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Abstract. The Internet of Things (IoT) has recently been applied in the domain of cultural exhibition enabling the cultural sites to
provide more personal and proactive experiences to their visitors. To come up with valuable services, several solutions to analyze
the spatio-temporal trajectories of visitors have been put forward. However, they neither consider the inherent uncertainty of the
underlying indoor positioning technologies – Bluetooth Low Energy (BLE), RFID, etc. – nor other visitors’ features apart from
the spatio-temporal ones (e.g. the level of interaction with the museum displays). For that reason, the present work introduces
RECITE, a framework to classify trajectories representing visitors’ actions that copes with the aforementioned limitations of
existing solutions. Firstly, RECITE states a novel mapping process for a BLE-based indoor positioning system to accurately
detect the visitors’ locations. On top of this mechanism, RECITE includes an ensemble of fuzzy rule classifiers able to tag the
visitors’ ongoing trajectories in real time considering both spatio-temporal and other behavioural factors. Finally, the framework
has been evaluated in a case of use scenario showing quite promising results.
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1. Introduction

The advent of the Internet of Things (IoT) has come with the development of several indoor location solutions
based on different wireless technologies like WiFi [37], RFID [3,18] or Bluetooth Low Energy (BLE) [17]. One
of the most prominent applications of these location technologies has been the development of location-based
services (LBSs) able to adapt to users’ locations inside buildings [6], provide users with ambient intelligence [19]
or detect incidents in road infrastructures [4]. In this context, several proposals have recently arisen in the cultural
environment in order to profit from such IoT advances. Some examples are recommendation systems to proactively
display personalized content to enhance the visitors’ experience in museums [2] or the active involvement of visitors
in public exhibitions [29].

An important consequence of this widespread deployment of LBSs is that, now, cultural institutions have access
to an unprecedented amount of visitors’ movement data. As a result, several solutions have successfully applied
different data mining techniques over such indoor trajectories so as to come up with innovative cultural services [28].
For instance, several works have made use of clustering techniques to group trajectories sharing certain features [23,
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24,32] whereas pattern mining techniques have been applied to uncover general flows or trends [38,39]. However,
we have observed meaningful limitations when it comes to perform classification analysis of such movement data.

On the one hand, although some classification algorithms have been proposed to particularly deal with indoor
trajectories in cultural spaces [22], they relied on trajectory models based on sequences of Points of Interest (POIs)
or building elements (e.g rooms, corridors) that individuals have gone through during their visits [25]. This high-
level modelling actually hampers the realization of profound analyses in order to deeply understand how visitors
behave in a particular cultural space, due to a lack of mobility details. For instance, using a POI-based trajectory
representation, we may know that a visitor has been close to a certain spot but not how he has actually moved
around that spot. Furthermore, this representation strongly depends on the current spatial distribution POIs. The
same applies when using trajectories based on building elements.

On the other hand, indoor trajectories are usually noisy and imprecise due to multiple factors [10]. This makes it
difficult to establish crisp boundaries defining the actual movement of users in this type of environments. Existing
solutions generally do not take into account such problems during the classification process. They will have an
impact on the classification accuracy though.

In this context, the work at hand introduces RECITE, a framework for user trajectory analysis in cultural sites
for the provisioning of innovative LBSs. RECITE takes into consideration the aforementioned limitations and flaws
of existing solutions and presents a novel approach to classify indoor trajectories based on fuzzy rules [40]. This
type of rules has good skills to deal with the noisy and inaccurate locations from indoor positioning systems. In that
sense, the present work states a data-driven modelling to generate a set of fuzzy rule classifiers (FRCs) for indoor
trajectories in cultural sites.

Furthermore, an ad-hoc indoor positioning system based on low-cost BLE beacons has been developed. This
system is able to accurately locate users handling a guidance device (e.g. audio-guide) withing a 2-D Cartesian
space. Besides, each trajectory is enriched with the interactions that the target visitor made with his device (e.g.
play some audio content) during his stay. This way, this type of valuable data can be integrated in the classification
process. For the sake of clarity, Fig. 1 shows the difference between our trajectory model and the POI and building-
based ones.

All in all, to the best of the authors knowledge, this work constitutes one of the first efforts to apply fuzzy rules
to classify semantically-enriched indoor trajectories focused on the cultural domain.

The remainder of the paper is structured as follows. Section 2 is devoted to describe in detail the logic structure
and the processing stages of RECITE. Then, Section 3 discusses the main results of the performed experiments.
Next, an overview about indoor trajectory analysis in the cultural domain is put forward in Section 4. Finally, the
main conclusions and the future work are summed up in Section 5.

Fig. 1. Examples of POI-based (shown in red), building-element-based (blue) and RECITE (green) indoor trajectories for the same visitor’s
displacement in a exhibition scenario with two rooms and one corridor housing five different POIs. The blue icons represent the locations of
BLE beacons in the scenario. The red points represent the coordinates in the Cartesian space detected by the our solution.
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2. The RECITE framework

Figure 2 outlines the main steps of RECITE to come up with the proposed FRCs. The first step focuses on
collecting the individual trajectories of the museum visitors in terms of spatio-temporal displacements along with
the multimedia content displayed by visitors in their guidance devices during such movements. Then, in stage 2, the
collected trajectories are split into a pre-defined number of segments (4 in the example of the figure). The third step
extracts the overall features of each trajectory segment. In the fourth step, several fuzzy clustering tasks are applied
to the data set, but taking into account only a segment and a class at a time. After that, for every clustering model
their resulting clusters are projected to their space axis (Cartesian coordinates, X , Y and N , where N is a subset of
natural numbers expressing the number of content reproductions). This is done to generate the fuzzy sets that will
compose the fuzzy classifiers. Finally, in the fifth step a palette of fuzzy classifiers are generated each of then in
form of a set of if-then rules. This section puts forward the details of each step of the methodology.

2.1. Underlying architecture

RECITE relies on an underlying operational architecture that enables the collection of the required visitors’
behavioural data. Figure 3 shows such an architecture. Bearing this figure in mind, we can derive the following
general assumptions for the framework,

Fig. 2. Approach overview. As an illustrative example, in the first stage, four different trajectories are collected from visitors where each musical
note indicates the location where the user displayed some multimedia content in his handheld device. In stage 2, these input trajectories are split

into four segments 〈S1, S2, S3, S4〉. In stage 3, the features 〈xj
i
, y

j
i
, c

j
i
〉 of each trajectory segment are extracted where, 〈xj

i
, y

j
i
〉 are the average

coordinates of the i-th segment for the j-th trajectory and c
j
i

the number of multimedia items displayed at the same trajectory and segment. In
stage 4, each segment cluster is projected intro three dimension St , Sx , Sy . Finally, in stage 5 these projections give rise to four different rules,
where rules R1 and R3 cover trajectories comprising one segment and rules R2 and R4 cover trajectories with two segments.



392 M. Orenes-Vera et al. / A framework for user trajectory analysis in cultural sites

Fig. 3. General operational architecture for RECITE.

– The museum includes, as part of its own infrastructure, a set of BLE beacons installed through all its exhibition
areas (e.g. galleries, corridors and the like). Furthermore, each beacon is identified by means of a unique tag.

– A visitor handles a guidance device during all her/his stay at the museum. The goal of this device is twofold.
To begin with, it acts as a Bluetooth-based location system because it is able to periodically detect its closest
BLE beacons along with the distance to them. Secondly, it allows the visitor to access the multimedia content
related to any exhibition item at the museum.

– The multimedia content is actually stored in a dedicated back-end Content Server accessed by the visitors’
devices on demand. This content might be video, audio or text files providing information about the different
museum pieces.

2.2. The classification task

The objective of this work is to obtain an automatic mechanism in such a way that, every given trajectory is
classified as one among a set of p predefined labels or classes. Let it be � = {CL1, CL2, . . . , CLp}.

2.3. Individual trajectories extraction

The first stage of the framework pipeline focuses on collecting the individual trajectories of visitors using the
BLE beacons installed in the museum as Fig. 2 shows. In that sense, a visitor’s trajectory can be defined as follows,

Definition 1. A trajectory trv is a sequence of consecutive actions v, trv = 〈〈a0, t0〉v → 〈a1, t1〉v → · · · →
〈an, tn〉v〉, n � 2, where 〈ai, ti〉v is the action ai of the visitor v at time instant ti ∈ T so that ti < ti+1 ∀i ∈ [0, n] and
ai can be either (xi, yi) or coi . A tuple (xi, yi) ∈ X × Y stands for a movement action to such location coordinates
whereas coi ∈ CO represents the access to the i-th item available in the Content Server.

As we can see, RECITE defines a trajectory comprising two types of actions that a visitor can make during his
stay,

– Movement actions indicating physical displacements in the museum space.
– Content actions representing interactions with the multimedia content accessible from the guidance device.

In the following sections we describe how these two types of actions are collected.

2.3.1. Movement actions
To capture these actions, the guidance device of a visitor v regularly sends to the Location Server (LS) a frame

f v
t = 〈dv,t

b1 , d
v,t
b2 , . . . , d

v,t
bk 〉 that contains the measured distances to all its detectable beacons 〈b1, b2, . . . , bk〉 at a

certain instant t (see Fig. 3).



M. Orenes-Vera et al. / A framework for user trajectory analysis in cultural sites 393

Fig. 4. Illustrative example of the map-based algorithm steps in an scenario with four deployed BLE beacons. The left image shows the data set
generation, where the scanner samples the beacons’ signals for certain locations. Only location frames 1 to 3 (f1, f2, f3) are depicted, but this
is repeated for every coordinate in the map. The right image represents the inference step, where a guidance device scans the nearby beacons to
produce a frame f v

t . Next, it is compared with the frames obtained in the previous step. In this case, the location associated to frame f2 would

be the best match. That would be the l
(v,t)
est eventually inferred by the algorithm.

In order to process this information, the LS makes use of the museum’s floor-plan image, that is a 2-D Cartesian
space where the coordinates of the visitor’s location will be defined. Therefore, the LS performs a mapping process
to translate the set of beacon’s distances d

v,t
bi of a frame f v

t to an estimated location (pixel) l
(v,t)
est within the map

image where the visitor v is located at instant t . This point is defined by a particular X-Y coordinates within the
map. To come up with a mapping process as accurate as possible, our Map-based location algorithm is implemented
in two separate steps, depicted in Fig. 4

1. Dataset generation: This first step is done only once for any new museum where RECITE is going to be
deployed. To build the map-like dataset we must associate a scanned frame fi for every reasonable location
point li in our floor-plan. This might seem a rather time-consuming task, but in fact, we only need to consider
the relevant locations where the user can stay (e.g. we do not consider restricted areas or empty spaces of the
museum). As a result of this initial step, a set of location frames LF = 〈l1 : f1, . . . , lnloc : fnloc〉 is generated:
one for each of the nloc reasonable locations li where a visitor might be at the museum.

2. Comparative inference: In this step, we compare the current frame f v
t from any visitor v’s device with the

frames in LF . The goal of this comparison is to obtain the target location l
(v,t)
est ∈ LF . This is defined as the

one that contains the frame fi = 〈db1, db2, . . . , dbk〉 whose beacons’ measured distances have the smallest
differences with f v

t . In order to optimize this search, we only compare f v
t with a subset LFv

t ⊂ LF of

locations close to the previous location l
(t−1,v)
est of the visitor v. This is because the sampling rate of frames

delivered by the guidance devices should be relatively short (in the range of seconds). Hence, we can assume
that a visitor v could not have moved more than a few meters from l

(t−1,v)
est . So we limit the search to this area.

Lastly, in certain situations the guidance devices are not able to capture the signal of a nearby beacon bi due to
several reasons (e.g. collisions or missed samples) [34]. As a result, its associate distance dbi is not included as part
of the current frame f v

t . This can lead into a significant error when compared with the frame f associated with the

actual location l
(v,t)
est ∈ LF of v. To mitigate this effect, we pre-process each incoming frame f v

t before comparing
it with the location frames of LF by combining it with the previous sample f v

t−1, calculating a weighted average
for those beacons that were included in both frames.

2.3.2. Content actions
These actions are sent from the visitor’s device to the LS as well. In this case, the device just sends the time-stamp

at which the user displayed certain content, together with its associated content identifier.
Each new movement or content action from a visitor is appended to its ongoing trajectory by the LS. In that sense,

a trajectory is considered finished when the LS does not receive any new update during a certain time threshold tend.
Lastly, each trajectory is labelled, manually or semi-automatically, with one of the classes in �. As a result, a

set T R of labelled trajectories is made up. Each element of this set takes the form of 〈trv, CL〉 where trv is a user
trajectory and CL ∈ � is its associated class.
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2.4. Trajectory segmentation

One of the problems of the previous gathering process is that the sequences of actions defining the trajectories
may have varying lengths. Hence, the second step of the framework pipeline is to apply a segmentation process to
all the trajectories in T R to normalize their lengths (see Fig. 2).

In that sense, trajectory segmentation is a well-known technique in the trajectory data mining field that divides a
trajectory into fragments by several criteria, like time intervals or semantic meaning, for further processing [42].

In our setting, trajectories are split into slices of a predefined time length tseg. This way, a trajectory segment can
be defined as follows,

Definition 2. A segment of a visitor trajectory trv ∈ T R, sv
j ⊆ trv is a sequence of timestamped actions 〈ai, ti〉v ∈

trv that fits in a particular time range [tseg × (j − 1), tseg × j) where j ∈ [1, nseg] and nseg = |trv.tend−trv.tstart|
tseg

.

We can see that nseg indicates the number of resulting segments of the whole trajectory trv whereas trv.tstart and
trv.tend are the time instants at which the trajectory trv started and finished.

Once the different trajectory segments have been composed, they are distributed into different sets Sj , j ∈
[1, maxseg] so that Sj includes the j-th trajectory segments of all the trajectories in T R along with their associated
label in �. In that sense, maxseg refers to the maximum number of segments of any trajectory trv ∈ T R.

For example, let us consider a trajectory trex = 〈〈(5, 9), 3〉 → 〈(12, 8), 8〉 → 〈c23, 10〉 → 〈(33, 10), 20〉 →
〈c9, 25〉 → 〈(44, 19), 31〉〉 labelled with class CL1. As we can see, its sequence comprises 4 movement and
2 content actions. If we set tseg to 10 time units, the trajectory segmentation process will split the trajectory
into 3 different segments (nseg = 3), sex

1 = 〈〈(5, 9), 3〉, 〈(12, 8), 8〉, 〈c23, 10〉〉, sex
2 = 〈〈(33, 10), 20〉〉 and

sex
3 = 〈〈c9, 25〉, 〈(44, 19), 31〉〉.

2.5. Segments feature extraction

Once the trajectory segments have been generated, the next step is to extract a set of descriptive features of each of
them. In that sense, depending on the type of action (movement or content display) under consideration, a different
type of feature is calculated. As a result, each trajectory segment is compressed into a 3-dimension vector sf . A
trajectory segment feature is defined in more detail as follows,

Definition 3. A trajectory segment feature s
j
f of a trajectory segment sv

j is a vector 〈xs, ys, ncs〉 where (xs , ys) are
the coordinates mean of all the movement actions in sv

j whereas ncs is the count number of content actions in sv
j .

Besides, all the trajectory segment features are collected in their corresponding set Sj
f ∈ X × Y × N × �.

Going back to our previous illustrative trajectory trex, its segments give raise to the following features s1
f =

〈8.5, 8.5, 1〉, s2
f = 〈33, 10, 0〉, s3

f = 〈44, 19, 1〉. We can see that, in the case of s1
f (the features of the first segment

of the trajectory) its coordinates are calculated as 5+12
2 = 8.5 and 9+8

2 = 8.5. Finally, each of these features are

included in their corresponding Sj
f set. For instance, s1

f is stored in S1
f with their corresponding class CL1.

2.6. Clusters generation and projection

The fourth step of the framework pipeline is to identify the general action trends per segment by means of the
generation of different sets of clusters. Every cluster will become a fuzzy rule, and the fuzzy rules will be combined
into fuzzy classifiers (see Fig. 2).

The approach is based on the generation of a set of FRCs for every CLr ∈ � = {CL1, CL2, . . . , CLp}. Given a
class CLr , the set of data corresponding to that class is clustered according to different spaces obtained increasing
the number of segments one by one: S1

f × · · · × Sj
f × CLr , ∀j ∈ [2, maxseg]. The goal of such an incremental

clustering process is to generate FRCs able to classify trajectories composed of different number of segments. As
we will see later, the identified clusters induce fuzzy rules when they are projected into each one of the dimensions
Sj

f ∀j ∈ [1, maxseg].
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In this phase, the fuzzy c-means (FCM) clustering algorithm [8] is applied. Before explaining that step, let us give
some details about the clustering settings:

– Cluster shape: we decide to obtain hyper-spherical clusters given that they are more suitable to be projected into
one dimension fuzzy sets to form fuzzy it-then rules. For more information look for the so-called decomposition
error in [5]. This shape is possible when we fix the norm matrix A which induces the measurement dissimilarity
between data points as A = I (the identity matrix).

– Fuzziness: We need to decide the level of overlapping of the fuzzy clusters to be found. This parameter is called
m.

– Number of clusters to be identified in every space Sj
f ×CLr . Let us call denote it nc

CLr

j ∀j ∈ [1, maxseg], ∀r ∈
[1, p]

– Termination parameter: We need to decide the tolerance threshold ε for the FCM algorithm.

The two last parameters should be defined before launching the clustering process. Although their values are context-
dependent there are some works arguing what would be quite reasonable values for them [31].

Our instance of the FCM algorithm generates nc
CLr

j clusters for each segment feature set Sj
f and class CLr . As

a result, a cluster is defined by its mean, so called prototype. Furthermore, the adopted fuzzy approach allows each
datum in X ×Y ×N to belong at different degree, from 0 to 1, to each cluster. These membership degrees for each
datum to each cluster compose a vector μ with z components (where z is the sheer number of trajectory segment
features s

f
j for a particular number of segments j and the class CLr ). The μ vectors are the rows of the so-called

partition matrix Uj , associated to the data set, once the algorithm has ended.
For the sake of completeness, the pseudo-code of the FCM algorithm is included in Algorithm 1 where l indicates

the iteration number, i the i-th cluster and k the k-th trajectory segment feature for a particular trajectory segment.

Algorithm 1: Fuzzy c-means (FCM) algorithm

Input: Segment feature set S(CLr )
j
f for segment j and class CLr , number of clusters 1 < ncj < Nj ,

weighting exponent mj > 1, the norm matrix A and the termination tolerance ε > 0
Output: Cluster prototypes CCLr

j and partition matrix Uj for segment j and class CLr

1 Step 0: Initialize the partition matrix randomly. Uj = Random()

2 repeat
3 Step1: Compute the cluster prototypes cik ∈ CCLr

j at iteration l and s
jk
f in the k-th trajectory feature

segment for the j-th segment.

cl
ik =

∑Nj

k=1(μ
(l−1)
ik )m sk

j
∑Nj

k=1(μ
(l−1)
ik )m

4 Step2: Compute the distances:

D2
ikA = (

s
jk
f − c

(l)
ik

)
A

(
s
jk
f − c

(l)
ik

)

5 Step3:Update the partition matrix elements μikA ∈ U :

μ2
ikA = 1

∑ncj

p=1(DikA/DpkA)2/(m−1)

6 until U l
j − U (l−1)

j < ε

7 return 〈CCLr

j , Uj 〉
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Table 1

Fuzzy rule classifier

IF s1
f
.x is Bx0

1 AND s1
f
.y is B

y0
1 AND s1

f
.nc is Bnc0

1 AND

. . . AND s
nseg
f

.x is B
xnseg
1 AND r

nseg
f

.y is B
ynseg
1 AND s

nseg
f

.nc is B
ncnseg
1

THEN class1 = b1,

IF s1
f
.x is Bx0

2 AND s1
f
.y is B

y0
2 AND s1

f
.nc is Bnc0

2 AND

. . . AND s
nseg
f

.x is B
xnseg
2 AND s

nseg
f

.y is B
ynseg
2 AND s

nseg
f

.nc is B
ncnseg
2

THEN class2 = b2,

. . .

IF s1
f
.x is Bx0

r AND s1
f
.y is B

y0
r AND s1

f
.nc is Bnc0

r AND

. . . AND s
nseg
f

.x is B
xnseg
r AND s

nseg
f

.y is B
ynseg
r AND s

nseg
f

.nc is B
ncnseg
r

THEN classr = br ,

To obtain the fuzzy sets involved in a fuzzy classifier for class CLr , we project each cluster defined in the space
X × Y × N into each one of the axis of this space. This is done ∀j ∈ [1, maxseg] ∀CLr ∈ �. As a result of the
projection, point-wise definitions of the fuzzy sets are obtained. Then, every point-wise fuzzy set is approximated
by a Gaussian-bell in such a way that, to calculate the membership of a given input to the fuzzy set B with centre c

and width a,

B(input) = e−(
input−c

a
)2

In our case, for example, considering a model with one segment, the cluster in the space X ×Y ×N give rise to the
fuzzy sets Bxj , Byj , Bncj .

2.7. Fuzzy classifier composition

At this point we should recall that we carried out clustering tasks based on data of every particular class CLr

separately and with incremental number of segments. To generate a FRC, rules based on the same number of seg-
ments but different classes in �, are combined. The resulting ensemble of FCRs will be used to classify the segment
features of a visitors trajectory trsv = {s1

f , s2
f , . . . , s

nseg
f }. For example, a FRC based on the maximum number of

segments is shown in Table 1. The elements sk
f .{x, y, nc} are the 〈x, y〉 coordinates and the nc reproductions of the

k-th trajectory segment; B
xj
l , B

yj
l and B

ncj
l are the j -th fuzzy set for the 〈x, y〉 coordinates and nc reproductions in

the l-th rule; classl is the consequent of the l-th rule and l = 1, . . . , r , being r the number of rules. Let us explain
the classification mechanism.

– The first step is to calculate the firing strength τi for the l-th rule given an input trvf . It is obtained by the

expression: τl(trsv) = B
xj
l (s1

f .x) · Bncj
l (s1

f .y) · Bncj
l (s1

f .nc) · . . . · Bxj
l (s

nseg
f .x) · Bncj

l (s
nseg
f .y) · Bncj

l (s
nseg
f .nc);

– then, the partial output of every rule, classl(trsv
f ), is given by:

classl

(
trsv

) = τl

(
trsv

) · classl ,

– and the partial outputs are combined to generate the final output class(trv) of the system according to:

class
(
trsv

) =
∑r

l=1 τl(trsv) · classl∑r
l=1 τl(trsv)

.

2.7.1. Online classification mechanism
We should recall that the ultimate goal of the classifier is to label the ongoing trajectories of visitors during their

stay at a museum. Due to the time-based segmentation described in Section 2.4, these target trajectories will have
an increasing number of segments as time proceeds and visitors move across the museum.
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Fig. 5. Example of the online classification procedure.

In order to cope with this situation, instead of a monolithic FRC, we generate a palette of FRCs with different
number fuzzy sets in their antecedents 〈FRC1, FRC2, . . . , FRCmaxseg〉. Each FRCj comprises the rules to classify
trajectories with j segments. To generate each FRCj , we use the first j segment features of all the trajectories
trv ∈ T R.

All in all, the classification mechanism to label the visitors’ ongoing trajectories involves the following steps,

1. Each time a new tuple 〈ai, ti〉 is appended to an ongoing trajectory trvongoing, its resulting number of segments

n
ongoing
seg and its set of trajectory features trsv

ongoing are calculated.
2. Then, the FRC

n
ongoing
seg

is extracted from the palette of FRCs as it is the one targeting the current number of

segments of the ongoing trajectory.
3. Finally, FRC

n
ongoing
seg

is fed with trsv
ongoing to classify such trajectory with a label CLnseg ∈ �.

Figure 5 shows an illustrative example of the aforementioned mechanism where a trajectory covers different
time-based segments and, thus, feeds different FRCs. As the figure depicts, the target trajectory is labelled with
different classes 〈CLs1, CLs2, CLs3〉 as it evolves and comprises an increasing number of segments. In this case,
a visitor’s trajectory grows from one to three segments covering six actions in total. As time proceeds, a different
FRC classifier is used at each time. To begin with, the first two actions (a1, t1) and (a2, t2) will fed classifier FRC1

as they fit into the first trajectory segment generating the label CLs1 as outcome. Then, action (a3, t3) enlarges the
trajectory until two segments, so the FRC2, targeting 2-segment trajectories, is used. Finally, when actions (a4, t4)

and (a5, t5) are received, trv can be split into 3 different segments so FRC3 is used to generate a new classification
outcome.

3. Use case

The proposed framework has been evaluated in a test-bed exhibition area. This is located in Murcia, Spain and it
usually hosts small exhibitions of local artists.
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Fig. 6. Use case floor plan. The red dots indicate the location of the BLE beacons. The black line depicts the ideal route to visit the exhibition
area.

3.1. Place infrastructure

The exhibition place comprises two main rooms distributed along a corridor. In the rooms and the corridor, 15
iBeacons Wellcore W902 with chip TICC25411 were installed as BLE beacons.

Figure 6 depicts the floor-plan of the test-bed along with the spatial distribution of the beacons. Such area covered
roughly 500 m2 and the beacons are spatially distributed every 6 meters approximately. The size of this floor-plan
image is 500 × 177 pixels and each pixel represents 0.1 m2.

In order to perform the experiment in the test-bed exhibition, we installed the ad-hoc mobile application infoArt
in the different guidance devices of the exhibition area.2 This application has two main features,

– Firstly, the app connects to a Content Server to provide visitors with the multimedia content available at the
target museum.

– In addition to that, the application generates the BLE frames f every 3 seconds and sends them to the Location
Server (LS) (see Fig. 3).

3.1.1. Implementation details
For this use case, the different algorithms were implemented using Python 3.6 as programming language. Besides,

we profited from the implementation of the FCM method in the skfuzzy library3 and the TSK fuzzy rules available
at the FuzzyLite library [33].

3.2. Location algorithm study

As an alternative to the algorithm to detect the movement actions described in Section 2.3.1, we developed a
simple mapping approach along with a calibration mechanism to improve its accuracy in our testbed. This was
coined as the MinMax location algorithm. In the next two subsections, we state the main findings of our study with
respect the algorithm (Section 3.2.1) and the calibration technique (Section 3.2.2).

3.2.1. MinMax location algorithm
This alternative algorithm profited from the fact that we know the euclidean distance to each beacon for every

coordinate in our 2-D Cartesian map image. Therefore, for each incoming frame f v
t , this algorithm compared the

distances measured in that frame to nearby beacons (〈dv,t
b1 , d

v,t
b2 , . . . , d

v,t
bk 〉) with the physical euclidean distances to

the beacons stored in every coordinate in the map. The coordinate with the least error is the output location of the
algorithm l

(v,t)
est .

Nevertheless, this approach suffered from the fact that our handheld guidance devices usually did not sample
the same signal strength at the same distance to the transmitter. Consequently, we decided to include a calibration
model for each beacon. The goal of this model was to reduce as much as possible the difference between the distance
calculated by a guidance device to a beacon and the physical distance between the device and the beacon. This
calibration mechanism in described in the next subsection.

1http://www.wellcoressd.com/wellcore-high-quality-w901-cc2541-ibeacon-moduleble-4-0-ibeacon-with-fcccerohs-certified/#.XT__
nvL7QdU

2https://github.com/morenes/infoArt-android
3https://pythonhosted.org/scikit-fuzzy/

http://www.wellcoressd.com/wellcore-high-quality-w901-cc2541-ibeacon-moduleble-4-0-ibeacon-with-fcccerohs-certified/#.XT__nvL7QdU
http://www.wellcoressd.com/wellcore-high-quality-w901-cc2541-ibeacon-moduleble-4-0-ibeacon-with-fcccerohs-certified/#.XT__nvL7QdU
https://github.com/morenes/infoArt-android
https://pythonhosted.org/scikit-fuzzy/
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Table 2

Example of the mean distance calculated for beacon b2 for different
number of samples and real distances for a particular guidance device

Beacon b2 Num. of measurements

Real distance 5 10 20

1 m 0.66 0.6 0.62

2.5 m 2.67 2.88 2.98

5 m 4 4 4

7.5 m 5.15 6 6

10 m 6.1 6.5 6.5

15 m 10.65 9.65 9

Fig. 7. Interpolation curve for beacon b2. Where the x-axis represents the sampled distance and the y-axis indicates the real displacement.

3.2.2. Calibration of the beacons
In order to perform the required calibration of the guidance devices, as pointed out above, we took the following

steps,

1. First of all, we gathered the signal intensity of each of the 15 deployed beacons in the setting with each guid-
ance device at different displacements covering 1, 2.5, 5, 7.5, 10 and 15 meters. For each of those displace-
ments, we gathered a total of 20 samples.

2. Next, a third-party BLE library,4 integrated in our infoArt application, determined the distance to each beacon
based on the collected signal intensities.

3. We averaged the resulting distances per beacon after 5, 10 and 20 samples. This was done because the signal
intensity tends to stabilize after several samples [30].

4. On the basis of the previously-calculated distances, a polynomial regression model is generated. This model
was used by the application to estimate more precisely the distance to each beacon.

Table 2 shows an example of this calibration process for beacon b2 and one of the guidance devices in the
exhibition area. The columns are the distance mean of the first 5, 10 and 20 sampled signals received from the
beacon by the device and the rows represent the physical displacement from where the samples were taken. This
way, at 7.5 meters (the real distance between a guidance device and beacon b2), the distance estimated by the device
was 5.15 meters using the first 5 signal intensities from b2 and 6 meters using 10 and 20 samples respectively.

In Fig. 7 we plot the measurements of Table 2 as 3 curves (one for each column). Whilst the x-axis represents the
measured distance by the application, the y-axis indicates the real distance between the beacon and the device. From
these 3 series we generated a fourth-grade polynomial regression model. This model was used by the application
to more accurately detect the distance between the guidance system and beacon b2. Lastly, the outcome from this
model was integrated in the frames f v

t delivered by the guidance device to the LS.

4https://github.com/AltBeacon/android-beacon-library

https://github.com/AltBeacon/android-beacon-library
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Table 3

Parameters settings for the FRCs generation

Parameter Involved step Value

tseg Trajectory segmentation 1 m

tend Trajectory segmentation 5 m

m Trajectory clustering 2.0

ε Trajectory clustering 0.0001

Fig. 8. Examples of two captured trajectories. The trace of each one is depicted as a black line. The BLE beacons are shown as small red squares.

3.2.3. Comparative between map-based and MinMax location algorithms
In order to compare the two indoor location algorithms, we performed a visual analysis of the resulting trajectories

with each approach. In that sense, given the ideal route of the use case depicted in Fig. 6, the combination of the
MinMax algorithm and the calibration mechanism, produced the trajectory depicted in Fig. 8(a). Alternatively, the
Map-Based algorithm generated the trajectory shown in Fig. 8(b). We can clearly see that this second trace is much
more similar to the actual route followed by the visitor than the one obtained by the MinMax algorithm.

The main problem of the MinMax approach was that the distances that the BLE scanner library5 provided us were
neither precise nor always repeatable. This made it rather difficult to accurately obtain the location of the devices.
Therefore, the MinMax approach gave us poor results, even with the calibration refinement. On the contrary, our
two-step Map-Based algorithm (described in Section 2.3.1) performed much better. This is because it does not rely
on the measured distances to the beacons, but rather compare the measurements provided at any given time instant
t with the ones stored in the previously-generated set LF .

All in all, the MinMax algorithm achieved poorer results in terms of trajectory perception, because of the low
reliability of the distances measured from the beacons. Even though we tried to tackle this problem with a calibration
mechanism, we still did not achieve suitable results. Therefore, we eventually use our initial Map-based approach
to capture the visitors’ movement actions for the rest of the use case analysis.

3.3. Trajectories classification

Once the indoor positioning system was calibrated, the FRCs for the collected trajectories were generated and
tested.

5https://github.com/AltBeacon/android-beacon-library

https://github.com/AltBeacon/android-beacon-library
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Fig. 9. Heat map of all the collected trajectories. Pixels with color green have been more frequented by users, followed by yellow tones and
finally in red we see unexplored places.

3.3.1. Target classes
In the present setting, the goal of the classifier is to detect four types of visitors in the test-bed. In particular, the

site operators come up with four different interesting behaviours. As a result, the target classes composing � are the
following,

– CLobserver represented those users who maintain a low speed (0.2 m/s) and follow the recommended route in the
test-bed. They do not listen most of the available multimedia content. They prefer to just observe the different
items of the exhibition.

– CLhurry is the type of visitor who has little time to visit the exhibition and walks at a higher speed (0.4 m/s). He
does not use the multimedia content.

– CLinterested stands for users who walk at low speed (<0.2 m/s), display most of the multimedia content and
stick to the recommended route.

– CLlost represents the group of visitors who do not follow the recommended route to visit the exhibition. They
skip part of the exhibition area or return to a place that they have already seen.

3.3.2. Collection of visitors’ trajectories
We collected 64 different trajectories during a 1-week period ranging from 19/04/17 to 25/04/17. Each one was

manually labeled by the exhibition operators with one of the four classes previously mentioned. This gave rise to 16
trajectories of each class.

Figure 9 shows the heat map of every captured trajectories composing the T R set. From this figure, we can
clearly see the main mobility trends of visitors. In that sense, visitors followed quite similar paths across all the
exhibition area. However, in the first room (Room 1 at Fig. 6) we can also observe a little more scattering in the
collected trajectories due to exhibition characteristics.

In Fig. 8, we can see two examples of collected trajectories. From these traces, we clearly observe the noisy and
imprecise nature of such trajectories. This justifies the trajectory segmentation and feature extraction process to
normalize the trajectories representation and the fuzzy logic approach to classify them.

3.3.3. Classifier configuration
Table 3 shows the key parameters used to generate the ensemble of FRCs. We can see that tseg was set to 1

minute. This value was configured that way after observing the average time length of the trajectories per class. As
we can see in Fig. 10, all the trajectories range from 5 to 9 minutes on average so splitting trajectories into 1-minute
granularity was a reasonable option. In the case of m and ε, both FCM parameters were set to common values in the
literature [20,31].

3.3.4. Number of clusters per segment
In order to set the number of clusters ncCL

j for a particular segment number j and class CL, we used the fuzzy
partition coefficient (FPC) [7]. This coefficient indicates how cleanly our data is described by a model.

This way, we executed FCM multiple times with different numbers of clusters and calculated the FPC associated
to each resulting partition keeping the one with the highest coefficient per segment number and class. Table 4
sums up the obtained number of clusters. For example, the suitable number of clusters for the second segment of
trajectories with label CLobserver was 2.

From this table we can see that most of the trajectory segments from observer, interested or hurry visitors could
be aggregated into a single cluster. However, trajectories segments from lost visitors were mostly clustered in two
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Fig. 10. Average time length of trajectories in T R per class.

Table 4

Number of clusters per segment number and output class

Class (CL) Segment num. Num. clusters (ncCL
j

)

CLobserver 1, 3, 4, 5, 7, 8, 10–15 1

2 2

6,9 3

CLinterested 1–4, 8, 10–21 1

9 2

5-7 3

CLhurry 2,5,6,7,8,9 1

3,4 2

1 3

CLlost 1,5 1

2,4,6–21 2

3 3

clusters instead of one. This is compatible with the fact that this type of visitors tended to roam around the museum
and thus, their movements were generally more diverse.

3.3.5. Classifier accuracy
Once the FRCs were generated on the basis of the aforementioned parameters, we studied its accuracy. For that

goal, we used the F1 score as measurement. This score is calculated following the next formula:

F1 = 2 × precision × recall

precision + recall

where

recall = True positives

True positives + False negatives

precision = True positives

True positives + False positives
.

Table 5 shows the recall, precision and F1 scores of RECITE. In order to evaluate the suitability of the segmen-
tation approach, the table also shows the results of a FRC (FRCnoseg) that just takes as input a single trajectory
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Table 5

Accuracy scores of the palette of FRCs of RECITE with and without velocity
features and a monolithic FRC without including a trajectory segmentation step

Model Precision Recall F1

RECITE FRCs 0.95 0.94 0.94

RECITE FRCs (+velocity feat.) 0.92 0.93 0.92

FRCnoseg 0.84 0.79 0.79

Table 6

Confusion matrix of the RECITE FRCs. A cell in row R and column C with R 	= C, contains the sheer
number and percentage of sub-trajectories whose real label was R but it was wrongly classified as C

Real Inferred

Observer Interested Hurry Lost

Observer 610 (89%) 52 (7.6%) 1 (0.1%) 20 (2.9%)

Interested 19 (2.8%) 661 (97.2%) 0 0

Hurry 0 0 415 (96.5%) 15 (3.5%)

Lost 25 (3.5%) 33 (4.6%) 0 659 (91.9%)

Fig. 11. F1 score of the classifier per trajectory number of segments. Each bar depicts the F1 score of the FRCs for trajectories with number of
segments equal to its x-axis value.

segment feature comprising the whole actions of an ongoing trajectory without segmentation. In that sense, we used
a 3-fold cross-validation approach to train and test the FRCs.

From these results we can see that the trajectory segmentation step clearly helps to improve the classification
accuracy. This is because RECITE generates a FRC for each possible sub-trajectory achieving a higher level of
specialization and, thus, accuracy.

Furthermore, Table 6 shows the confusion matrix of the evaluation. In that sense, this matrix includes all the
intermediate trajectories that users generate during their visits. In general, the main errors occur in adjacent labels.
However, 4% of hurry sub-trajectories are classified as lost ones when these two labels are not very similar. In that
sense, we have observed that, sometimes, some hurry visitors return to places already seen in their attempt to quickly
cross the exhibition area. This makes such visitors mimic the behaviour of lost visitors.

The next aspect we evaluated was the impact of the length of an ongoing trajectory on the classifier. The results
of this evaluation are shown in Fig. 11.

According to this figure, we can see the F1 score of the proposal was above 0.9 regardless of the number of
segments of the target trajectory. However, the accuracy of our classifier was slightly higher for trajectories with
segments ranging between 3 and 9. This was because this range of segments comprised most of the trajectories
whereas the number of trajectories comprising more than 10 segments was much lower. This resulted in an accuracy
drop of the solution.
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Table 7

Confusion matrix of the RECITE FRCs enriched with velocity features from the trajectories. A cell in row R and column C with R 	= C, contains
the sheer number and percentage of sub-trajectories whose real label was R but it was wrongly classified as C

Real Inferred

Observer Interested Hurry Lost

Observer 598 (87.1%) 76 (11.0%) 5 (0.7%) 7 (1.0%)

Interested 27 (3.9%) 667 (95.4%) 5 (0.7%) 0

Hurry 13 (3.4%) 0 372 (96.6%) 0

Lost 10 (1.4%) 32 (4.3%) 5 (0.7%) 693 (93.7%)

3.4. New segment features sensitivity study

As it is put forward in Section 2.5, the present version of the framework extracts only three different features from
each segment, namely the average x-y coordinates and the average number of content displays. Consequently, we
also evaluated the effect in RECITE of adding new segment features as part of the framework, namely, the average
segment speed and the average segment bearing.6 This way, we include the velocity of the trajectories so as to
perceive in a more detailed manner the actual movement of the visitors in the museum.

Bearing in mind the definition 3, each trajectory segment feature sv
j is now a vector 〈xs, ys, ncs, ss, bs〉 where ss

and bs are the mean speed and bearing of the segment sv
j .

As Table 5 shows, including these features in the solution did not actually improve the accuracy of RECITE with
respect to the baseline approach. This way, the F1 score was slightly lower (0.92 vs 0.94). Regarding the confusion
matrix depicted in Table 7, we can see the velocity features slightly improved the detection of lost trajectories as
their classification rate increased from 91.9% (see Table 6) to 93.7%. This type of trajectories are defined by many
changes of direction due to the roaming behaviour of the visitors. As a result, the bearing features help to better
identify these types of movements. Nevertheless, this rate actually dropped for the other three types of trajectories.

The reason of this lack of actual improvement of RECITE is due to the well-known curse of dimensionality
problem [27]. Adding more features to the target input space makes the trajectories segments more distant among
them. As a result, the approach generated much more clusters and, thus, fuzzy rules as we can see in the Table 8.
According to this table, the system generated, for example, 8 different clusters given the first segments of the
trajectories labelled as CLlost. Nonetheless, when these segments are processed by the FCM algorithm without
considering the velocity-related features only one cluster is detected (see Table 4).

Finally, FRCs are easily interpretable as they are composed of IF-THEN sentences. In this context, a drawback of
enlarging the framework with new input features is that the complexity of the FRC increases and the aforementioned
descriptive capability of this type of fuzzy systems is lost.

4. Related work

When it comes to deal with indoor trajectories in cultural spaces, it can be established three different character-
istics to catalogue the existing literature: the type of enabling indoor positioning system, the modelling solution to
represent the visitors movements and the type and purpose of the trajectory analysis over the collected data. Table 9
makes a review on each of these characteristics.

4.1. Indoor positioning systems

To begin with, RFID readers have been widely used in this context so as to locate visitors holding different types
of devices [41]. In that sense, approaches can be distinguished depending on the requirement of an explicit user
check-in [22] or not [23,24].

6In the present setting, a trajectory’s segment bearing is regarded as the clockwise angle in degrees between north and the segment’s vector.
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Table 8

Number of clusters per segment number and output class with velocity features

Class (CL) Segment num. Num. clusters (ncCL
j

)

CLobserver 3, 5, 6, 7, 9 3

6 4

2 5

4 6

1, 8 8

CLinterested 1, 10-21 1

4, 9 5

2, 6, 7 6

3, 8 7

5 8

CLhurry 6-9 1

2, 3 5

1, 5 6

4 7

CLlost 9 1

4, 7 3

6 4

3 5

5, 8 6

2 7

1 8

Some works have also proposed WiFi access points as indoor positioning enablers. For example, [14] combines
the signal strengths of WiFi routers and the outcome of an image-processing engine able to detect the presence of
visitors to come up with a precise indoor positioning solution. Ambitrack [9] also proposed tracking through cameras
and image-processing. However, this approach is more expensive to install and maintain than the inexpensive BLE
beacons. An interesting approach to locate visitors in an art gallery is introduced in [12] where a combination of
BLE beacons along with image recognition mechanism integrated in a wearable device allows to detect whether a
visitor is in front of any art keypoint of a gallery. However, in most cases BLE is used to detect presence of visitors
at much more large scale (e.g. galleries or corridors) [13,26,32,38,39].

Our work also makes use of an ad-hoc indoor positioning system relying on BLE. However, unlike other solutions
we consider a careful calibration process performed at device and global level based on polynomial regression.
Thus, we are able to accurately locate the visitor making use of affordable beacons as described in Section 2.3.

4.2. Trajectory modelling

Regarding a building-based approach, many solutions just perform a simple mapping step considering the con-
crete building space where the sensors is actually located to construct the visitors’ paths. Examples of this are
[38,39] that model trajectories as sequences of visited galleries. However, [15] relies on a museum graph model that
accurately represents its premises, like doors, rooms or vitrines. Then, a mapping approach is performed to convert
the collected spatio-temporal data from users to the graph-based representation. However, the proposal does not
define any particular indoor positioning system to capture the visitors’ movement. A similar approach is followed
by [1,26] where a semantic indoor trajectory model is proposed or [14] with a more holistic ontology.

POI-based approaches have also been widely used in the literature [12,22,23]. In some cases, this type of models
are enriched with additional information. For example, [22] merges the visited POIs along with the digital content
consulted by the user in the museum displays to compose the set of features that defines the user’s movement.
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Table 9

Key features of existing indoor trajectory mining approaches in the cultural domain

Ref. Indoor Pos.
System

Trajectory model Trajectory analysis

Granularity User interaction Type(s) Goal(s)

[32] – BLE Building element/POI Audioguide events – Trajectory clustering
(k-Means)

Visiting patterns detection

[13] – BLE Coverage area – – Trajectory pattern mining
(sequence alignment
methods)

Visiting patterns detection

[23] – RFID POI – – Trajectory clustering
(hierarchical clustering)
– Trajectory pattern mining
(frequent pattern mining)

Visiting patterns detection

[14] – WiFi
– Image
recognition

Building elements – – Trajectory optimization
(A∗ algorithm)

Museum indoor navigator

[22] – RFID POI Visitor profile – Trajectory classification
(multi-layer perceptron,
logistic regression)

Unseen POIs
recommendation

[26] – BLE Building element – – Trajectory semantic
enrichment

Visitors’ intention discovery

[39] – BLE Building element – – Trajectory pattern mining
(frequency counting)

Visiting patterns detection

[38] – BLE Building element – – Trajectory pattern mining
(random-walk model)

Visiting patterns detection

[12] – BLE
– Image
recognition

POIs – – –

[24] – RFID X-Y coordinates – – Trajectory clustering
(k-Means)

Visiting patterns detection

[15] – Building element – – Stay-point Clustering – Visitors’ behaviour timely
detection

RECITE – BLE X-Y coordinates Displayed content – Trajectory clustering
(FCM)
– Trajectory classification

– Visiting patterns detection
– Visitors’ behaviour timely
detection

Furthermore, it is interesting to mention the work in [13] where the building bricks to compose user trajectories
are the named coverage areas of the Bluetooth beacons. Thus, it provides an intermediate solution between POIs and
building elements to represent the visitors’ trajectories. Similarly, [32] considers both POIs (artworks) and building
elements (rooms) to compose the trajectories.

Our work is enclosed on an alternative way to model trajectories based on a two-dimensional Cartesian space.
In this domain, only a few works have actually relied on this representation. For instance, [24] makes use of this
technology to calculate the probability of a visitor’s position in a map image representing a gallery floor. The RE-
CITE model leverages the accuracy of the underlying positioning system. As a result, we have been able to perform
certain computations from the outdoor trajectory mining field like the segmentation step discussed in Section 2.4.
Moreover, our work enriches this model by labelling certain segments of the trajectory with the content displayed
by the user in his guidance device.

4.3. Trajectory analysis

Concerning the analysis of the collected trajectories, there is a wide range of solutions considering both the
applied methods and their purpose. To begin with, some examples can be found where trajectory pattern mining has
been carried out by means of simple frequency counting methods to discover the most frequent sequences of visited
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galleries [39]. In [13], authors pursue the same goal but, in this case, sequence alignment methods are applied over
trajectory data. In [38] trajectories are characterized using the random walk model.

As far as trajectory clustering is concerned, many different algorithms has been tested. For instance, [24,32] make
use of the k-Means clustering algorithm to aggregate visitors’ trajectories and, thus, uncover general movement
trends. However, [24] performs a spatial partitioning by means of the state chain model before applying the clus-
tering algorithm. In [23], authors perform a clustering task over the set of trajectories and map each cluster to a set
of predefined visitor profiles. Later on, two sequence miners are applied to each group in order to reveal interesting
patterns defining visitor behaviors.

Other works have used optimization algorithms like A∗ to provide navigation services to visitors in order to find
the best route between two rooms in the museum [14].

In addition to that, some works just provide a preliminary design of the trajectory analysis that might be carried
out. For example, [15] proposes to identify stay-points of visitors’ routes and then performs an incremental clus-
tering over such points using time windows to detect behaviour changes during consecutive time intervals. Another
worth mentioning work is [26]. It provides a semantic reasoning mechanism that, by means of a set of domain-
dependent predicates, it is able to infer the purpose of visitors’ movements (e.g. visit a particular gallery or buy
something at the gift shop).

In the trajectory classification field, we have noticed a scarcity of proposals within the cultural domain. Thus,
[22] makes use of two well-established classification algorithms like logistic regression and multi-layer perceptron
to rate the suitability of an unseen POI recommendation based on the previous movement of a user. For that goal,
some profiling information of the visitor like age or gender is considered.

In this context, the work at hand provides a set of FRCs that smoothly merges the spatio-temporal data from
visitors displacements and data related to the content displayed in the guidance devices to timely detect the visitors
behaviour. To do so, it does not rely on any sensitive profiling data from users.

We should also mention that our work share some similarities with the proposal stated in [11]. In that work,
a FRC-based mechanism to classify trajectories based on Volunteer Geographic Information (VGI) is described.
However, VGI provides a more coarse-grained representation of the target users’ movement than in our setting.
Consequently, a segmentation step is not necessary in that work. Furthermore, in such a work, only the spatio-
temporal features of the trajectories are considered for the classification task whereas RECITE also considers other
factors like the usage of the multimedia content made by visitors.

5. Conclusions

The cultural domain is endlessly taking advantage of IoT-related technologies. This has generated a huge amount
of visitors’ data so as to come up with innovative services in museums and exhibition areas.

In this context, the present work introduces the RECITE framework. On the basis of a BLE infrastructure acting
as an indoor positioning system, this framework is able to detect the movement of visitors in a cultural site and track
the usage they make of the multimedia content available at their guidance devices.

On top of the collected indoor trajectory data, an ensemble of fuzzy rules classifiers is developed. Such classifiers
are able to tag in real time the behaviour of visitors based on their movements and their usage of the multimedia
content. To do so, we have followed a data-driven methodology that combines algorithms and techniques from
different fields. To begin with, a segmentation method from the trajectory data mining field has been included so
as to provide an uniform representation of the heterogeneous trajectories. Secondly, the fuzzy clustering algorithm
FCM has been applied to uncover similarities in the movement behaviour of visitors and eventually compose the
final fuzzy rules classifiers.

Finally, we have evaluated the framework in a test-bed scenario. In that setting, we have compared two different
approaches to provide an indoor positioning system using BLE as enabling technology. The comparison shown that
the mechanism based on a pre-defined map of locations provide a more accurate solution in terms of trajectory
perception. Regarding the classification features of RECITE, results showed that the FRC approach allowed to
accurately classify visitors as they move around the site and access the multimedia data provided by the museum.
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