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Abstract. The purpose of this paper is to offer a unique adaptive path planning framework to address a new challenge known
as the Unknown environment Persistent Monitoring Problem (PMP). To identify the unknown events’ occurrence location and
likelihood, an unmanned ground vehicle (UGV) equipped with a Light Detection and Ranging (LIDAR) and camera is used to
record such events in agriculture land. A certain level of detecting capability must be the distinct monitoring priority in order
to keep track of them to a certain distance. First, to formulate a model, we developed an event-oriented modelling strategy for
unknown environment perception and the effect is enumerated by uncertainty, which takes into account the sensor’s detection
capabilities, the detection interval, and monitoring weight. A mobile robot scheme utilizing LIDAR on integrative approach
was created and experiments were carried out to solve the high equipment budget of Simultaneous Localization and Mapping
(SLAM) for robotic systems. To map an unfamiliar location using the robotic operating system (ROS), the 3D visualization tool
for Robot Operating System (RVIZ) was utilized, and GMapping software package was used for SLAM usage. The experimental
results suggest that the mobile robot design pattern is viable to produce a high-precision map while lowering the cost of the
mobile robot SLAM hardware. From a decision-making standpoint, we built a hybrid algorithm HSAStar (Hybrid SLAM & A
Star) algorithm for path planning based on the event oriented modelling, allowing a UGV to continually monitor the perspectives
of a path. The simulation results and analyses show that the proposed strategy is feasible and superior. The performance of
the proposed hyb SLAM-A Star-APP method provides 34.95%, 27.38%, 33.21% and 29.68% lower execution time, 26.36%,
29.64% and 29.67% lower map duration compared with the existing methods, such as ACO-APF-APP, APFA-APP, GWO-APP
and PSO-APP.

Keywords: HAS star algorithm, Lidar sensor, environment perception, persistent monitoring, GMapping, path planning

1. Introduction

Nowadays, obtaining information is becoming easier, with the complexity of accessing data being comparable
to that of accessing a memory block. However, getting data from a sensor network is critical. Currently, data is
collected through sensor networks. In the physical realm, data is collected for inspecting oil pipeline’s leakage,
reviewing infrastructure for defects, researching water bodies to monitor the environment, and scanning risk events
for relief operations. The limitation of fuel usage, as well as the length and distance of trip for data gathering, are
notable issues in data gathering. As a result, path planning is an NP-hard task. The current state of the art systems
take two approaches to solving this challenge. A myopic technique [10,56] is one approach, in which a set of sensing
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locations is determined and the system travels to the most promising one. While such solutions are computationally
efficient, they fail to account for the travel distance constraint properly.

Various types of robots become popular for general, medical, industry and agriculture purposes. Unknown en-
vironment path planning for an autonomous exploration and simultaneous localization for agriculture robot got
increased consideration [34]. Highest accurate environmental map is basis for bionic robot [28], autonomous vehi-
cle [15], unmanned aerial vehicle [14] and Agricultural robot [24]. These robots achieve navigation, picking and
placing things, surveying. The real challenge is the changing environment, variation in shape, illumination, occlu-
sion, view point, etc. it is difficult to create maps for every real time scene. The absence of intelligent exploration
of environment is cutoff the habit of robot expertise [48]. Consequently numerous researches originated to train
robot, independently explore path planning for unknown environment, which permit the robot to develop dynamic
map [26]. Optimal path plan generated by which is observed locally is combined with a partially created map
[39,40,45,46,54]. The robot simultaneously predicts the map and updates the map to navigate along this trajectory
[29]. Many researchers focused about the exploration of sensor’s position optimization. Full coverage observation
of environment perception is achieved by frontier-based approach [32]. Frontier-based approach cannot guarantee
the optimal trajectory plan because of its single stage greedy method [58]. By increasing the information gained
through investigation, another method named multi step optimization used acquire optimal path [22]. Information
gathering again based on monitoring the environment persistently. In many applications, maintaining the changing
parameter is a crucial for managing uncertainty in environment path planning [2–4,12,17,19,20,23,35,37,41,43,44].

The evolution of robotics-based monitoring has ushered in a slew of new research opportunities. The fact that real
devices have restricted amount of perceiving sources, like power, duration, or distance traveled, limits the number
of observations which can be obtained is a major obstacle. Therefore, path planning need to planned extremely to
maximize the time, energy, fuel. Path Planning plays vital primitive against autonomous agriculture robots that can
find the shortest or otherwise optimal path between two points on the agriculture field or farm. Path planning is a
route finding problem of effective outline to move the robot from the source to target. When the environment is newer
than the path planning requirements, the map of the field requires the robot to be intelligent about its position. There
are many robots available for real time scenario such as painting robots, cleaner robots, mining robots, lawn mower
robots [43], Sowing robot 1 [37], Lumai-5 [2], Di-Wheel [44], and AgBot [17]. Path planning in agriculture are
extend in various application. Two types of path planning proposed for agriculture robot: the first is point to point
based path planning, the second is coverage based path planning [35]. In non-adaptive context, when the robots
executed plan a path without accounting for noisy observations, the informative path planning (IPP) complexity is
NP hard. The adaptive setup increases the difficulty by needing not only a strategy, but also a policy that adapts
to the observations the agent receives. We further expand the problem by explicitly introducing different sensing
modalities and taking into account the impact of both sensing and moving on the energy budget [4].

Autonomous robots are collectively working to gain worthy data about our regions. In the older days, rapid
technological advances have unlocked unique stages of autonomy and decision-making of their perception just in
case of flexible and cost effective tool [20]. Strategies are sapping conventional data collecting procedures using
fixed sensors, conventional sampling, or manned platforms that are steered in aquatic applications, this can be
inconvenient, costly, and even deadly [23].

Rational devices focus a challenge that is limited size of sensing resources, for example distance, session, en-
ergy, which restricts the quantity of factors which can be gathered. Hence, path must be well planned, enlarge the
information gather about the unknown environment, whereas fulfilling the set of budget constrain. This IPP issue,
which is the focus of current research, despite ongoing improvements in this field, most of the robot acquired data
in passive manner only. IPP using coverage-based path planning are usually restricted to a few platforms or appli-
cation domains. Intelligent vehicles are an intelligent agent which consist of environment perception & modeling,
localization with mapping, path planning with decision-making and motion control.

Mostly others have spent their effort by comparing algorithms in order to determine which can provide the most
precise map. Every method has such a set of conditions that can be tailored to the turtle’s work atmosphere. Factors
like robot rapidity, plotting apprise interval can affect not only how long it takes but also how accurate the map is.
As a result, it is vital to understand how different algorithm settings modify map characteristic, which is the focus of
this research, particularly when robots are operating in unfamiliar environments especially when robots are working
in unknown environment.
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Formerly, fuzzy logic and neural networks were used to produce a variety of control programmers, system iden-
tification techniques, and active disturbance rejection platforms. While neural networks have complex neuron con-
trollers, designing a fuzzy logic controller requires expert knowledge. Although the Negative-Imaginary (NI) the-
ory is applicable to robust vibration control issues for adaptable structures with high-resonant dynamics, most ap-
proaches based on this theory have not addressed the challenge of high-precision trajectory monitoring for quad
rotor structures in environments that vary.

Machine learning strategies are widely used in autonomous robots in recent years. These robots are equipped with
adaptive learning capabilities based on acquired knowledge. An essential subfield of machine learning is reinforce-
ment learning (RL), which continually updates an agent’s activation policies in response to feedback dependent on
the situation by trial-and-error. The availability of training samples has increased due to the advancement of sim-
ulation technologies and the accumulation of measurement data. Due to its strong ability to learn in challenging
contexts, reinforcement learning is shown feasible outcomes in the navigation of mobile robot. The designing of
track planning approach polished, then these algorithms parameter improved by valuable facts. Early research also
employed ML to increase the environment awareness, which is huge, dynamic, or partially unstructured.

Also, manually tuning complex control loop requires more time to controller experts. Additionally, single-
objective criteria like small chasing fault, short mounting time and minimum overshoot are satisfied via manual
parameter tuning and optimization. Therefore, intelligent embedding method is presented to deal these issues. The
global optimization strategies for parameter tuning contain genetic algorithm, ant colony optimization, particle
swarm optimization, reinforcement learning etc. Due to comprehensive onboard implementation, Machine Learn-
ing strategies allow automatic adaptation to environment. But define the performance of potential tuning parameter
solutions and gather a big size of information through relevant real-world domain, its evaluation framework ne-
cessitates a significant amount of time. There are other sources of uncertainty that could contribute to the multiple
disruptions in performance evaluation (sensor noise or manufacturing tolerances). Significant research theme at
robotics is the higher-performance route track of unmanned aerial vehicle by effect of aging as well as environ-
ment. Its advantages contains a broad spectrum of application in civilian and military domain, like aircraft review,
following, implementation of law, wildlife observing. If robust systems of control are not designed to withstand the
impacts of external commands and disturbances, this sort of uncertainty results in poor performance or instability in
the system. Despite the fact that numerous path-following control strategies have been investigated to mitigate the
impact of the additional wind component, there is a high reliance on wind knowledge and a standard PID monitoring
controller architecture with no active anti-disturbance features capacity compared to other tuning models.

As already indicated, the majority of existing path planning approaches in use mainly relies on a static global map.
When the map contains vibrant restrictions, its state requires to be recognized. These algorithms may act badly with
unknown static with dynamic obstacles and frequently get orientation track instead of velocity facility, so extra
sensors or tracking techniques must be used, which complicates navigation along computation for the mobile robot.

This is the reason behind the motivation of this research. To overcome the shortage of autonomous vehicle es-
pecially for unknown environment depends on accurate map to achieve the effective path planning and improve
optimization for agriculture phenotype robot and enhance the persistent monitoring based on region of interest. The
key contribution from our side work is a HSAStar mapping approach for point cloud data is utilized to calculate the
various spatial arrangements for unknown environment. Then save them in the map to promote persistent monitor-
ing. Hybrid SLAM & A Star algorithm for path planning is convenient to activate with the parameters for tuning. It
proves a greater convergence, lesser computation time, and better proficiency to determine global optimum. Obvi-
ously, its recall ability is more effectual than learning algorithms, because every star can able to concurrently signify
own preceding better place and neighborhood better.

1.1. Literature survey

Path planning algorithm for environmental exploration has two kinds. The first was myopic, which selects one
step at a time as its next move. The study does not address the lack of anticipation mechanisms, which could be tricky
in route planning and decision-making. The second technique was based on a partially observable Markov model
that consigns a reward to each allowed action sequence. The computational complexity in non-myopic techniques
was high. [33]. Using the evidential gird framework, Mouhagir et al. presented trajectory planning for autonomous
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vehicles in an uncertain scenario. The presented study models the integration of environmental uncertainty with
an evidentiary grid, demonstrating great performance in avoiding barriers. The robotized vehicle was not imple-
mented [8].The authors presented a novel acquisition technique for informative path planning, which was created
for the purpose of detecting anomalies in exploration missions. The proposed algorithm was tested on synthetic test
functions in the real world. The authors propose that a three-dimensional (3D) search space be added to the two-
dimensional (2D) path parameterized technique. For complex time dependency of the environment, a covariance
function was proposed, which encodes particular spatiotemporal surveillance.

The research was employed to detect anomalous quantities in a certain area of chemical substance, contaminants,
or radioactive substances, as well as need to re-create a landscape with undefined terrain for large-scale architecture
[38]. The research introduced an innovative deterrent deliberate IPP calculation that was useful for UAV target search
problems. To generate the ideal, limited skyline 3D polynomial route in a major impediment climate, the organizer
strikes a balance between inclusion, obstruction aversion, target re-perception, height subordinate sensor execution,
flight time, and FoV. The presented layered improvement strategy was effective against fraudulent identifications
since it was combined with a good investigative abuse mechanism.

In terms of search efficacy, the presented organizer outperforms the non-versatile IPP organizer, the inclusion
organizer, and the arbitrary examining organizer [21]. The calculation took into account a wide sort of climate com-
plications and barrier densities. Despite multiple bogus human recognitions by the sensor, it successfully tracked
down all of the persons a meaningful SAR reform on the ground, demonstrating the vigor provided by the lay-
ered advancement technique. The organizer’s primary flaw was that it assumes a constant and predictable climate.
Furthermore, for target inhabitance, a non-transient field was expected.

Researchers employed an informative continuous space path planning algorithm, evaluated the measured data
online, and reasoned near the suitable measurement point. The presented method permits the robot to replan adap-
tively sampling in position, so that focus on a specific feature of interest. That technology was used in UAV-based
gas distribution mapping, ground ice mapping with a rover, and monitoring with a catamaran-type ASV [7]. Bricher
and teams introduced Receding Harizon planner for a known or unknown environment, the suggested planning ap-
proach finds noble paths for inspecting an a priori known surface. Additional effort might be devoted to developing
plans for numerous robotic platforms, such as large-scale trials, fixed-wing Drones or automated machines [36].

SankalpArora and Sanjiban invented Partially Observable Markov Decision Processes (POMDP) were a sim-
ple way to simulate sequential decision making in uncertain situations. MDP-POMDP solvers accomplish multi-
resolution gen collection task poorly at the budgeted and do not take advantage of UAV agility, rendering them
inappropriate for such applications [5]. Olov Andersson presented a combining optimum and Actual planning of
physically feasible pathways in tough situations with dynamic barriers by receding-horizon control with space-time
multi-resolution lattices. Researchers have shown the context in action via handling complex indoor 3D quad copter
situations of navigation that need planning ahead of time. Waiting for other people and quad copters, as well as
taking diversions around them [30]. Qing and team explores path searching, it records all equidistant shortest paths
and chooses the best path among numerous equidistant paths based on the turn time, resulting in the path with the
shortest distance and time [47].

Yu Feng, Shaoshan Liu and Yuhao Zhu proposed spatially encoding the sequence’s key for point-cloud, which was
usually the middle one. The K-spatial frame’s encoding discoveries utilized to temporal encode the remaining point
clouds, which refer to as expected point clouds (P-frames) (P-frames). Autonomous machines was able to connect
more with each other and cloud using well organized point cloud compression, entering a new period of distributive
and cloud robotics. The study by Rekleitis et al. [42] presents a spatio-temporal technique for compressing Light
Detection and Ranging (LIDAR) point clouds. For a variety of reasons, IoannisRekleitis and Jean-Luc Bedwani
have chosen a LIDAR as the primary sensing mode: for example, the mobile device has vastly limited ground
consent. LIDAR sensor can provide range data that can be used to construct landscape models with a resolution of
1–2 cm. Most stereo vision systems would struggle to achieve such precision over the whole measuring range. Such
precision was also critical for the mission’s scientific return, which includes detecting rock formations.

Furthermore, without the need for extra processing, LIDAR sensors deliver precise 3D geometric information in
the shape of a 3D point cloud [6]. The planning of a receding horizon trajectory based on optimization approach [18]
introduced by Kristoffer Bergman for nonlinear dynamics functioning in a congested and unstructured environment.
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To handle the 3D Path Planning problem in a dynamic setting, Utkarsh Goel and Shubham developed on the Glow-
worm Swarm Optimization (GSO) algorithm. The application of Swarm based Intelligence allowed for more rapidly
convergence, which increases the efficiency of path planning. Based on findings obtained when completing the
model, the feasibility of Path planning for UAVs in a 3D Dynamic Environment was extrapolated utilizing the
presented approach [27].

In Chen et al. [11], path planning and obstacle avoidance of USV based on enhanced ant colony optimization-
artificial potential field (ACO-APF) hybrid algorithm with adaptive early warning was described. The technique
described was based on a grid map for USV local and global path planning in dynamic situations. The ACO al-
gorithm sought a globally optimal path from start to endpoint for USV in a grid environment, whereas the APF
method avoided unexpected obstructions during USV navigation. It delivers greater accuracy while using a smaller
map size.

Cao et al. [9] showed 3D Snake-Like Robot Motion Direction Control and Adaptive Path Following. The adaptive
path-following was based on the line-of-sight guiding law and was used in conjunction with the direction control
approach to steer the robot forward and along desired courses. The findings show the effectiveness of the given 3D
model and control approaches. It outperformed the standard and widely used path-following model. It has a longer
map duration but a shorter patch length.

Abed et al. [1] demonstrated an online optimisation application for path planning in unknown environments.
Grey Wolf Optimisation (GWO) variants MGWO1 and MGWO2 were proposed for online route planning to help the
mobile robot reach the target using the shortest path and avoid obstacles in unexpected surroundings. To avoid abrupt
curves, a cost function was created by combining the path smoothing parameter with an integrated distance function.
The findings showed that the provided GWO, MGWO1, and MGWO2 algorithms were capable of successfully
ignoring barriers in a local minima condition. It has a faster execution time and a smaller map size.

In Tran et al. [52], adaptive trajectory tracking for quad rotor systems in uncertain wind settings using particle
swarm optimization-based strictly negative imaginary controllers was described. The notion of adaptive strictly
negative imaginary (SNI) controllers is introduced by particle swarm optimization. The provided adaptive control
methods reduce a certain performance index, showing the control design’s goal. It gives greater precision while
having a shorter patch length.

From the literature, the research gaps are identified by the authors and listed here, a variety of robotic platforms,
such as large-scale test scenarios, UAVs, or robot arms have to develop to maximize the performance of autonomous
vehicle [36]. First, the presented receding horizon planner has been designed to work in dynamic contexts. The pre-
sented approach scaled to bigger areas in the future, and the mapping model extended to capture temporal dynamics.
It allows the use of previously gathered data as a baseline in long-term monitoring missions to increase real-time
performance. Second, the receding horizon planner has been designed to work in dynamic contexts. Another exten-
sion is to use principles from fast MPC to increase real-time performance [6]. Third, to improve robustness, obstacle
motion uncertainty must explicitly be included [30]. Fourth, the path planning process can be combined with Deep
Learning or SLAM to assist UAVs to create a real-time map of the environment [18].

This work uses the Gmapping SLAM method using a mono laser sensor for mapping and localization. Fur-
thermore, the Data-matching method is employed to support a more exact map based state position estimation.
A portable system is a system that is portable in terms of hardware intended to run an algorithm. The research’s
scope is to create a rough map of the area using portable devices. In the shortest amount of time and for the least
amount of money, a handheld system is created. Pre-mapping is the term for this procedure. Premapping provides a
solution to the chicken-and-egg conundrum other difficult issues in SLAM algorithms [31]. In this investigation, a
single laser is used to maintain the solution. Sensor that uses the Gmapping technique only using a laser sensor mea-
sures as a data source for localization and mapping. In varied settings, just laser pixel intensities, IMU sensor and
wheel encoder were employed for identification and mapping as data for pre-mapping. Pre-mapping is a low-cost
solution to problems with autonomous exploration and navigation.

1.2. Contribution

The goal of this research is to propose a realistic solution to the problem of continuous monitoring in an unknown
environment using Unmanned Ground Vehicles (UGV). This method is used to detect the Indian agriculture fields
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which does not have proper road. It is not having defined road signs and objects like vehicle, pedestrian. But these
roads may have uncertainties like varieties of plants, trees, ridges, size of the path, etc. So, extracting or identifying
such type of path helps to navigate the robots in the form field. It help to extent for many type of applications related
to agriculture purpose. The subject was investigated in terms of collect the data about the environment, interpret the
data for modelling and path planning, finally control the vehicle to follow path. The presented method contains the
following five contributions when compared to related work and existing technology.

(1) A novel problem for persistent monitoring on the unknown environment like agriculture field, employing
UGVs, which is called the Persistent Monitoring Problem (PMP). The development of “region” is designed
with a given analysis along the path to improve the monitoring effect.

(2) For addressing unknown environment path planning, HSAStar algorithm is suggested for path planning and
a modelling. To the best of author’s knowledge, UGV embed with HSAStar algorithm is the first solution to
the problem of continuous monitoring and path planning in an unknown environment. In this approach, the
problem modelling approach is an event-oriented strategy that formulates the PMP based on the nature of the
occurrences and the UGV’s genuine ability to identify. Based on model’s features, a HSAStar algorithm for
path planning approach which is suitable for the PMP is designed from a decision-making position.

(3) As a consequence, the suggested method modifies the motion parameters and reduces the velocity prior to
the start of the experiment to avoid the motion route from diverging from the planned path due to the too high
velocity at the entrance and exit places.

(4) The randomly produced tracking path is pretty simple, and the tracking experiment shows a considerable gap
among the tracking path and obstructions. It keeps variations from the planned course from occurring due to
inadequate security barrier.

(5) The tracking coordinate points are widely dispersed throughout the tracking line, and the mobile robot nav-
igates them in a sequential manner. It enables the robot’s excellent accuracy in tracking during the tracking
procedure.

The remaining sections of this article are organized as follows: Section 2 describes the problem formulation for
SLAM based persistent monitoring problem for agriculture environment. In Section 3, the PMP’s decision variable
in SLAM based path planning is proposed. System design for persistent monitoring enabled robot using Hyb-
SLAM-AStar algorithm is discussed in Section 4. In Section 5, experimental results are proved, Section 6 portrays
the discussion and Section 7 presents the conclusion and future work.

2. Problem statement

For a robot travelling across a landscape, our design stresses data-gathering strategies. The goal is to gather
as much environmental data as possible while remaining within power, spell restrictions and distance costs are
examples of resource constraints. This problem is properly called as path planning for efficient data gathering and is
defined as follows. This section explains how to formulate the Persistent Monitoring Problem it is frequently used
to represent persistent surveillance problems by dividing the space into separate cells with a measurement [16,57]
are concerned with the effects of monitoring. We make use of the graph to develop the discrete model, use theory
as a simplification technique of the actual path formation, which is made up of perspectives as well as the edges.
UGV has a monitoring influence on the viewpoints. Sensor detection ability was used to calculate the value based
on the PMP formulation form is supplied on the above. The purpose of this paper is to show how a UGV may cover
a large unknown a large region in a short period of time while detecting a large number of events. We’ve seen events
that we’re concerned about out of nowhere in an unknown setting. The likelihood of their occurrence as well as
the regions of their occurrence are unclear. Although the exact time of an event’s commencement is unknown, its
length can be calculated statistically [55]. If the UGV accurately detects a continuing event, it signifies the UGV has
fruitfully record the event’s incidence in an unknown environment [13]. To put it another way, if the incident lasts
longer than the spell between two exact UGV monitoring excursions on same point, it can be located at any time.
Finding UGV trajectories with a specific coverage limit while they are moving in order to maximize a scrutinizing
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norms related to the observing effect. Priorities, based on the likelihood of an event occurring and its location are a
mystery.

The PMP task environment model is abstracted into a node represents connected Graph = (V ,E), which is
comprised of a network of discrete points of view and straight edges, wherever V = v1, . . . , vN is a view point that
UGV must monitor, N represents of points of view, and E = e1, . . . , eM is the edge that UGV need travel, and
M is the total of edges. |Ea,b| denotes the span of |Ea,b|, whereas Ea,b E denotes edge linking views va and vb.
When examining spatial attribute of occurrence, length of a cutting edge in graph is not huger than the frequency
scope of the minimal occurrence. The occurrences with the minimal effect range must be considered noticed in
the task of monitoring, for plant leaf spot disease identification, the frequency range of minimum event is 1 to 3
meter in diameter. As a result, when UGV keeps a close eye on the situation nearby perspectives on it, it is able to
discover activities stirring on the edge. By calculating the monitoring the impact of distinct perspectives, unknown
environment monitoring effect may be determined. The phrases “known” and “unknown” apply to an agent’s state
of knowledge when executing an action, not to elements of the environment. In a known environment, the agent
knows the consequences of all actions. To perform an action in a new environment, the agent must first understand
how it works. A known environment may be somewhat visible, but an unfamiliar setting may be completely visible.
In our research the unknown actions are, robot cannot segment the agriculture field which unfamiliar to the robot as
semantically after its reconstruction. Second it don’t known about what action need to be done for navigation from
one place to another.

In this, the uncertainty is a problem reduced by assuming the robot, the relative pose of teammate ca be derived
from relative distance ρ (presented via laser), the angle βi

j wherein the robot i, the angle β
j
i at which robot j ,

observes robot i (angular measurements simply acted by cameras). Here, the uncertainty problem is observed by
assuming an angle β

j
i with final odometric pose of robot j at the robot Rjo is formerly interacting with robot j . The

ρ distance is scaled by i robot, therefore ρ = ρi
j . If ρi

j communicate by robot j , even though not required, it can be

averaged with ρi
j allowing, under the hypothesis of independent Gaussian noise, to lessen the distance measurement

variance, the uncertainity is expressed in equation (1),

σ 2
j = σ 2

ρi
j

σ 2
ρ

j2
j

/
(
σ 2

ρi
j

+ σ 2
ρ

j2
j

)
(1)

From an initialization agriculture land graph representation of a model G = (Vertex, Edge) we will now go over
how to generate a stochastic graph representation of a model hr(R) is given in equation (2)

hr(R) =
a∑

i=1

hi(Ri, 1RIi, 2) (2)

In equation (1),
∑a

i=1 hi(Ri, 1RIi, 2) is weight function (Wi’), hi is represented as the discrete contour, a is the best
approximation, Ri is the Ri = (r0; r1; . . . ; rn) is represented as the resampled contour, Ii is represented as the graph
co-ordinates, PMP is represented as de, and the permitted modelling deviation in (3)

PMP(Wt) = H
(
W ∗(R)

)
(3)

here e(0, 1) has been the initial condition coefficient of precision discrete, which is defined in equation (3) by
the discrete precision of the unknown environment path. The ith path is designated by Wi belongs to W , Wt =
{wt1, . . . , wta} where a is the amount of path in agriculture field. R = {R1, . . . , Rb} are path endpoints, b –
intersections, R(i,1) and R(i,2) are the points where the ith path Wi intersects with Wi, and (Ri,1, Ri,2) belongs toI.

Step 1: Path quantization

(1) Path Estimate: The largest separation between two points Wti and Ri , outlined as the Modelling divergence
Ri , employed for curve assessment and segmentation, as shown in Fig. 1, by employing the auxiliary line Ri

produced by combining Ri,1 and Ri,2. Wti is considered as a straight line if Ri , Re, and Ri in W is directly
replaced by Ri . Otherwise, it appears to be a curve.
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Fig. 1. Discrete process of path.

(2) Path Segmentation: The curve segmentation point is defined as the farthest point Ii,m from Wi to Ri . Ri,1

and Ri,2 are both coupled to Ri,m to create. The modelling deviation is followed by two new segments. The
relationship between each of the two segments and the corresponding region of interest are compared and
contrasted the section, if the correlating portion of the road is damaged, it will be replaced. The modelling
deviation is less than le otherwise, the flow of path prediction will be repeated.

(3) Path Revision: Insert entire recent data from previous stages to R, W for those paths and Wti from Wt to the
model. WtN denotes a new set of paths, while RN denotes a new set of intersections.

Step 2: Long Path Segment
Any road WtNi in WN is labeled as elongated line if |WtNi | > de, where |WtNi | specifies the length of WtNi . To

satisfy |WtNi |ls � de, find an integer s, and the elongated, the line would be broken into s parts. Add all recent
nodes and segments as of previous stages to I , and delete WN

i from WN , decisions on whether or not to divide the
path will be made again and again until there are no lengthy queues in WtN .

Step 3: Creation of Grid Representation
Entire intersections created through preceding phases are referred to as views and are denoted by the letters

V = {v1, . . . , vN }. Two perspectives joined directly to formulate an edge based on the topology path. Ea,b ∈ E is
the edge that connects the views va and vb.

2.1. Problem definition and assumptions

Likewise the above mentioned task of warehouse, the uncertainty issue is solved by modifying the motion pa-
rameter and lowering velocity prior to the start of the study in order to avoid the motion route from diverging from
the planned path due to the too high velocity at the entrance and exit points. The robot’s initial position and target
are pre-set, the robot recognizes the global map outline (walls of warehouse), i.e, the problems in map are entirely
unidentified. The aim of the robot is to reach the destination while keeping a safe distance from the obstacles. The
robot can reach the destination at any velocity and does not need to stop.

In addition to the global map’s layout, robot’s many sensors provide all the information it can (gyroscope, lidar,
encoder). These sensors can be used to gather the data needed by the proposed method at each time step. Make
given assumption regarding navigation issue.

Assumption 1. The robots place, alignment and velocity at the global map identified in every time step.

Assumption 2. The target place in the global map identified in every time step.
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Assumption 3. The closest obstacle distance in each circle direction is identified at every time step. These
data structure is exhibited as [⊗d ′], here ⊗ = [φ1φ2 . . . φn]T ′

are angle in range [0, 2π] with resolution;
d ′ = [D′

1D
′
2 . . . D′

n]T ′
are distance of nearest problem in ith angle, Dj is not better than discovery range; n in-

dicates lidar angle resolution, which implies that angle and distance data pairs will be collected once the lidar scans
a circle.

The robot is differentially propelled and considers itself to be moving forward along a rotating axis. Equation (4)
depicts the robot’s kinematics theory.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a = ϑ cos θ

b = ϑ sin θ

θ = 	

ϑ = x

	 = β

(4)

where [a, b] represents the robot position; θ represents robot orientation; ϑ and 	 represents robot’s linear velocity
with angular velocity; x and β represents robot’s linear acceleration with angular acceleration. Then the parameters,
such as ϑ , 	 , x and β represents optimization parameter for optimally reduce the uncertainty problem, such as
robot’s linear and angular velocity and robot’s linear and angular acceleration. These parameters are optimized
using A star algorithm.

3. Method proposed for path planning under an unknown environmental using hybrid Simultaneous
Localization and Mapping (SLAM) with A Star Algorithm

3.1. Simultaneous Localization and Mapping (SLAM):

SLAM allows the rapid creation of navigable outlines that converts as navigable spaces and maps. This is im-
practical to use manual methods for mapping indoor environments, because of complexity and size of indoor space.
Traditional SLAM has been used primarily in the field of robot navigation, requiring high level of output precision in
order to be useful for robot movement maps. This has prompted research on more effective and quick sensors, mea-
surement techniques, and measurement data post-processing. However, every improvement in accuracy has been
accompanied by an increase in processing or equipment costs.

The Robot Operating System (ROS) platform, which is existing in Ubuntu, may be used to do SLAM, It is among
the approaches for mapping robots on the move. GMapping is used as the algorithm for this study. The responsibili-
ties of cartography, positioning, target tracking tasks, overlapping hitches. The difficulty of constructing a map while
simultaneously localizing a robot within that map is known as SLAM. Both tasks can’t be decoupled and solved
separately. Localization requires a good map, whereas building a map necessitates an accurate pose approximation.
To improve the pose estimation, the goal of effective localize is to guide the robot to specific locations on the grid.
Exploration approaches, on the other hand, presume precise posture knowledge and concentration on efficiently
directing the vehicle across the surroundings in order to develop a map.

Solutions to the SLAM problem are sometimes known as integrated techniques. The key component process of
the robot using SLAM algorithm is shown in Fig. 2. The Rao-Blackwell zed Particle Filter (RBPF) is utilized by G
Mapping to collect data laser sensors and other sources. Make a 2D grid map with a robot stance [50]. In essence,
the fundamental issues in map learning are listed as what place to steer a robot on a mission of self-exploration,
how to handle noise in posture estimate and observations, and how to manage with ambiguity and how to interpret
it data from sensors, how to effectively manage a team of mobile robots and variations in the echo system over time
[59]. The mapping flow procedure is depicted in Fig. 3.

There are a number of advantages to using GMapping as the primary HSAStar technique in this work. For starters,
it’s an open source, algorithm which is ready to use, that’s part of the Robot Operating System (ROS). Second, it
is deep rooted and has a proven track record, as evidenced by recent publications such as [31]. Finally, because
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Fig. 2. Key component process of the robot.

the approach is a solo threaded technique in which each element is calculated separately, it lends itself nicely to
parallelization. This is a good situation named at parallelization because there is no want to transfer data to particles.
Whenever the robot acquires a fresh laser shot, the program executes steps outlined in the flowchart in Fig. 3. The
vehicle alters the posture of the whole examined particle throughout execution based on odometry estimate using
its motion model. The first scan is immediately recorded in the map when it is received. After that, only if the
robot’s linear or angular distance traversed exceeds specific thresholds is registration performed. After that, data
acquisition match is performed, which corrects pose estimation in each particle’s map. As a result, the particle tree’s
weights have been adjusted, as has the effective sample size Pef is used to determine whether the present particle
set performs posteriorly resembles goal particle set.

Pef = (1 − ω)h(n) + ωl(n) (5)

Finally, equation (5) represents ωl is the normalized weight of particle i. whenever Pef is less than N/2, where
number of particles represented by N , l(n) of l∗(n) then fulfills l(n) � l∗(n). Likewise, h(n) is evaluated with
evaluation function h∗(n). The resampling stage is performed on the number of elements, because of the number of
resampling processes. While a run, the amount of time spent on it is reduced, and it is only used when absolutely
necessary. The reader should see the Gmapping method for more information [49].

For posture estimation and map generation, this study uses the data-matching approach then the grid representa-
tion using Gmapping algorithm. As illustrated in (4), HSAStar algorithms are frequently built on a common filter
using probabilistic Bayes, with specific data being used to assess the density of an unknown probability density. The
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Fig. 3. Environment mapping flow process.

Bayes Filter, also known as Recursive Bayesian Estimation, is the foundation of several probabilistic techniques in
robotics. A state, such as a robot stance, is represented by a Probability Density Function, or pdf, in Probabilistic
Robotics. Another term is belief, which refers to the robot’s internal knowledge, rather than ours, from its per-
spective. The Bayes Filter is a general method for iteratively estimating a state’s pdf using a Mathematical Process
Model and Measurements.

P(x) =
N∑

i=1

wiδs(x) (6)

The procedure, which is recursive, calculates the belief distribution from the previous belief distribution. The algo-
rithm consists of two steps, one is to make a prediction based on the prior state and control data. The distribution
based on forecast and the measurement data during the measurement update which second stop.

3.2. A Star algorithm for point cloud data

A Star is equivalent to Greedy Better in that it uses a heuristic to direct itself. In the simplest instance, it’s as
speedy as Greedy Best-First-Search. In standard A∗ terminology, g(x) denotes the accurate and appropriate path
from the beginning point to every vertex x, and h(x) means the empirical approximate value from vertices n to
the target. A∗ maintains a delicate equilibrium as it progresses by the original position to the objective. Then the
parameters such as ϑ , 	 , x and β represents optimization parameter for optimally reduce the uncertainty problem,
such as robot’s linear velocity with angular velocity and robot’s linear acceleration with angular acceleration. These
parameters are optimized using A star algorithm. The main loop seeks for the node x to the minimum function
f (x) = g(x) + h(x). The heuristic technique h(x) gives A∗ an estimate of the least expensive path on each nodes
n to the destination A. Pseudocode for A Star Algorithm is represented in Algorithm 1.
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Algorithm 1 AStar (point cloud data)

OP = prior_Q(s)

CL = {}
While OP(1)! = target

RM low and add to CUR
for CUR (neighbour)

C = g(CUR) + Move(CUR, nei)
if neighborIN OP&&C < g(nei)

RM nei
if neiINCL&&C < g(nei)

RM nei
if nei NOT IN OP && nei NOT IN CL

Set C g(neighbor)
add OP nei
Set prior_Q(rank) g(nei) + h(nei)
Set CUR PAR(nei)

3.3. Grid mapping

The Gmapping method is employed as a HSAStar approach in this investigation. It employs the particle filter to
acquire lattice representation after laser range sensor data. Using laser scan measurement data z1:t = x1, . . . , xt , the
joint posterior (4) between map mt and the robot’s state x1:t = x1, . . . , xt has been computed from the laser scan
z1:t = z1, . . . , zt .

P(x1:t , m|z1:t , u1:t−1) (7)

Although the EKF and other Kalman filter-based algorithms are good for expressing linearized distributions, the
RBPF is a better technique for representing non-gaussian distributions, which is what the test situations require. The
core concept of RBPF is to utilize laser sensor data to set the state of hypotheses, where each particle keeps its state.
The matching particle is linked to each landmark. The strongest hypotheses are preserved with the provided weights,
while the weak ones are eliminated after resampling [25]. Each particle represents a possible robot position, and
each state indicates the outcome.

P(x1:t , m|z1:t , u0:t−1) = P(x1:t |z1:t , u0:t−1) ∗ P(m|x1:t,z1:t ) (8)

Each particle filter can hold a map, which is chosen based on the likelihood of the inspection in relation a map of its
own, as indicated in the probability proportional equation (14). The aim of this work is to find a costless solution to
one of SLAM’s most difficult localization problems. This work recommends avoiding data for verification control in
identifying posture data from the odometer or other sources by employing Gmapping technique without odometer
data. Data from a single laser sensor is used to define pose estimate. The flow of the Gmapping method without
control data is shown in Fig. 1. For example, xt denotes state, zt denotes measurement, and mt denotes the derived
map. The control data does not appear to be used in Fig. 1. This algorithm’s emulates three steps: guessing the
original state, the attitude is derived after the preceding one using the zt−1 measurement from the initial state guess,
the Data-matching method obtains map mt−1 particles are updated and the last one is particles’ updates are based
on zt readings. The particle’s map mt is simplified based on the condition x and the measurement zt . Data-matching
is a technique for aligning a scanned map with a built map. The current scan zt aligned with the specified beginning
state xt0 and map mt−1 using Data-matching [25,51]. Starting from the initial state xt , the Data-matching technique
is employed to map mt−1 (15). The method looks for alignment in only a few locations of state xt .

xi
t = xi

t−1 + ut−1

xi
t = argmax

(
P

(
x|m1

t−1, zt , x
i
t

)) (9)
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Algorithm 2 Hyb SLAM A Star (point cloud data)

Initial: G = (V ,E), observing_weight Wt = [wt1, . . . , wtN ], function fc

Input: Task_spell T , delaydt , Tempo v, Starting_point X0, Expected_delaytlim;
Output: Map with Path of UGV XT ;
Each point’s visible points
for all l in T at delay of dt do
ρN

m ← each point’s normalized uncertainty m;
if UGV reach one among visible points
Call Ego_Moving Update;
for all viewpoint sign l do

compute visible track and its dimention;
computeAlmgoto 6;
ind ← attain(max Alm);
noden ← updated max route direction Alm;
If noden travels in the opposite direction as before, Po

restraint backwards;
else if noden = 0
Visited_Location;
path ← noden; store the way;
XT (k, l) = XT (k, l − 1) + path.dt ;

Data-matching is used to pick particles with high hypothesis of state t x (16). As a result of this, the next state is
determined as follows:

P(zt |mt−1, xj ) → P(xj , xt−1, ut−1) (10)

Weights are computed by the normalizer in this phase (11),

n(i) =
k∑

j=1

p
(
zt |m(i)

t−1,xj

)
p
(
xj |x(i)

t−1, ut−1
)

(11)

Based on the state xt and measurement zt , the particle’s map mt at task duration t is updated. Algorithm indicates
pseudo-code for pathway planning of PMP. To confirm PMP’s outcome, we add the following three selection cri-
teria: ego_Moving Update, go_back, and visited_Location. When approach is processing, short noticeable track
is determined to target perspective. If track induces one of three further criteria, resolution is prepared as per that
rule. Hyb SLAM A Star algorithm proposed for generating map along with the path where the autonomous vehi-
cle is moved from source to destination. Pseudocode for Hyb SLAM A Star (point cloud data) is represented in
Algorithm 2.

ego_Moving Update: A ego_Moving update adjustment function of pc is set based on the discussion of the
reward coefficient pc to increase continuous observation performance. Restraint backwards: The go_back of the
UGV will unavoidably occur in path planning because of the heuristic technique’s randomness and the change in
payout. When the go_back occurs, however, it is difficult to assess if this decision is sensible or not. As a result, the
suggested approach allows the UGV to return to its new path. Visited_Location: UGV is said to be in a loop closure
once the path budget exceeds payment or when the budget of various positions are equal. To boost monitoring
efficiency, when a loop closure occurs, the viewpoint by the greatest payment of altogether neighboring viewpoints
at present prespective is picked as the goal points for the following second.
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4. System design

Before we can do SLAM research, we need to put up a mobile robot experimental platform. The main control uses
ESP8266 Node MCU microcontroller and Raspberry Pi 4 as a Microprocessor to achieve the benefits of low cost,
modularity, flexibility, and expandability of mobile robots. To complete the design of the entire hardware system,
the robot bottom stage control panel employs the raspberry driver board for Image processing and ESP8266 Node
MCU board to connect to a station point to transmit the data from our ESP32 Camera Module and VL53L1X Lidar
Sensor and for the robot’s locomotion we use Gear Micro DC Encoder Motor which is connected to a Node MCU
Motor Shield and a Step-Down Transformer to regulate the voltage supply [60].

4.1. Body of a mobile robot platform

Mobile robot’s structure made up of 2 layer of acrylic plate. It measures 35 centimeters by 20 centimeters by
15 centimeters and weighs about 3 kg. It may make a range of sensors and devices to fulfill the experiment’s ne-
cessities. The authentic thing of a ground vehicle is depicted in Fig. 4. The experimentation is done on unknown
environmental along the obstacles of static or dynamic to examine the proposed approach proficiency. Every exper-
imental environment set up in office building’s corridor. Here, run global path planner to differentiate variation of

Fig. 4. Ground vehicle frame design.
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orientation path created via global path planner as well as real trajectory derived from the approach. Nevertheless,
the reference path does not take part in robot navigation. The original scenario has no constraints, its 2D map created
through concurrent localization with mapping to reflect the quality of “unknown.” The actual environment equipped
with constraints for navigation. The robot is unaware of the obstacles and can only detect them while it is navigating.
These obstacles spatial distribution is set to considerably intercept the robot trajectory towards the goal. A power
unit offers the essential energy of controller unit that oversee any actions enabled by the robot. As a robust less cost
solution, the Arduino Uno micro controller equipped with appropriate motor shield. A driving unit is necessary to
move the robot at X and Y directions. This is accomplished by dual gearbox equipped with two brushed DC motors.
Two extra ball caster wheels offered stability when driving. Several sensors are utilized to track the robot progress,
also speed encoder mounted on one wheels, an inertial sensor to sense the robot alignment is required. The digital
magnetometer presented information regarding current heading of SLAM robot. A sensor unit is required to sense
the environment. To attain a proper field of vision, the unit is mounted in rotating servo motor. The environmental
conditions based numerous kinds of sensor can be applied. In this case, a low-cost LIDAR device is employed to
scale the distance of any obstacles. Also, an ultrasonic range finder is employed, because laser-base sensors could
not detect the glass elements. To identify changes in floor level (where there are stairs), an additional device pointing
downwards by 45 degrees is suggested.

The mobile robot walks with the help of a four-wheeled walking gadget. A brush motor 6V Gear Micro DC
Encoder [53] propels each tyre, allows the vehicle to run at speeds of up to 1 m/s and swivel at a rate of 6.6 rad/s.
The robotic tyre speed and displacement are measured using 360 line AB 2 phase continuous rotary encoder. A robot
platform control scheme and server make up majority of the robot manipulator hardware system. Figure 5 depicts
the structural block diagram. A principal processor, a VL53L1X Lidar Sensor, Inertial Measurement Unit (IMU)
unit, a location controller, 22.2V LIPO Lithium Polymer Battery power supply module makes the open source robot
platform control system. It’s not only proficient of autonomously directing and placing the mobile robot. Object
detection and other aspects, as well as the right to receive server software to send commands to direct the robot’s
movement and a range of sensor data sent over WIFI to the server. An ESP8266 Node MCU Development Board
with 1GB of RAM and a range of connectors, such as a built-in 10/100 dynamic network adapter, an 802.11n WIFI

Fig. 5. Architecture of a mobile robot’s hardware system.
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wireless USB network card, and a server wireless network card, serves as main controller (3D printed using PLA
material).

The bottom driver board Node MCU and Raspberry pi 4 is the key component of the position control module. The
Node MCU Motor Shield will be the speed controller for 366PRM DC brush motor. The Motor Shield measures the
speed at which the object moves and the direction of the robot manure is controlled by movement of side wheels.
Determine the robot’s orientation, direction, and acceleration in 3D space, you’re moving. Motor Shield employs
PID control to enable the robot to interact with the main controller as well as move precisely. The speed, angle,
mileage of robot’s wheels determine its location. The main controller uses the VL53L1X Lidar Sensor laser sensor
to capture 2D laser data from the environment, then wirelessly transfers it to the server utilizing ROS distributed
processing to make a map of world around the robot.

A 22.2V 2800mAh large rechargeable lithium battery powers the mobile robot platform. Three 18650 lithiumion
battery packs make up the battery, which is enough to power the complete system. Lenovo Y480 machines are
employed on the server. Ubuntu 16.04 and the Free Software Robotics Operating System are installed in a virtual
computer (ROS). The mobile robot platform’s principal controller first shifts the robot’s 2D laser data into 3D space,
viz, orientation, velocity, distance, robot’s environment. Map of complete unfamiliar part is regularly generated by
managing the robot’s behavior at the host.

4.2. Model of software for mobile robots

The trials are carried out in a two-wheel mobile robot equipped with an Intel Core i7-4500U 1.8 GHz CPU, 8
GB of memory, and a Robot Operating System running in a computer equipped with four Intel Core i7 2.2 GHz
processors, eight gigabytes of RAM, and an Intel HD Graphics 6000 graphics card. The ROS system framework
builds a platform that links all activities and installs the bulk of the key feature modules and packages [25,51],
mostly from the ROS community, after install the complete desktop ROS version. By customizing the robot software
system to own robot as well as generating more node and processing packaging, the gained general resources may
be simply updated to finish the creation of the robot software system. This study takes extensive usage of ROS
distributed processing architecture because map development and vehicle location need a significant count of data
processing using a single card type computer is difficult. First, the host and the robot head controller are on the
same network and are coupled to the same LAN. On the server, construct Node Managers and keyboard trouble
shoots, IMU errors, autonomous vehicle linear and angular velocity adjustments, SLAM nodes in mobile robot host
controller, Lidar, Odometer, and Base Controller nodes.

The node manager can then employ a peer-to-peer architecture on the current web to execute TCP/IP message
and achieve successful nodes on separate hosts can communicate with each other after all of the nodes have been
registered and monitored by the node management. Finally, perform the SLAM job on the server in an unknown
area using the 3D visualization application RVIZ. The node topology is considered for robots in the ROS system
framework. The processes that the RVIZ tool may debug are mostly handled by the server-side node: To implement
SLAM and run at RVIZ, obtained objects such as lasers signals and postures from the robot control system laser
sensor and odometer node, respectively. There are options in both horizontal and angular velocity adjustments. To
improve the precision of adjustment, change the line tempo and its correction codes.

4.3. Programming for point regulator

As a node of ROS, the point regulator mode analyses the straight speed with angular velocity data provided
through the core processing center, to determine parameters that the robot must be able to move in both wheels.
The robot follows the trajectory given by the host’s movement instruction and uses laser distance meter to avoid
barrier. Finally, robot communicates the mileage node attitude parameters including flow rate, angular momentum,
and movement. Figure 6 shows the flowchart for the software.

5. Experimental results and analysis

Following the software requirements for mobile robots, has been built up, the foundation for SLAM research is
Robot movement can be controlled remotely using the ROS shared processing system. As a result, we’ll need to use
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Fig. 6. Programming for point regulator.

RVIZ and other visualization apparatuses to remotely manage receive comments from the mobile robot at first. After
that, SLAM test can utilized to ensure that design fits the need. IMU on trolley should be measured before wheeled
operation, to better place the mobile robot operation is controlled. In this study, the GY-85 9-channel IMU is used.
IMU inertial sensing sensor featuring triaxial geomagnetometer, triaxial accelerometer, and triaxial gyroscope [60].
The mobile robot’s IMU passes a multiple tests, and the data is analyzed and the coordinates are determined. The
x, y, and z systems of mobile robot have been rectified. Way to take the x, y, z coordinate system is constant.
To improve the initial motion estimate, IMU’s fusion with a weighted average the initial position estimation and
calculation value were used.

Before trolley procedure is managed, IMU on trolley should be measured in order to enhance position the mobile
robot. In this study, the GY-85 9-channel IMU is used. Inertial measurement unit (IMU) sensor with axis gyroscope
sensor, the triaxial geomagnetometer, triaxial accelerometer, and triaxial gyroscope [53] are all triaxial devices.
The mobile robot’s IMU passes a test. A significant number of coordinates have been determined and the data has
been calculated. The mobile robot’s x, y, and z systems have been calibrated. The best way to travel the three axis
is to use a coordinate system that is consistent. The IMU as well as the IMU’s weighted average fusion is done
to enhance the estimation of starting motion by combine value of initial attitude assessment and the value of the
attitude calculation.

Figure 7: Top left shows simulated environment. Top Right: Generation of Map with initial guess. Bottom Left:
Scan Matching with Map update. Bottom Right: Generated map with obstacle detection.

The SLAM code is injected into the Node MCU module. It is connected directly with Node MCU Motor Shield.
The battery, DC motors, and Step down Transformer are all connected to the Motor Shield. The voltage supply
required by each item is regulated by the Step down Transformer. The Motor shield aids in the management of the
motors. For the Lidar to cover a large angle and project in 180°, it is first positioned on top of the stepper motor. The
data from the Lidar is then transferred to the Node MCU, where it is mapped inside RVIZ and sent to SLAM for
localization. These data are transferred to our server via Node MCU over WIFI. Based on the Lidar data we receive,
the Motor shield supplies us with co-ordinates for robot navigation, and therefore obstacles detection occurs. The
Node MCU is attached to the camera module, which captures data as we move and sends it to the Raspberry Pi 4,
which has our illness classification module.
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Fig. 7. Autonomous navigation on agriculture field.

Fig. 8. Semantically organized point cloud data.

The camera as well as ph and humidity sensors, are mounted on a robot arm to provide leverage for capturing
images of leaves and testing the soil in the ground. All of these data are submitted to our server, which then generates
a report. Figure 7 represents the simulated environment for testing purpose. It simulates initial guess green color
assumed as tree, black color assumed as rigid or boundary, gray color treated as agriculture field, white color
dots treated as plants in agriculture field. Tree, boundary, plant are consider as obstacle by the propose algorithm.
Semantically organized point cloud data is shown in Fig. 8. Left top shows the camera recording and the left bottom
shows corresponding Lidar capturing. Right image displays the generated point cloud data.
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Fig. 9. Comparison of generated path with SLAM, LS track, and EKF track.

Fig. 10. Pose estimation of autonomous robot.

Most of the autonomous navigation research used image processing based path planning. Figure 9 depicts the
Comparison of generated path with SLAM-HSAStar algorithm, LS Track, and EKF Track. Here black color line
represents the proposed hyb SLAM-AStar algorithm track and it shows the shortest path compared with existing
tracks such as Link state algorithm (LS) Track, and extended Kalman filter (EKF) Track respectively.

Pose estimation another important measure for autonomous navigation. Figure 10 shows the pose estimation for
different trajectory for unknown environment. Pose estimation influences by the temporal for the optimal route taken
by the robot. In the above Fig. 10 X and Y axis represented land coverage in meter, in that black color triangles
represent the actual pose estimation in unknown environment. Blue color triangles show the proposed algorithm
pose estimation in the unknown environment. Ls track means that the path generated only from the Lidar sensor.
Orange color triangle shows that state of art algorithm pose estimation in an unknown environment. Form the graph
we infer that the proposed algorithm gives the accurate pose estimation in an unknown environment.
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Fig. 11. Simulated environment (top). Initial position of robot (middle). Autonomous exploration of robot (bottom).

6. Discussion

This study looked into modelling and path of a UGV’s persistent monitoring of an unknown environment.
A unique occurrence modelling strategy is planned to discretize path, compute the observing effect, and define
the model we are concerned about. Simulation analysis and baseline comparison are used to assess the feasibility
and correctness of a path planning method. Simulation demonstrates the method’s validity in the case of weighted
visits to certain positions.

The findings of simulation studies show a correlation between system characteristics and algorithm performance,
indicating that the actual algorithm performance cannot be anticipated precisely under multiple scenarios. Figure 11
shows the simulated environment of agriculture field. The starting robot’s orientation is depicted in this middle
photograph in the simulated environment. Bottom image represents autonomous exploration of robot, in that green
color shows the visible objects with in a range. Blue color line interprets the estimated expected path for robot, red
color line shows actual navigation of robot and gray color region shows exploration without any obstacle.

The following measures are used to assess the quality of a SLAM algorithm: The number of corners in a map,
which determines the precision of a map, the percentage of occupied and free cells, which allows one to identify
whether obstacle/object on a map are blurred and whether extra obstacle/object developed owing to an algorithm
failure. If there are overlapping obstacle/object or artefacts in an unknown location, this measure can be used to
detect them, as can the number of enclosed areas, which expresses the same idea. Table 1 shows the three trials of
mapping parameter.
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Table 1

Three trials of mapping parameter

Trail 1 2 3

Speed of the robot (m/s) 0.5 0.1 0.12

Map update interval (s) 10 5 3

Particle filter count 30 25 20

Fig. 12. Procedure of robot experimentation (a)–(e) displays robot location at chronological sort.

As a result, it is difficult to come up with a models, there is a common adaptive criterion of the highest reward
coefficient. Precision of map is computed, when the robot has done mapping, the accuracy of the map is calculated.
The correctness of map is determined using equation (15), which is depends on the total area of the actual map
layout. The x shows the complete range of the robot’s map, meanwhile the y reflects the real map’s overall length.

6.1. Experimental scenario map or scenario for some sample trails

The map or scenario for some sample trails, A star algorithm is upgraded for feasible performance of navigation,
then the trained agent is acquired via complex environment having certain trails, trial 1 is given in Fig. 12, trial 2
is given in Fig. 13, trial 3 is given in Fig. 14. The proposed approach handles using the picture including simple
changing constraints. Original scenario map fabricated through Simultaneous Localization and Mapping is given
in Fig. 13(a), the real environment to navigation is represented in Fig. 13(b). Here, a person randomly walks at
scenario who considerably intercepts the robot path twice to target. Figure 14 depicts temporal series of robot
navigation snapshots visualized in ROS, viz, related positioning of real robot in experiment. Figure 14(a) portrays
initial place, objective and orientation path. Reference path goes straight to goal owing to lack of obstacle in the
original map. Figure 14(b)–(g) displays the robot movements averting the moving pedestrian. The robot steers away
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Fig. 13. (a): Experiment scenario original map of sample trails 1, (b) real experiment scenario.

from this pedestrian when the pedestrian hinders the robot motion (Figs 14(b) to 14(f)). If the person is away from
the robot, the robot back to the direction of goal (Figs 14(d), (g)). The real path as robot attains the target is depicted
in Fig. 14(e). Here, the real trajectory averts the moving pedestrian, also vary from reference path that exemplifies
the proposed approach proficiently navigate the robot in simple dynamic situation.

6.2. Performance metrics

Here, the performance measures like accuracy, map size, specificity, patch length, map duration and execution
time are looked at in order to assess performance.

6.2.1. Accuracy
Accuracy is described as the total number of instances in the data. As a result, equation (12) determines it,

Accuracy = (TP + TN)

(TP + TN + FP + FN)
(12)

where TP denotes the true positive rate, TN indicates the true negative rate, FP represents the false positive and FN
indicates the false negative.

6.2.2. Map size
Map size depends on the specific application or system being evaluated. It is estimated using equation (13),

Precision of mapsize = map updated by time t

map updated by time t + ∇t
∗ 100 (13)

6.2.3. Patch length
Patch length is a term used in environmental monitoring to refer to the size of the area that is being sampled or

monitored for a particular environmental parameter. The patch length is usually defined as the distance over which
the parameter of interest is assumed to be homogeneous and representative of the larger area being monitored. Patch
length is estimated using equation (14),

Patch Length =
[(

2D∇t

α

)]1/2

(14)

where, D denotes the diffusion coefficient of the substance being monitored, ∇t indicates the time interval over
which measurements are being taken and α is the desired level of statistical confidence.
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Fig. 14. Procedure of robot experimentation 2. (a)–(h) displays robot location at chronological sort.

6.2.4. Map duration
Map duration is a term used in environmental monitoring to refer to the length of time over which data is collected

at each monitoring location to create a spatial map of the environmental parameter of interest. Map duration is
estimated using equation (15) as follows,

Map Duration =
(

(Zσ)

δ

)2

(15)
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where Z is the standard normal variate corresponding to the desired level of statistical confidence, σ is the standard
deviation of the environmental parameter being measured, and δ is the desired level of precision (i.e., the maximum
acceptable difference between the true value and the estimated value).

6.2.5. Execution time
Execution time is a term used in environmental monitoring to refer to the total amount of time required to complete

a monitoring program. The execution time is an important consideration in environmental monitoring, as it affects
the overall cost and efficiency of the program.

The execution time can be mathematically defined using the following equation (16),

T = n∗(Tm + Ta) (16)

where T is the execution time (in seconds), n is the number of monitoring locations, Tm is the time required to
collect data at each monitoring location, and Ta is the time required for data analysis.

The map can saved periodically; for the mapping procedure in this study, the SLAM approach is combined
with the GMapping algorithm. Three trials with varying robot velocity, map update frequency, and particle filter
parameters are established to see how they affect mapping quality. Figure 15 represent the mapping accuracy for
different trails. The mapping and navigation process can be observed using the ROS “rviz” interface. Inside the
ROS, the multisensory data provided by the RPLIDAR360o laser scanning and two optical progressive encoders
were processed. It’s more convenient and quick this way. As it develops, it becomes a method for long-distance
navigation and mapping.

Figure 15 shows the accuracy analysis. The proposed hyb SLAM-A Star-APP method provides 22.35%, 29.67%,
and 28.67% higher accuracy for trial 1; 32.56%, 29.06% and 29.05% higher accuracy for trial 2; 25.32%, 35.48%
and 54.28% higher accuracy for trial 3 than the existing methods such as ACO-APF-APP, APFA-APP, GWO-APP
and PSO-APP respectively.

Figure 16 shows the map size analysis. The proposed hyb SLAM-A Star-APP method provides 23.65%, 29.67%,
and 32.56% lower map size for trial 1; 36.52%, 22.17% and 34.89% lower map size for trial 2; 31.08%, 29.63% and
32.56% lower map size for trial 3 than the existing methods such as ACO-APF-APP, APFA-APP, GWO-APP and
PSO-APP respectively.

Figure 17 shows the map duration analysis. The proposed hyb SLAM-A Star-APP method provides 36.29%,
27.68%, and 35.68% lower map duration for trial 1; 21.36%, 29.64% and 29.67% lower map duration for trial 2;
41.32%, 30.27% and 42.35% lower map duration for trial 3 than the existing methods such as ACO-APF-APP,
APFA-APP, GWO-APP and PSO-APP respectively.

Figure 18 shows the patch length analysis. The proposed hyb SLAM-A Star-APP method provides 23.65%,
29.68%, and 24.58% lower patch length for map 2; 27.38%, 33.21% and 29.68% lower patch length for map 4;

Fig. 15. Accuracy analysis.
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Fig. 16. Map size analysis.

Fig. 17. Map duration analysis.

Fig. 18. Patch length analysis.

23.65%, 29.36% and 31.05% lower patch length for map 6 than the existing methods such as ACO-APF-APP,
APFA-APP, GWO-APP and PSO-APP respectively.

Figure 19 shows the execution time analysis. The proposed hyb SLAM-A Star-APP method provides 32.10%,
29.68%, and 22.47% lower execution time for map 2; 32.15%, 33.21% and 32.10% lower execution time for map
4; 23.10%, 45.36% and 22.10% lower execution time for map 6 than the existing methods, such as ACO-APF-APP,
APFA-APP, GWO-APP and PSO-APP respectively.
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Fig. 19. Execution time analysis.

7. Conclusion

This paper purposes a unique adaptive path planning framework to address a new challenge known as the Un-
known environment Persistent Monitoring Problem (PMP) is successfully implemented. To map an unfamiliar lo-
cation using the robotic operating system (ROS), the 3D visualization tool for Robot Operating System (RVIZ) is
utilized, and GMapping software package which is an open access are used for SLAM usage. The experimental
results suggest mobile robot design pattern is viable to produce a high-precision map while lowering the cost of the
mobile robot SLAM hardware. From a decision-making standpoint, a hybrid algorithm HSAStar (Hybrid SLAM &
A Star) algorithm is built for path planning based on the event oriented modelling, allowing a UGV to continually
monitor the perspectives of path. The simulation results and analyses show that the proposed strategy is feasible
and superior. Then the performance of the proposed hyb SLAM-A Star-APP method provides 27.38%, 33.21% and
29.68% lower execution time, .36%, 29.64% and 29.67% lower map duration is compared with the existing method
such as ACO-APF-APP, APFA-APP, GWO-APP and PSO-APP respectively.

7.1. Future work

The proposed algorithm attains more accurate result in terms of map generation, pose estimation in unknown
condition. The experiment concludes that the proposed hybrid SLAM-A star algorithm is effectual as well as prac-
tical for optimizing motion and velocity in uncertainty. The tuning model hints to certain merits in real-life as well
as industrial application, because it save time to novice control engineers to reach ideal motion with velocity in
the parameters uncertainties, also enhance the performance superiority. However, it is limited due to high power
consumption. In future work, low power consumption robots can be designed and deep learning method with opti-
mization algorithm can be used.
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