in short-term memory and 

slowing in learning ability, elderly people run into all 

sorts of barriers in performing their daily routine 

tasks such as bathing, toileting, driving, cooking and 

handling finances. While aging society makes plenty 

of Chinese accepting public pensions, there’s more 

demand of social care services and technical assis-

tances. 

In providing elderly with convenient and addition-

al independent lives, the ability to monitor functional 

health of elderly people and to gain knowledge about 

their preferences, needs and habits are seen as the 

key approach for better assisting elderly people [5]. 

Sensor data are good indicators of the cognitive and 

physical capabilities of elderly when they are carry-

ing out activities of daily living in a smart sensing 

environment. Activity recognition is to design mod-

els and algorithms to detect the goals of individual 

subjects from sensor data and to provide context sen-

sitive services and assistance. In doing so, we need 

sensors that can observe what goes on in the house 

and a recognition model to infer the activities from 

sensor data. Activity recognition is rephrased as a 

classification problem of streaming sensor data, 

where the input variables are observation data, se-

quentially generated by various sensors, annotated 

with corresponding activities, and then used to train 

different activity recognition models. 
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Several probabilistic models have been proposed 

to tackle this classification problem. Graphical mod-

els are traditional ways to represent the joint proba-

bility distribution p( x, y ), where the variable y 

represents the attributes of the activities that we wish 

to predict, and the input variables x are sensor data 

representing our observations about the activities. 

Hidden Markov models (HMMs) [6] and Conditional 

Random Fields (CRFs) [7] are the mainstream tech-

niques for recognizing activities with graphical mod-

els. While HMM models the joint distribution and 

independencies among inputs, CRF models the con-

ditional distribution. Conditionally independencies 

are assumed in HMM to circumvent intractable mod-

els, but this restriction makes it difficult or impossi-

ble to accommodate long range dependencies among 

observations or multiple overlapping features of the 

observations. In contrast, CRF can afford the use of 

rich, local features of the input that can occur in rela-

tional sensor data, because the model is conditional, 

dependencies among the input variables x do not 

need to be explicitly represented. However, CRF 

does not always perform better than HMM for every 

case [8,9]. So when the activity does not involve 

many different types of sensors and the independence 

assumption is not affect, HMMs works better than 

CRFs [8].  

To improve the recognition accuracy, this paper 

proposes a Latent-Dynamic Conditional Random 

Fields (LDCRF) [10] to accommodate relational data. 

As we all known, individuals may have to complete 

several actions (sub-activities) when they complete 

one task (activities), especially complex activities 

(i.e., Washing hands imply the following sub steps: 

moves to the kitchen, turns on water, uses hand soap, 

washes hands, dries hands). Also, individuals may 

complete one activity in different ways (i.e., making 

a phone implies the following ways: sits down during 

conversation, stands in one place during conversation, 

and walks around during phone call). These actions 

and different ways are the intrinsic sub-structure of 

the whole activity. When some phenomena have dis-

tinct sub-structure, models that exploit hidden state 

are advantageous [9]. The CRF approach models the 

transitions between labels, thus capturing extrinsic 

dynamics, but lacks the ability to represent internal 

sub-structure. In contrast to CRFs, LDCRF incorpo-

rates hidden state variables which model the sub-

structure of sequences, thus not only can learn dy-

namics between labels but also can capture intrinsic 

sub-structure.  

1.1. Related work 

A variety of sensing modalities has been used in 

previous work on smart environment. Among them 

are tags, cameras and various sensors and detectors. 

When a large number of objects in a house are asso-

ciated the Radio Frequency Identification (RFID) 

tags, the user wearing an RFID reader can detect 

which object is used, and the detected objects are 

used as input variables for activity recognition [11]. 

However, the user need to wear RFID reader and this 

may cause inconvenient for them. Another way is to 

exploit cameras installed in smart homes [12,13] for 

later activity reasoning, while Placelab is a smart 

house equipped with several hundred wall-mounted 

sensors, such as reed switches on doors and cup-

boards, temperature sensors and water flow detec-

tors [14]. However, this may violate residents’ priva-

cy and affected by the light. In human-centric AmI 

setting, to make the sensors suitable for a smart-home 

environment targeting maximum comfort, it is impor-

tant to select suitable devices and use non-obtrusive 

and pervasive sensors for sensing information. 

Models for recognizing activities can be probabil-

istic based [15], logic based [16] or hand-crafted 

[9,17]. Because activities are performed in a real-

world environment and may bring a great deal of 

variation in the manner that the activity is performed, 

people investigate the use of probabilistic models for 

this task which can represent and reason variations in 

the way an activity may be performed. 

Probabilistic models can be categorized into static 

classification and temporal classification [18]. Typi-

cal static classifiers include naive Bayes and decision 

trees used in [19], k-nearest neighbor (k-NN) and 

Support Vector Machine used in [20]. In temporal 

classification, state-space models are typically used 

to enable the inference of hidden states (i.e., activity 

labels) given the observations [18]. Generative mod-

els can generate samples from the joint distribution 

whereas discriminative models usually need a lot of 

training data in order to get good effects. Hidden 

Markov model (HMM) [21,22] and dynamic Baye-

sian networks (DBN) [23] are the typical generative 

models in recognizing activities from sensor data. In 

recent years, Kasteren et al. [24] used hierarchical 

hidden Markov model (HHMM) to model actions 

and their correlations, and it was shown that 

hierarchical model significantly outperforms earlier 

techniques in activity recognition. For discriminative 

models, Conditional Random Fields (CRF) 

[7,8,25,26] is commonly applied and also gives good 
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performance in activity recognition. Recently, many 

modifications of CRFs have been also proposed to 

recognize complex activities. For example, Wu 

et al. [27] proposed an algorithm using factorial con-

ditional random field (FCRF) which is one type of 

DCRF for recognizing multiple concurrent activities. 

Hu and Yang [28] proposed an algorithm using skip-

chain CRF (SCCRF) for modeling interleaving goals. 

However, there are few efforts made to model actions 

(sub-activities). 

Latent-Dynamic Conditional Random Field 

(LDCRF) [9] and Hidden State Conditional Random 

Fields (HCRFs) [29] is the modifications of CRF and 

introduces hidden states and can capture intrinsic 

sub-structure. HCRFs can estimate a class given a 

segmented sequence, and have seen their applications 

in both the vision [30] and speech community [31]. 

However, HCRFs were applied to label segmented 

sequences, leaving segmentation as a preprocessing 

step. Previously used to model the sub-structure of 

gesture sequences [9], the LDCRF can be used to 

label un-segmented sequences, which overcomes the 

limitation of the HCRF and combine the strengths of 

CRFs and HCRFs. Since observed sensor data in 

smart homes are un-segmented sequences, we pro-

pose to recognize activities through LDCRF. To our 

knowledge, LDCRF has not been used to recognize 

activities in smart homes so far. 

In this paper, the LDCRF is developed to model 

actions (sub-activities) for solving activity recogni-

tion problems, and validated in two different datasets 

generated in smart homes. To show the performance 

of recognition accuracy, we choose the other models 

for comparing the empirical results. The remainder of 

this paper is organized as follows. In the next section, 

we will present LDCRF that we used for activity 

recognition. After that, we validate our method and 

discuss the results. Finally, we conclude by summing 

up our findings. 

2. Latent-Dynamic Conditional Random Fields 

for activity recognition 

The task of activity recognition is to find a se-

quence of labels y1:T = {y1, y2,…, yT} that best ex-

plains the sequence of observation x1:T = {x1, x2,…, 

xT} for a total of T time steps. 

LDCRF takes root in CRF, which is one of impor-

tant activity recognition models that can capture ex-

trinsic dynamics between activity labels. Figure 1 

picturizes CRF as an undirected graph consisting of 

sequential variable pairs of state variables yt and ob-

servable variables xt, one every time step. CRF needs 

a lot of observations as training data to learn activity 

recognition model, and with a new observation se-

quence x1:T = {x1, x2,…, xT} can infer the activity 

labels y1:T = {y1, y2,…, yT}. 

The same as CRF, LDCRF is also an undirected 

graphical model and there are a state variable yt and 

an observable variable xt at each time step. The dif-

ference is LDCRF also assume a vector of “sub-

structure” variables h = {h1, h2,..., hT} (see Fig. 2). 

These variables are not observed in the training ex-

amples and will therefore form a set of hidden va-

riables in the model. Each ht is a member of a set Hy
t 

of possible hidden states for the activity label yt ∈{1, 

2,…, K}, where K is the number of activity labels. 

For different labels, we restrict them to have dis-

jointed hidden states which will make K disjoint hid-

den states sets Hk, k = {1, 2,…, K}. Then, we define a 

set H and let it contain the union of all Hk sets. So all 

possible hidden states will be are contained in H. 

After introducing the hidden states, the LDCRF 

define a latent conditional model as 

( ) ( ) ( )| , | , , | ,P P P=∑
h

y x y h x hxθ θ θ

 

(1)

where θ is the parameters of the model. 

Fig. 1. Conditional Random Fields. 
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Since for any ht ∉ Hy
t , there is ( )| , , 0P =y h x θ , the 

model Eq. (1) can be expressed as 

( ) ( )
: H

| , | ,

tt yh h

P P

∀ ∈

= ∑y x hxθ θ

 

(2)

As the usual conditional random field formula-

tion, ( )| ,P hx θ  can be defined as 

( )
( )

( )
1

| , exp ,
,

k k

k

P F
Z

θ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠
∑hx h x

x
θ

θ
 (3) 

and the partition function Z is defined as 

( ) ( ), exp ,
k k

k

Z Fθ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑
h

x h xθ  (4) 

where Fk is defined as  

( ) ( )
1

1
, , , ,

m

k tk

t

tF f h h t

=

−

=∑h x x
 (5) 

The feature function fk(ht−1, ht, x, t) is either a state 

function sk (ht, x, t) or a transition function tk (ht−1, ht, 

x, t). State functions sk depend on a single hidden 

variable and observations in the model while transi-

tion functions tk depend on pairs of hidden variables. 

For each state functions, there are 

( )

( ) ( ) ( )1 2

, ,

, , , , , ,

k t

N

k t t k t t k t t

s h x t

s h x s h x s h x

Τ

⎡ ⎤=
⎣ ⎦

K (6)

where ( ),

n

k t t
s h x ( 1,2, , )n N= K is defined as 

( )
1 1

,
0 0

n

t tn

k t t
n

t t

h i x
s h i x

h i x

⎧ = ∧ =⎪
= = ⎨

= ∧ =⎪⎩
 (7) 

The number of state functions, sk, will be equal to 

the length of the feature vector times the number of 

possible hidden states. In the case of activity recogni-

tion, the length of the feature is the number of sen-

sors N. If our model has K activities and C hidden 

states per activities, then the total number of state 

functions, sk, and total number of associated weights 

θk will be N × K × C. 

For each hidden state pair ' ''( , )h h , the transitions 

functions tk is defined as 

( )1

' ''

1
) )

, , ,

1 if ( and (

0 otherwise                   

k j j

j j

t h h j

h h h h

−

−

⎧ = =⎪
= ⎨
⎪⎩

x

 

(8)

It is worth noticing that the weights θk associated 

with the transition functions model both the intrinsic 

and extrinsic dynamics. Weights associated with a 

transition function for hidden states that are in the 

same subset Hyt will model the substructure patterns, 

while weights associated with the transition functions 

for hidden states from different subsets will model 

the external dynamic between activities. 

2.1. Parameter estimation 

To label a new sequence, we must know the para-

meter to build the model. The parameter can be 

y1

x1

yT

x2 xT

y2

h1 h2 hT

 

Fig. 2. Latent-Dynamic Conditional Random Fields. 
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classed obtained by training a set of labeled se-

quences (xi, yi) for i = 1, 2,…, n. 

The same as literature [7], we use the conditional 

log-likelihood of the training data and the log of a 

Gaussian prior to estimate the parameter
*

θ : 

( ) ( )
2

2

1

1
log | ,

2σ

n

i i

i

L P

=

= −∑ y xθ θ θ  (9) 

The second term of the right hand in Eq. (9) is  

the log of a Gaussian prior with variance σ
2, 

( )
2 2i.e., ~exp( /(2 )σ )P θ θ . 

Given above defined, gradient ascent is used to 

search for the optimal parameters ( )*

argmaxL= θ θ . 

There are two kinds of parameter, the θs associated 

with a state function and the θt associated with a tran-

sition function. 

For one particular training sequence xi = {x1, 

x2,…, xT1} and  yi = {y1, y2,…, yT1}, the gradient of 

( )log | ,
i i

P y x θ  with respect to the parameters θs can 

be written as 

( ) ( )

( ) ( )

1 H

H' 1

| , , , ,

| , , , ,

yt

yt

T1

t i i k i

t a

T1

t i i k i

at

P h a s t a

P h a s t a

= =

=
=

=

=

∑ ∑

−∑ ∑ ∑
           y

y x x

y x x

θ

θ

  

(10) 

where 

( )

( ) ( )

( )

: H

: H

| , ,

| ,

| ,
t

tt y

t y

t i i

h a ht

h

P h a

P

P

= ∧ ∀

∈∀

∈

=

=

∑

∑

h

h

y x

h x

hx

θ

θ

θ

 
(11)

Note that given our definition of P( h|x,θ ) in 

Eq. (3), the summations in Eq. (3) are simply con-

strained versions of the partition function Z over the 

conditional random field for h. This can be easily 

shown to be computable in O(T1) using belief propa-

gation [32]. 

The gradient of our objective function with respect 

to the parameters θt can be derived in the same way, 

where ( ), | , ,j kP h a h b= = y x θ can also be computed 

efficiently using belief propagation. In our experi-

ments, we performed gradient ascent with the BFGS 

optimization technique [33]. 

2.2. Inference 

After the parameters *

θ have been learned from 

training examples, our activity recognition is build. 

For a new test sequence x = {x1, x2,…, xT}, we can 

estimate the most probable label sequence 
*

=y { }1 2
, , ,

T
y y yK by maximizing our conditional 

model 

( )* *

argmax | ,P=y y x θ  (12) 

Since we assume each class label is associated 

with a disjoint set of hidden states, the previous equa-

tion can be rewritten as 

( )* *

: H

argmax | ,

t
ht y

P

∀ ∈

= ∑
h

y hx θ
 (13) 

The label yt associated with the t-th sensor event in 

testing can be estimated as follows: 

First, for all possible hidden states a ∈ H, compute 

the marginal probabilities ( )*= | ,

t
P h a x θ  using belief 

propagation. 

Next, compute the sum of marginal probabilities 

of the disjoint hidden states sets Hk as 

( )*
H

= | , , 1,2, ,
k t

a k

S P h a k K

∀ ∈

= =∑ Kx θ

 

Finally, find the k maximizing Sk 

 and take it as the 

label of sensor event at time t. 

3. Validation 

In this section, we will validate the performance of 

activity recognition with LDCRF by using two sensor 

datasets. In doing so, we first introduce simply HMM, 

CRF, SVM and HCRF as the baseline for comparing 

with our method. After introducing two datasets and 

some measurement criteria, we show the empirical 

results. 

3.1. Introduction of baseline models for comparing 

Hidden Markov Model  Hidden Markov Model 

(HMM) is a generative probabilistic model consisting 

of a hidden variable y and an observable variable x at 

each time step. HMM models joint probability as 

follows: 
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( )

( ) ( ) ( ) ( )

1: 1:

1 1 1 1 t

2

,

| | |

T T

T

t t t

t

p y

p y p y p y y p y
−

=

= ∑

x

x x (14)

We model one activity label as hidden variable y 

and the sensors observable as observable variable x. 

Thus, the number of hidden variables is equal to that 

of activity labels. In training and testing, we will use 

the method described in literature [15] to recognize 

activities. 

Conditional Random Fields  We will use linear-chain 

CRF for activity recognition and models conditional 

probability as follows: 

( )

( )

1: 1:

1

1 1

|

1
exp , , ,

( )

T T

K T

k k t t

k t

p y

f y y t
Z

θ
θ

−

= =

= ∑ ∑

x

x

 
(15)

where 
k
f  is the feature functions which is either a 

state function ( ) , ,
k t
s y tx  or a transition function 

( )1
, , ,

k t t
t y y t

−

x . The nominator of this function is 

straight forward and fast to compute; the complexity 

of the model lies in the computation of the normali-

zation term ( )Z θ  which takes into account all possi-

ble state sequences corresponding to the given obser-

vation sequence. 

We train a single CRF chain model and let every 

activity has a corresponding state label. In training 

and testing, we will also use the method described in 

literature [15] to recognize activities. 

Support Vector Machine  SVM is one of the standard 

tools for machine learning and data mining. The 

SVM decision function is defined as follows: 

1

( ) ( , )
N

i i

i

f y K x y bα

=

= +∑  (16) 

Here y is the unclassified tested vector, xi are the sup-

port vectors and αi their weights and b is a constant 

bias. K(x,y) is the kernel function introduced into 

SVM to solve the nonlinear problems by performing 

implicit mapping into a high-dimensional feature 

space. 

The SVM does not encode the dynamics between 

activity labels and the training set was decomposed 

into frame-based samples. In our experiment, we use 

multiclass SVM [34]. 

Hidden State Conditional Random Fields  Since 

HCRFs cannot model dynamics between activities, 

we trained the HCRF on segmented sub-sequence. 

Given one segmented sensor events x and corres-

ponding label y, we define a conditional probabilistic 

model as 

( , ) ( , , )P y P yθ θ=∑
h

x h x  (17) 

where h = {h1, h2 ,…, hm} are hidden state and cannot 

observed on training examples. 

We trained HCRF model on all activity labels as 

done in [29]. The trained HCRF model is applied on 

the new sequence using a sliding window of fixed 

size. The class label with the highest likelihood is 

assigned to the frame at the center of the sliding win-

dow. The number of hidden states and the length of 

the sliding window size (referred as NL in our expe-

riments) is decided at training stage. 

3.2. Two datasets that collected in ambient  

intelligence environment 

This subsection will present two datasets which 

are collected in ambient intelligence environments. 

One is kasteren Dataset which is collected in a three-

room apartment where a 26-year-old man lives and 

there are 14 state-change sensors were installed in 

this apartment. Location of sensors installed is list as 

follows: Microwave, Hall-Toilet door, Hall-

Bathroom door, Cups cupboard, Fridge, Plates cup-

board, Front door, Dishwasher, Toilet Flush, Freezer, 

Pans Cupboard, Washing machine, Groceries Cup-

board, Hall-Bedroom door (see Fig. 3.) Sensors were 

left unattended and installed in an unobtrusive and 

transparent way. 

In this apartment, the user lives freely and his 

ADL primary involves seven different activities 

which are listed as follows: 

1. Leaving house. 

2. Toileting. 

3. Showering. 

4. Sleeping. 

5. Preparing breakfast. 

6. Preparing dinner. 

7. Preparing a beverage. 

The times at which no activity is annotated is re-

ferred to as ‘Idle’. Activities were annotated by the 

subject himself using a blue-tooth headset. 

The Dataset is collecting for 28 days in the apart-

ment which resulted in 2120 sensor events and 245 

activity instances. Table 1 shows the number of sepa-

rate instances of activities and the percentage of time 

each activity takes up in the data set. This table clear-

ly shows how some activities occur very frequently, 
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while others that occur less frequently have a longer 

duration and therefore take up more time. 

Another dataset is “WSU Apartment Test bed, 

ADL adlnormal” which is collected in a smart apart-

ment testbed located on the WSU campus [35]. This 

dataset is build to recognize and assess the consisten-

cy of Activities of Daily Living that individuals per-

form in their own homes. Sensors in the apartment 

include monitor motion sensors (M), temperature 

sensors (T), water sensors (W), burner sensors (B), 

phone sensors (P), and item sensors (I) (see Fig. 4). 

The motion sensors are located on the ceiling approx-

imately 1 meter apart to locate the resident, the Voice 

over IP (VOIP) technology captures phone usage and 

switch sensors to monitor usage of the phone book, a 

cooking pot, and the medicine container. 

The dataset records 24 WSU undergraduate stu-

dents performing five ADLs, one at a time. Activities 

include both basic and more complex ADLs that are 

found in clinical questionnaires and are listed as fol-

lows: 

1. Telephone Use: Look up a specified number in 

a phone book, call the number, and write down 

the cooking directions given on the recorded 

message. 

2. Hand Washing: Wash hands in the kitchen sink. 

3. Meal Preparation: Cook oatmeal on the stove 

according to the recorded directions, adding 

brown sugar and raisins (from the kitchen cabi-

net) once done. 

4. Eating and Medication Use: Eat the oatmeal to-

gether with a glass of water and medicine (a 

piece of candy). 

5. Cleaning: Clean and put away the dishes and 

ingredients. 

Letting the activities we want to recognize be the 

states and the collected sensor data to be the observa-

tions, we can apply HMM, CRFs and LDCRF on 

activity recognition. Next subsection will give two 

measurement criteria to evaluate the recognition ac-

curacy and in the third and fourth subsection, we will 

perform the experiments on the two smart environ-

ments datasets. 

3.3. Measurement criteria 

The measures we first adopt were used in litera-

ture [8], where time slice accuracy is proposed to 

measure the percentage of correctly classified time 

 

Fig. 3. Floor plan of three-room apartment, red rectangle boxes indicate sensor nodes. 

Table 1 

Number of instances and percentage of time activities occur in the 

dataset 

 Number of instances Percentage of time

Idle – 11.5% 

Leaving 34 56.4% 

Toileting 114 1.0% 

Showering 23 0.7% 

Sleeping 24 29.0% 

Breakfast 20 0.3% 

Dinner 10 0.9% 

Drink 20 0.2% 
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slices and the class accuracy is used to evaluate the 

average percentage of correctly classified time slices 

per class. Formally, they are defined as follows: 

( )
1

inferred true( )
Time slice : 

N

n
n n

N

=

=⎡ ⎤⎣ ⎦∑
 

( )c

1

1

inferred true ( )1
Class :  

N
C

c cn

cc

n n

C N

=

=

⎧ ⎫=⎡ ⎤⎪ ⎪⎣ ⎦
⎨ ⎬
⎪ ⎪⎩ ⎭

∑
∑  

where [a = b] is a binary indicator giving 1 when true 

and 0 when false. N is the total number of time slices, 

C is the number of classes and Nc the total number of 

time slices for class c. 

Activity recognition is a multi-label classification 

problem in essence, so we also choose the corres-

ponding measures [36] to evaluate the performance 

of our models. Quality of the overall classification is 

assessed in two ways: Macro-averaging and Micro-

averaging. We use Macro-averaging because it treats 

all classes equally and take β = 1 which weights re-

call and precision evenly. Our measures for multi-

label classification are listed in Table 2. 

In the table, tpi is the number that correctly recog-

nized as the i-th class (true positives), tni is the num-

ber that correctly recognized but do not belong to the 

i-th class (true negatives), and fpi is the number that 

incorrectly recognized as the i-th class (false posi-

tives) while fni is the number that incorrectly recog-

nized but do not belong to the i-th class (false nega-

tives).  

Also we present the confusion matrix of different 

models. The columns in each table show the ground-

truth labels and the rows show the predicted labels. 

The values in confusion matrix are the count of each 

activity is predicted correctly and the count that are 

predicted as other labels. 

The error of training data is defined as 

( )
1
inferred true( )

Error

N

n
n n

N

=

≠⎡ ⎤⎣ ⎦
=
∑

 

by minimizing which we can define the number of 

hidden variables. 

3.4. Experiment 1 

In this experiment we will recognize activities in 

kasteren Dataset [8] base on probabilistic models. 

The sensor readings are divided in time slices of 

length Δt = 60 second and label the activity for each 

 

Fig. 4. Sensors in the WSU apartment test bed, monitor motion (M), temperature (T), water (W), burner (B), phone (P), and item use (I). 
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slice. The dataset can divide into 40006 time slices 

and there are three representations: raw, changepoint 

and last. The raw sensor representation gives a “1” to 

time slices when the sensor is firing and a “0” other-

wise; the changepoint representation means when 

sensor reading changes the sensor gives a “1” where 

the sensor reading changes and last representation 

means last sensor that changed state continues to give 

“1” and changes to “0” when a different sensor 

changes state. Since literature [8] has demonstrated 

that “changepoint + last” representation achieves the 

overall highest class accuracy, we only take “chan-

gepoint + last” representation for both models and 

inference methods. 

We do experiment using previous 20000 time slic-

es and take previous 16000 time slices for training 

and the following 4000 for testing. When training 

with LDCRF, we varied the number of hidden states 

(NHS) (from 2 to 6 states) and compute the error on 

training data set. Figure 5 is the error changes with 

different hidden states and by which we get NHS = 5 

that minimizing the error for testing. 

Table 3 is the result for different models with the 

measures used in literature [8] which shown that 

 

Fig. 5. Error on training data set with 16000 training data. 

Table 2 

Measures for multi-label classification 

Measure Formula Evaluation focus 

Average  

Accuracy 
1

l
i i

i

i i i i

tp tn
l

tp fn fp tn=

⎛ ⎞+
⎜ ⎟

+ + +⎝ ⎠
∑  

The average per-class effectiveness of a classifier

Error Rate 

1

l
i i

i

i i i i

fn fp
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tp fn fp tn=
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⎜ ⎟
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The average per-class classification error 

Precision 

1
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An average per-class agreement of the data class

labels with those of a classifiers 
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An average per-class effectiveness of a classifier

to identify class labels 
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Precision Recall

Precision Recall

β

β

+

+

Relations between data’s positive labels and those 

given by a classifier based on a per-class average 
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LDCRF have achieved both highest time slice accu-

racy and highest class accuracy. For the Time slice 

accuracy, LDCRF gives the highest result. For the 

Class accuracy rate, LDCRF gives an average accu-

racy as high as 87.53%. However, other models are 

all lower than 80%. 

Furthermore, Fig. 6 compares the accuracies of 

different models for the individual activities. Because 

the activity ‘Dinner’ is not happened in the test data-

set, there are only seven activities in the figure. From 

the figure, we can see that LDCRF get best result for 

all activities compared other models, HCRF gets 

worst result and SVM follows HCRF. Figure 6 also 

shows that the activities which take more time and 

generate more sensor events (i.e., Leaving) tend to be 

recognized with greater accuracy. The activities 

which are very quick (i.e., Drink) and do not generate 

enough sensor events (i.e., breakfast) to be distin-

guished from other activities result lower recognition 

results. For this case, our model LDCRF can also get 

better result. 

The reason is that LDCRF not only can learn dy-

namics between labels but also can capture intrinsic 

sub-structure. Because HMM and CRF can model 

dynamics between labels, the result of them follows 

LDCRF. Since HCRF is designed for segmented sub-

sequence and use a sliding window when testing, it 

gets worst result. Because SVM cannot encode the 

dynamics between activity labels, it gets worse result 

than HMM, CRF and LDCRF. For activity ‘Idle’, 

which means no activity carried out, HCRF and SVM 

get better result. This is because the activity involves 

many sensors and learning dynamics between labels 

contribute nothing since there is not regular pattern 

in it. 

3.5. Experiment 2 

In the above experiment, there are only seven ac-

tivities in the test dataset. Since the activity ‘Prepar-

ing dinner’ is very sparse and even did not happen in 

the test dataset, we cut the previous 20000 time slices 

equally into two datasets in the second experiment in 

order to include all the activities in the test dataset for 

training and testing. In this way, we first do experi-

ment with varying length of sub-sequences, and then 

validate the LDCRF with the optimal length. Apart 

from the measure used in literature [8], the measures 

for multi-label classification are also used to evaluate 

the performance of our models. 

First of all, we hypothesize that test results are in-

fluenced by the length of sub-sequences. To validate 

 

Fig. 6. The accuracies of different model for eight individual activities with 16000 training data. 

Table 3 

Time slice and class accuracies for the different models with 16000 training data 

   SVM  HMM    CRF HCRF(NHS = 5,NL = 50) LDCRF(NHS = 5)

Rate 0.9868 0.9845 0.9868 0.9496 0.9932 

Class rate 0.5877 0.7520 0.7105 0.4042 0.8753 
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our hypothesis, we divide the train sequences into 

different length of the sub-sequences and train with 

them. For example, cut the training sequence into 

five equal sub-sequences which has 2000 time slices 

and train with them. 

Figure 7 picturizes the time slice rate and class rate 

for CRF and LDCRF for different length of sub-

sequences and Table 4 shows their corresponding 

values. As they reveal, recognition accuracy are in-

fluenced by the length of sub-sequences and the sub-

sequences with 1000 time slices get better result. 

This is because sub-sequences of different length 

have different sub-structures. Anyway, LDCRF is not 

subject to this influence when it has better recogni-

tion accuracy than CRF. 

The above experiment reveals that it is a good 

choice to divide the train sequences into ten equal 

sub-sequences with 1000 time slices. So we cut train-

ing sequence into ten equal sub-sequences and eve-

ryone have 1000 time slices, and then recognize ac-

tivities via LDCRF and baseline models. When train-

ing with LDCRF, we vary the number of hidden 

states (NHS) (from 2 to 6 states) and compute the 

error on training data set. Figure 8 is the line chart of 

error rates varying with different hidden states, and 

by which we figure out that NHS = 6 minimizes the 

error for testing. 

Table 5 summarizes the results for different mod-

els with the measures used in literature [8], while 

Table 6 the results for different models with the 

measures for multi-label classification and the time 

that used to infer the test activity labels with the 

trained models. They show that the Class rate and 

Recall is equal and they both evaluate the average 

percentage of correctly classified time slices per class. 

Because HCRF is designed for segmented sub-

sequence, it gets worst result. Because SVM cannot 

encode the dynamics between activity labels, it gets 

bad Recall and Fscore compared with HMM, CRF 

and LDCRF. CRF gets better Average Accuracy, 

Precision and Fscore than HMM, but Recall is worse. 

LDCRF has achieved best results and small Error 

Rate. The time used for LCRF to infer the test activi-

ty labels is short despite slower than SVM, HMM, 

CRF. LDCRF is the good choice for activity recogni-

tion when the time is not critical. 

The Confusion Matrix of SVM, HMM, CRF, 

HCRF and LDCRF are listed in Tables 7–11. From 

the tables, we can see that LDCRF get better results 

for all activities compared with SVM and HCRF. 

 

Fig. 7. The time slice rate and class rate of CRF and LDCRF for different length of sub-sequences. 

Table 4 

Time slice and class accuracies of CRF and LDCRF for different length of sub-sequences 

N time slices 2000 time slices 1000 time slices 500 time slices 400 time slices 200 time slices

CRF(time slice rate) 97.67% 97.29% 97.29% 97.79% 97.83% 

LDCRF(time slice rate) 98.27% 98.76% 98.08% 98.51% 98.37% 

CRF(class rate) 58.97% 65.33% 64.66% 60.41% 64.52% 

LDCRF(class rate) 63.27% 75.21% 64.35% 66.86% 70.35% 
 

Y. Tong and R. Chen / Latent-Dynamic Conditional Random Fields for recognizing activities in smart homes 49



Compared with CRF, LDCRF get better results for 

seven activities. For simple activity which involve 

little act (showing), CRF may perform better than 

LDCRF. As compared with HMM, LDCRF gets bet-

ter result for five activities. There are some activities 

in which HMM perform better than CRF and LDCRF, 

this is because: they do not involve many different 

types of sensors and thus they will make less intrinsic 

actions (sub-activities). In addition, a separate model 
( )p x y  is learned in HMM for each class and Bayes 

rule is used to calculate the posterior probabili-

ty ( )p y x for a novel point. But in the case of CRF 

and LDCRF, a single model is used for all classes 

when calculating ( )p y x directly and parameters are 

learned by maximizing the conditional likelih-

ood ( )p y x .  

3.6. Experiment 3 

We also used the dataset collected in “WSU 

Apartment Testbed, ADL adlnormal” to further test 

the accuracy of our algorithm. The adlnormal dataset 

includes sensor event data for 24 individuals who 

were asked to perform the 5 ADL activities, yielding 

a total of 120 activity traces containing 6425 sensor 

events (time slices). This data reflects normal per-

formance of the targeted activities. This experiment  

 
 

Table 5 

Time slice and class accuracies for the different models 

   SVM  HMM    CRF HCRF(NHS = 5, NL = 30) LDCRF(NHS = 6)

Rate 0.9346 0.9170 0.9354 0.8961 0.9556 

Class rate 0.5280 0.6834 0.6332 0.4063 0.7402 

 

Table 6 

The result for different models with the measures for multi-label classification 

   SVM  HMM    CRF HCRF(NHS = 5, NL = 30) LDCRF(NHS = 6)

Average Accuracy 0.98365 0.9793 0.9836 0.9740 0.9889 

Error Rate 0.01635 0.0208 0.0162 0.0260 0.0111 

Precision 0.6340 0.6257 0.7144 0.3710 0.7994 

Recall 0.5280 0.6834 0.6332 0.4063 0.7402 

Fscore 0.2881 0.3267 0.3357 0.1939 0.3843 

Time(second) 0.4249 0.3568 0.3297 25.0298 2.2657 
 

 

Fig. 8. Error on training data set with 10000 training data. 
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Table 7 

Confusion Matrix of SVM 

 Idle Leaving Toileting Showering Sleeping Breakfast Dinner Drink

Idle 756 5 9 42 308 12 55 8 

Leaving 5 6253 3 0 0 0 1 1 

Toileting 3 0 57 3 8 0 1 0 

Showering 8 0 2 14 0 0 0 0 

Sleeping 3 0 0 1 2239 0 0 0 

Breakfast 0 0 0 0 0 5 3 0 

Dinner 154 0 0 0 0 11 21 6 

Drink 2 0 0 0 0 0 0 1 

 

Table 8 

Confusion Matrix of HMM 

HMM2 Idle Leaving Toileting Showering Sleeping Breakfast Dinner Drink

Idle 496 8 4 2 303 1 16 3 

Leaving 5 6248 1 0 0 0 1 0 

Toileting 4 0 59 3 13 0 2 2 

Showering 135 2 7 55 0 0 0 0 

Sleeping 3 0 0 0 2239 0 0 0 

Breakfast 0 0 0 0 0 9 2 0 

Dinner 284 0 0 0 0 17 60 7 

Drink 4 0 0 0 0 1 0 4 

 

Table 9 

Confusion Matrix of CRF 

 Idle Leaving Toileting Showering Sleeping Breakfast Dinner Drink

Idle 805 69 10 14 315 8 56 4 

Leaving 5 6189 1 0 0 0 1 2 

Toileting 3 0 43 0 6 0 0 2 

Showering 86 0 17 46 2 0 0 0 

Sleeping 10 0 0 0 2232 0 0 0 

Breakfast 0 0 0 0 0 10 0 0 

Dinner 20 0 0 0 0 8 24 3 

Drink 2 0 0 0 0 2 0 5 

 

Table 10 

Confusion Matrix of HCRF 

 Idle Leaving Toileting Showering Sleeping Breakfast Dinner Drink

Idle 675 137 56 28 402 13 66 10 

Leaving 2 6106 3 0 0 0 0 0 

Toileting 7 0 0 0 0 0 0 0 

Showering 43 0 0 32 0 0 0 0 

Sleeping 6 0 3 0 2106 1 0 0 

Breakfast 1 0 0 0 0 0 0 0 

Dinner 197 0 9 0 14 9 15 6 

Drink 0 0 0 0 18 5 0 0 

 

Table 11 

Confusion Matrix of LDCRF 

 Idle Leaving Toileting Showering Sleeping Breakfast Dinner Drink

Idle 888 3 8 16 305 5 19 3 

Leaving 4 6255 1 0 0 0 2 1 

Toileting 3 0 53 0 9 0 1 0 

Showering 13 0 9 44 0 0 0 0 

Sleeping 4 0 0 0 2241 0 0 0 

Breakfast 0 0 0 0 0 10 3 0 

Dinner 17 0 0 0 0 13 56 3 

Drink 2 0 0 0 0 0 0 9 
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takes the previous 5000 time slices as train sequence 

and next 1425 time-slices as test sequence. 

For the train sequence, we cut it into fifty equal 

sub-sequences with 100 time slices, then training 

with all the models. For LDCRF, we varied the num-

ber of hidden states (from 2 to 6 states) and com-

puted the error on training data set. Figure 9 show 

that NHS = 6 is the minimized error for the different 

hidden states. 

As shown in Table 12, the time slice accuracy of 

LDCRF is 3.9% higher than CRF and 6.46% than 

HMM, the class accuracy is 3.85% higher than CRF 

and 6.61% than HMM. The Time slice accuracy and 

the Class accuracy of SVM are 30.32% and 42.50 % 

lower than LDCRF, respectively, since it cannot en-

code the dynamics between activity labels. The re-

sults demonstrate again that LDCRF not only can 

best recognize time slices, but also can get the high-

est average classification accuracy. 

Figure 10 compares recognition accuracy for dif-

ferent models in the five activities from which we 

can see the recognition accuracies of LDCRF get 

good results. There are five activities in which 

LDCRF are always better than SVM and HCRF. 

LDCRF get higher accuracy than CRF in four out of 

five activities and the accuracy of LDCRF is only 1% 

lower than CRF in activity ‘Cooking’. For simple 

activity which involve little act (Cook), CRF may get 

better result than LDCRF. LDCRF get higher accura-

cy than HMM for three activities and the accuracy of 

LDCRF is only 1% lower than HMM in the other 

two activities. For activity ‘cooking’ and’ making 

Phone-Call’, HMM performs better than LDCRF, 

this is because the sensors used in ‘cooking’ and oth-

er activities are very different, thus the independence 

assumption of HMM work better than the depen-

dence of LDCRF. 

Table 13 compares the results of different models 

with the measures for multi-label classification and 

the time that used to infer the test activity labels with 

the trained models. Because HCRF is designed for 

segmented sub-sequence and SVM cannot encode the 

dynamics between activity labels, they get bad results 

compared with HMM, CRF and LDCRF. CRF is 

better than HMM but worse than LDCRF. The Con-

fusion Matrix of SVM, HMM, CRF, HCRF and 

LDCRF are listed from Table 14 to Table 18. 

The experiments in the two datasets validate our 

LDCRF can get better results compared with baseline 

model SVM, HMM, CRF and HCRF. HCRF gets 

Table 12  

Time slice and class accuracies for the different models with 5000 training data 

   SVM  HMM    CRF HCRF(NHS = 5,NL = 40) LDCRF(NHS = 6)

Rate 0.6779 0.9165 0.9502 0.8144 0.9811 

Classrate 0.5535 0.9124 0.9400 0.7987 0.9785 
 

 

Fig. 9. Error on training data set with 5000 training data. 
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worst result for it is designed for segmented sub-

sequence. Because SVM cannot encode the dynamics 

between activity labels, it gets bad Recall and Fscore 

compared with HMM, CRF and LDCRF. Since 

LDCRF can model relation between activities and 

actions in activity, it gets best result. Since CRF and 

HMM which are used in [8] cannot capture the rela-

tion between actions, they get lower recognition ef-

fect than LDCRF. 

4. Conclusions 

To allow elderly people to be better assisted with 

context-aware services, this paper introduces the 

 

Fig. 10. The accuracies of different model for five individual activities. 

 

Table 13 

The result for different models with the measures for multi-label classification 

   SVM  HMM    CRF HCRF(NHS = 5,NL = 40) LDCRF(NHS = 6)

Average Accuracy 0.8712 0.9666 0.9801 0.9258 0.9924 

Error Rate 0.1288 0.0334 0.0199 0.0742 0.0076 

Precision 0.7076 0.9110 0.9446 0.7710 0.9702 

Recall 0.5535 0.9124 0.9400 0.7987 0.9785 

Fscore 0.3106 0.4558 0.4711 0.3923 0.4872 

Time(second) 0.1842 0.0486 0.0345 3.2158 0.1190 

 

Table 14 

Confusion Matrix of SVM 

 Phone_Call Wash_hands Cook Eat Clean

Phone_Call 164 13 0 45 18

Wash_hands 0 0 0 0 0

Cook 0 23 452 42 93

Eat 30 29 2 77 55

Clean 0 33 43 33 273

 

Table 15  

Confusion Matrix of HMM 

 Phone_Call Wash_hands Cook  Eat Clean

Phone_Call 194 12 0 0 0

Wash_hands 0 80 3 0 0

Cook 0 6 494 9 0

Eat 0 0 0 188 89

Clean 0 0 0 0 350
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LDCRF model for inferring people’s activities from 

sensor data in smart environment. The LDCRF mod-

el incorporates hidden state variables which can 

model the sub-structure of a class sequence and learn 

dynamics between class labels. 

To validate the proposed method, LDCRF as  

well as the model SVM, HMM, CRF and HCRF are 

used in comparison for recognizing activities on two 

datasets. Different measurement criteria are used to 

measure the recognizing effect for those models.  

The results show LDCRF outperforms other tech-

niques on an average. The results also confirm that 

modeling actions (sub-activities) and the underlying 

correlations do contribute to accurate activity recog-

nition. 

Each contribution to activity recognition will 

brings us one step closer to the realization of Am-

bient Intelligence. This progress allows the AmI sys-

tems to understand what the user wants and needs as 

well as also where, when and to whom to deliver a 

service. As future work, we plan to expand the 

LDCRF to recognize activities in multiple-residents 

environments. 
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