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Abstract. The majority of services that deliver personalized content in smart buildings require accurate localization of their
clients. This article presents an analysis of the localization accuracy using Bluetooth Low Energy (BLE) beacons. The aim is to
present an approach to create accurate Indoor Positioning Systems (IPS) using algorithms that can be implemented in real time on
platforms with low computing power. Parameters on which the localization accuracy mostly depends are analyzed: localization
algorithm, beacons’ density, deployment strategy, and noise in the BLE channels. An adaptive algorithm for pre-processing
the signals from the beacons is proposed, which aims to reduce noise in beacon’s data and to capture visitor’s dynamics. The
accuracy of five range-based localization algorithms in different use case scenarios is analyzed. Three of these algorithms are
specially designed to be less sensitive to noise in radio channels and require little computing power. Experiments conducted in a
simulated and real environment show that using proposed algorithms the localization accuracy less than 1 m can be obtained.
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1. Introduction

The services people use in public smart buildings should deliver the information they want as quickly and reliably
as possible. Such services aim to ensure a high level of visitor satisfaction. Satisfaction can be increased if the
services are proactive. This means that services deliver personalized content to each client, predicting with high
probability exactly what information they need at any given time. These services should take into account the
profiles of their clients and should be adaptive to changes in the environment. For example, if a museum visitor
approaches a painting, he/she will automatically receive information about the painting in preferred media formats.
Such services are used when it is necessary to evacuate visitors from a building. In case of an emergency, each
client of the service automatically receives information about the emergency, as well as a user-specific evacuation
route. Services that depend on the position of their clients are called Location-Based Services (LBS). They are
context-aware systems because the position is a type of context [28]. The concept of smart homes and smart public
buildings is based on context-sensitive services such as LBS [30]. The usability of these services is directly related
to the accuracy of determining the position of each client. Accurate calculation of this position would allow the
creation of diverse and high-quality LBS. The use of Internet of Things (IoT)-based solutions [5,9] to calculate the
position of visitors in buildings would increase the accuracy of these systems [30]. In this case, it will be possible
to develop services that are adaptive to the changes in the building environment. At this stage, the cost of IoT-based
building localization systems is too high. The reason for this is the need to build a sensor network in which each
node should be able to exchange information with each of the other nodes. Based on this information, such a service
could adapt to changes in the environment and thus minimize the error in calculating the position of its clients. At
this stage, indoor positioning solutions use sensor networks with nodes, which operate independently [32]. Such
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solutions are less accurate and difficult to scale, but have a lower cost and do not require significant infrastructure
changes. The accuracy of such services can be improved by using more accurate localization algorithms, as well as
a more accurate estimate of the required sensor’s density (number of beacons per square meter) and placement [18].
The holistic approach to IPS design is the only way to ensure the development of IPS with optimal accuracy-price
ratio.

Our general objective is to analyze the possibility of developing low-complexity IPS with an accuracy of less than
1 m using Bluetooth Low Energy (BLE) beacons as a sensor network [12,31]. The obtained results show that this
is possible with an appropriate choice of algorithm for filtering the raw data from the beacons and for range-based
BLE localization, taking into account the beacons’ density and placement shape.

The rest of the article is organized as follows. Section 2 is a critical review of the existing techniques and algo-
rithms for indoor localization. Section 3 presents the algorithms analyzed in this article. In Section 4, the experi-
mental results are presented. The paper is concluded in Section 5.

2. Related work

Many technologies can be used to create IPS [32]. The most common IPS uses a sensor network to calculate
an estimate of the client’s (target) position. Sensor networks can use different types of sensor nodes, for example:
infrared, visible light (Li-Fi), ultrasound, audible sound, and radio frequency (RF) [18,30,32]. These technologies
have both advantages and disadvantages. For example, each technology requires changes in the infrastructure of
the building. The aim is for these infrastructure changes to be small-scale and relatively inexpensive to implement.
Some of these technologies (infrared, ultrasound, and Li-Fi) require additional hardware to be used by clients. At
this stage, the most commonly used RF technologies for indoor localization are Wi-Fi, Ultra-Wideband (UWB),
Radio Frequency Identification (RFID) and Bluetooth Low Energy (BLE) [30,32]. The main reason for this is the
good ratio between localization accuracy and cost of development and implementation of such systems.

Localization systems using Wi-Fi and RFID have medium cost, complexity and accuracy. Wi-Fi-based indoor
positioning systems require external power sources and additional pricey equipment. UWB-based systems have the
highest localization accuracy (less than 0.5 m), but low security and the highest deployment cost due to the need
for precise inter-node time synchronization. A battery-powered UWB dongle has to be attached to every client to
measure his/her position. The client’s mobile device can read the calculated position over the Wi-Fi network.

One of the most promising technologies for locating visitors in buildings is BLE [12,31]. This technology guar-
antees low to medium localization accuracy at low system cost and medium to high security, depending on the ver-
sion of Bluetooth standard. BLE is a Bluetooth SIG open-industry standard that aims to improve the performance
of the Bluetooth Classic. The BLE devices operate in the 2.4 GHz ISM band at 2,400–2,483.5 MHz. It uses 40
RF channels, and each channel is 2 MHz wide. The improvements are related to better security, reduced maximum
consumption, reduced latency, increased transfer rate, and increased maximum distance between BLE devices. Most
BLE-based localization services use BLE beacons to implement their sensor networks. These devices are designed
to generate push notifications for advertising purposes when a client of a service approaches an object (landmark).
For this purpose, each BLE beacon sends the so-called advertising packets at a certain interval. The data packets are
sent via three of the 40 radio channels. BLE technology works with: channel 37 (2,402 MHz), channel 38 (2,426
MHz), and channel 39 (2,480 MHz). Each packet contains information that is specific to each type of BLE beacon
(iBeacon by Apple, Eddystone by Google, or manufacturer-specific BLE beacons). The data field in the iBeacon
standard includes: iBeacon prefix, Universally Unique Identifier (UUID), Major, Minor, and TxPower.

BLE technology also has some drawbacks. BLE beacons can be used for the client’s localization, but distance
estimate is quite inaccurate and varies depending on the environment and distance between BLE nodes. Mobile
devices such as smartphones need from 2 to 4 seconds to detect a beacon in range. The open ISM frequency band
used by BLE devices is filled with many other wireless protocols, such as Wi-Fi, as well as potential interference
from home appliances. However, Wi-Fi has significantly higher output power, up to 23 dBm, compared to the
maximum allowed 10 dBm for BLE standard. This means that placing a beacon very close to a Wi-Fi source will
probably distort the transmitted data.
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The main disadvantage of IPS using RF sensor networks is the dynamic variations in the parameters of radio
channels due to the following more important factors: dimensions of rooms and corridors, type of construction
material of the walls and ceilings, and position of static and dynamic objects in the building environment. In most
RF-based localization systems, the calculation of the distance between the client and a sensor node is based on
the value of Received Signal Strength (RSS) [26,34]. Regardless of the frequency, the value of the RSS attenuates
approximately logarithmically with increasing distance between the reference node and the target node. Reducing
variations in radio channel parameters is a difficult task that cannot be solved in real time when using mobile
devices. The use of a mathematical model of the communication radio channel (free-space loss model, log-normal
shadowing model, etc.) to predict the attenuation of RSS values does not give satisfactory results. The reason for
this is that these models do not accurately describe the changes in the communication channel. The power of the
transmitted signal from BLE beacons decays exponentially, mostly because of the distances, but there are also other
effects such as fading and multipath effect that more or less affect the signal power. Fading is the time variation
of the received signal. It depends on the environment and the movement of the objects. Multipath effect causes the
signal to arrive in different ways to the device due to reflections, diffraction, and scattering. The most often used
log-distance path loss model estimates RSS values measured at a location x from BLE beacon placed at a location
x0:

RSSk = RSSk
0 − 10γ k log10

(
d

do

)
+ N(x0, x), (1)

where RSSk value is an estimate for the signal power from kth beacon measured at distance d;RSSk
0 value is an

estimate for the signal power from kth beacon measured at distance d0 (usually 1 m); γ k is the path loss exponent,
and N(x0, x) represents the random fluctuations in RSS due to different types of fading. The noise N(x0, x) is
location-dependent shadow fading between the beacon and target node position. Usually, a log-normal distribution
is assumed for noise:

N(x0, x) ∼ N
(
0, σ 2

γ

)
, (2)

where σ 2
γ is the shadowing variance. To localize the visitor, we should convert the RSS measurement (RSSI) to the

estimated distance from the beacon:

d = 10
RSSIk0−RSSIk−N(0,σ2

γ )

10γ k . (3)

Path loss exponent γ k may vary depending on the signal frequency and the building environment, from 1.5 m
for Line-Of-Sign (LOS) scenario up to 3.5 for Non-Line-Of-Sign (NLOS) scenario. In a real environment, the
radio channel between the target node and each reference node should be modeled. In practice, one model for the
whole room or corridor is most often used. Experiments show that RSS signals in a dynamic environment have a
multimodal rather than a unimodal distribution, and the communication channel is, most of the time, a nonlinear
system. Therefore, nonlinear filters, such as Extended Kalman Filters or Particle Filters, should be used [13,16,20,
33]. When these algorithms are implemented for multiple radio channels, they require too much computing power
to be implemented in real time.

BLE-based localization algorithms can be split into two main categories [20]: distance-based and fingerprinting-
based. Distance-based algorithms estimate target node position, calculating (directly or indirectly) the distance to
three or more reference nodes. Distance-based algorithms [15] can be divided into two categories: 1) range-based
algorithms and 2) range-free algorithms. Range-based algorithms [17] need to measure the distances between refer-
ence nodes and the target node. Then, the distances are used to calculate the position of the target node. Range-free
algorithms [29] can indirectly obtain an estimate for the distances. Range-based algorithms have better localization
accuracy compared to the range-free algorithms. Fingerprinting-based algorithms create a so-called reference fin-
gerprint map using a vector of RSSI measurements in known positions [20]. Fingerprinting is an expensive localiza-
tion technique that requires more deployment efforts and time. Any significant change in the infrastructure requires
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all measurements to be repeated in order to update the reference fingerprint map [8]. This technique is not suitable
for use in large public buildings and dynamic environments. The fingerprint-based systems analyzed in [20] have
an average localization accuracy of 2.5 m (from 0.8 m to 4.12 m). Similar accuracy is obtained with distance-based
systems–2.1 m (from 0.75 m to 3 m). The reason for the differences between the minimum and maximum values
of localization accuracy is the different parameters under which the experiments were conducted (room dimensions
and deployment density). For example, in [7], the authors provide a BLE fingerprinting-based localization using 19
beacons distributed around 600 m2. They achieved tracking accuracies of < 2.6 m 95% of the time using a dense
beacon distribution (1 beacon per 30 m2) and < 4.8 m using a lower density distribution (1 beacon per 100 m2). In
[10], the authors use fingerprinting localization in a hall of 7 m × 5 m, where the maximum distance between the
target and reference nodes is less than 9 m. Using a trilateration algorithm, the average error is 2.8 m. Improving
the accuracy of localization systems is possible by using various filtering techniques [16]. In [19], the authors use
a Kalman Filter (KF) to reduce the localization error. The testbed consists of six BLE beacons located in the living
room (8.5 m × 13 m) of a real house. The average localization accuracy was reduced to 1.77 m (41%) compared
with the raw trilateration localization accuracy. In [33], the authors use the particle filtering method to improve
localization accuracy. They report tracking errors low as 0.27 m in a smaller space and 0.97 m in a larger space.

3. Methods

3.1. RSSI data pre-processing

Fluctuations in RSSI data in buildings due to the presence of static (furniture, architectural objects) and dynamic
(visitors) obstacles are the reason for the low localization accuracy. The radio frequency channels between BLE
beacons and visitors are nonlinear systems. Accurate modeling of such systems is difficult to implement in real
time using mobile devices. One possible compromise solution is to filter RSSI data so that for short intervals, the
communication channel is a quasi-linear system. The most commonly used techniques for real-time filtering the
observed set of RSSI values are the Moving Average (MA) filter and the Kalman Filter [10,16,27]. The KF is an
optimal estimation method [20]. The KF algorithm can be described as a two-step process: the prediction step (time
update) that makes use of the learned system dynamics to anticipate the next step of the system, and the correct
step (measurement update) that takes a new observed measurement and uses it to correct the system dynamics and
state. For IPS, the level of measurement noise is environmental and visitor movement dependent. In this case, the
KF is not optimal and may cause unreliable results. One solution for solving the problem is to use adaptive Kalman
filtering.

This article proposes the combination of MA filter and an Adaptive Kalman Filter (AKF) as a novel dynamic
noise reduction algorithm. The algorithm uses signal processing at the time window level. For each time window
(N number of RSSI values) the average (uavg), maximum (umax), and minimum (umin) RSSI values are calculated.
A MA filter is used to obtain the average value of input signal u:

uavg = 1

N

N∑
i=1

ui, (4)

The following parameter �u is used to estimate RSSI fluctuations within the time window:

�u = umax − umin. (5)

The proposed AKF algorithm is used to filter uavg, umax and umin values. In this case, the AKF is one dimensional.
If RSSI data are analyzed in one-second intervals, the time transition matrixes are one second. In this case, process
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Fig. 1. Fuzzy membership functions.

noise was the same as the measurement noise. Thus, AKF equations are reduced to the following form:

x̂−
k = x̂k−1

P −
k = Pk−1 + q

Kk = P −
k /

(
P −

k + r
) (6a)

x̂k = x−
k + Kk

(
zk − x−

k

)
Pk = (1 − Kk)P

−
k

(6b)

where k is discrete time, x̂−
k is a priori state estimate, x̂k is a posteriori state estimate, P −

k is a priori estimate for
error covariance, Pk is a posteriori estimate error covariance, Kk is the Kalman gain matrix, and zk is the observed
data (RSSI). It is assumed that the process noise variance q is constant (q = 0.2). A filtered signal x̂k is calculated
based on an estimation of the difference between measured value zk and a priori state estimate x̂−

k . To obtain the
degree of filtering of RSSI data, it is proposed to use fuzzy logic to estimate the value of measurement noise variance
r (6a). Two input fuzzy variables are used (see Fig. 1). First input variable DeltaRSSI estimates error in the RSSI
data. We use parameter �u obtained with (5) as value for this input variable. Four values for DeltaRSSI are used: S
(Small), MS (Medium Small), MH (Medium High) and H (High). It is assumed that the lower the DeltaRSSI value,
the less RSSI data should be filtered. When visitors move into the building, the use of non-adaptive Kalman filters
often results in over-filtering. In this case, the filter convergence time may reach several seconds.

To prevent this, the visitor’s speed of movement is used as second input variable (Velocity). The values of the
variable Velocity are following: S (Small), M (Medium) and H (High). The faster the visitor moves, the less RSSI
data is filtered. The possible values for output linguistic variable OUT are following: L (Low), ML (Medium Low),
MH (Medium High) and H (High). The higher the OUT value, the stronger the input data is filtered. To obtain output
linguistic variable OUT, 12 fuzzy rules of the following type are used:

if Velocity = value AND DeltaRSSI = value

then OUT = value.
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Fig. 2. Fuzzy rule matrix.

Figure 2 shows the fuzzy rule matrix used. To infere logical products for each rule, Root-Sum-Square method is
used. The defuzzification of the data into a crisp output is realized by combining the results of the inference process
and the computing of the fuzzy centroid of the area.

3.2. Localization algorithms

This article analyzes the accuracy of five range-based localization algorithms in different use case scenarios.
The first two well-known algorithms–Trilateration and Nonlinear Least Squares (NLLSQ) localization–are used
for comparison with the other three algorithms, which are specially designed to be less sensitive to noise in radio
channels and require little computing power.

Trilateration is one of the most commonly used range-based techniques for localization in buildings [1,3,6,22,27].
Three RF sources, such as BLE beacons, placed in known locations, are required to calculate the 2D position of the
target node. When using three beacons, the position of the client is the point at which all circumferences intersect.
In real indoor environments, due to the fluctuation of the RSSI values, instead of intersecting at one point, these
three circles can either intersect in an area, or not. Therefore, we use Line Intersection-based Trilateration algorithm
[21] to estimate visitor’s position.

Nonlinear Least Squares [27] is an optimization technique that solves nonlinear data-fitting problems of the
following 2D form:

min
x,y

∥∥f (x, y)
∥∥2

2 = min
x,y

(
f1(x, y)2,+ · · · + fn(x, y)2). (7)

When the position needs to be calculated, the function to be minimized is as follows:

f = (x − xi)
2 + (y − yi)

2 − d2
i . (8)

where (x, y) is the estimated position of target node, (xi, yi) is the position of ith beacon, and di is the distance
between ith beacon and estimated target node position, which is calculated using (3). This algorithm starts at the
point p(x0, y0) and returns estimated target node position when function f goes under the predefined threshold. The
position of the starting point is calculated using Weighted Centroid Localization algorithm [24]. In order to be able
to estimate the position of target point, two or more distance estimates should be available for the distances between
the visitor and two beacons (the number of observations should be equal or greater than the number of unknown
parameters).

3.3. First proposed algorithm (ALG-1)

The proposed algorithm ALG-1 belongs to the range-based localization algorithms but implements some ideas
used in the range-free localization algorithm named Ring-Overlapping Circle RSSI (ROCRSSI) [15]. The ROCRSSI
algorithm requires beacons to be able not only to transmit data, but also to read the data from other beacons. This
makes it unusable if standard BLE beacons are to be used. Let us assume that RSSIi is the signal from ith beacon
and RSSIt is the signal from the target node. If RSSIi < RSSIt then the ith beacon belongs to Group 1. Otherwise,
it belongs to Group 2. The maximum RSSI value in Group 1 is used to calculate radius r1 and the minimum RSSI
value in Group 2 gives radius r2. It is assumed that target node is located between two circles (ring) with inner radius
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r1, outer radius r2 and center coincided with a beacon’s position. Repeated for all the beacons, a set of overlapping
ring pairs are created. The target node is located as the center of gravity of these overlapping ring pairs.

In our case we use standard BLE beacons. The aim is to obtain an estimate for the values of radii r1 and r2
without it being possible for each beacon to receive the RSSI value from the other beacons. For this purpose, RSSI
fluctuations from each beacon are analyzed and filtered using proposed AKF. The attenuation of the RSSI signal is
more significant when there are objects or people between the visitor and these nodes. In this scenario, the target
node will receive a lower value for the power from the BLE node. The attenuation of the power can be modeled by
assuming that the position of the target node is within a ring whose outer radius is proportional to this attenuation.
From the coordinates of the overlapping parts of the rings obtained for two or more beacons, an estimate of the
target node position can be obtained. We use weighted centroid to calculate the final estimate for the position. To
obtain the inner and outer radii of each ring, the maximum and minimum RSSI values for each time window are
filtered using combination of the MA filter and AKF described in Section 3.1. Based on these values (ûmax, ûmin),
the inner and outer radii of the ring are calculated. The values of r1 and r2 are obtained using the path loss model
(1):

r1 = 10
RSSI0−ûmax

10γ , r2 = 10
RSSI0−ûmin

10γ . (9)

The calculation of the estimated target node position is realized in the following sequence (see Fig. 3a). First,
we select beacons involved in obtaining the target node position. For each beacon the radii r1 and r2 are calculated
using (9). Second, the coordinates of all intersections between rings are obtained.

If the number of intersections between each possible pair of circles is two, the one for which a less total distance
from the point to the position of the selected beacons is winner point (blue dots). The other point is considered invalid
and is removed (red dots). Finally, it is assumed that the position of the target node pt (red diamond) coincides with
the coordinates of the weighted centroid of area that blue points form. Higher weights are set for intersections that
have a smaller total distance to the selected nearest beacons:

wi = 1/
∑
∀k

∥∥pint
i , pbeacon

k

∥∥, (10)

where pint
i is the position of an intersection point with an index i; pbeacon

k is the position of a beacon with an index
k; ‖ · ‖ is the distance between two points in a Cartesian coordinate system.

The estimation for position of the target node pt is obtained using the following equation:

pt =
∑
∀i

(
wip

int
i

)/∑
∀i

wi. (11)

Figure 3b shows how the ALG-1 works when three beacons are selected to estimate position of target node.
Random noise in RSSI data with a maximum value of ±6 dBm is added. The blue circle is the real position of the
target node, and the red diamond–the estimated position. The accuracy of the algorithm is highest if the target node
position coincides with the center of gravity of an area that the beacons form (triangle B2B4B5).

3.4. Second proposed algorithm (ALG-2)

The main reason for the error in estimating the target node position in the Trilateration and NLLSQ algorithms is
the inaccurate calculation of the distance between the target node position and the beacons. In algorithm ALG-2, the
target node position is calculated based on the difference between the RSSI values for each pair of beacons involved
in the position-finding process. Therefore, each RSSI difference value is proportional to the ratio of the distances
between the target node and each pair of beacons. If all beacons are configured to transmit at the same power, then
this parameter (TxPower) will not affect the accuracy of position calculation. In the proposed algorithm, in order to
simplify the calculations, it is assumed that the position of the target node is located in the center of a polygon. Let
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Fig. 3. Localization using algorithm ALG-1: (a) how algorithm works: valid intersections (blue dots); invalid intersections (red dots); estimated
position of target node pt (red diamond); (b) algorithm in action: �RSSI = ± 6 dBm; target point (blue circle); circle with r = 1 m (dark
yellow).

us first consider a special case in which the position of the target node is a point pij with coordinates (x, y), which
lies on a line connecting two beacons with indices i and j (see Fig. 4a). In this case, the target node position pij is
obtained by the following equations:

x = xi + di

di + dj

(xj − xi) = xi + xj − xi

1 + cof
,

y = yi + di

di + dj

(yj − yi) = yi + yj − yi

1 + cof
.

(12)

where cof = dj /di , dk is the distance between the target node position and a beacon with index k. The value of
parameter cof can be obtained using (3). If all beacons transmit with equal power, the value of this coefficient is
obtained by the following equation:

cof = 10
RSSIi−RSSIj

10γ = 10
RSSDij

10γ . (13)

Let us consider a case in which the position of the target node is a point pt , which falls into the triangle formed
by three beacons with indices i, j , and k (see Fig. 4a). Let us assume that the projections of this point on the lines
between each pair of beacons are the points pij , pik , and pkj . If there is no noise in the RSSI data, then the target

position is obtained as an intersection between the lines l
ij
⊥ , lik⊥ , and l

kj
⊥ . The line l

ij
⊥ is perpendicular to the line lij ,
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Fig. 4. Localization using algorithm ALG-2: (a) how algorithm works: target point (blue circle); intersection points (red circles); (b) algorithms
ALG-2A and ALG-2B in action: �RSSI = ±3 dBm; circle with r = 1 m (dark yellow); estimated position of target node using ALG-2A
algorithm (green triangle up); and estimated position of target node using ALG-2B algorithm (green triangle down).

which connects beacons i and j and passes through the point pij . For the equation of line l
ij
⊥ , we can write:

y = ypij + m
ij
⊥(x − xpij ). (14)

In order for a line l
ij
⊥ to be perpendicular to a line lij , the following condition should be satisfied:

m
ij
⊥ = − 1

mij
= −xj − xpij

yj − ypij

, (15)

where mij is the slope of the line lij . The equations for the other perpendicular lines lik⊥ and l
kj
⊥ are found in a similar

way. It remains to find the intersections between each pair of lines (lij⊥ , lik⊥ ), (lij⊥ , l
kj
⊥ ) and (lik⊥ , l

kj
⊥ ). The condition

l
ij
⊥ ∩ lik⊥ �= ∅ is satisfied if l

ij
⊥ = lik⊥ . In this case, for the coordinates of the intersection point pi

int between the lines

l
ij
⊥ and lik⊥ , the following equations are obtained:

xi
int = ypik − ypij + m

ij
⊥xpij − mik⊥xpik

m
ij
⊥ − mik⊥

,

yi
int = ypij + m

ij
⊥(x − xpij )

(16)
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The coordinates of the other intersection points are obtained in a similar way. The estimated target node position
coincides with the center of gravity of the area obtained from all three intersections:

pt = pi
int + p

j
int + pk

int

3
. (17)

If n is the number of beacons used to calculate the position of the target point, the algorithm can be used if n � 2.
Two variants of the proposed algorithm will be analyzed. In the first variant (ALG-2A), the position of the target
node coincides with the position of the point calculated using (17). In the second variant of the algorithm (ALG-2B),
the target node position coincides with the position of one of the intersection, for which a minimum sum of distances
between the intersection point and the points on the sides of the triangle involved in calculating its coordinates:

pt = min∀ m

( ∑
∀q\ m

∥∥pm
int, pmq

∥∥)
. (18)

The accuracy of these algorithms depends on the geometric location of the beacons involved in the position
calculation (see Fig. 4b). Best localization accuracy is obtained if the target node is in the center of a triangle that
beacons form. When the target node is located in the triangle that the beacons form, the accuracy of algorithms
ALG-2A and ALG-2B is approximately the same. Worst localization accuracy is obtained when the position of the
target point is outside of the triangle. In this case, as shown in Fig. 4b, the ALG-2B algorithm has better accuracy
than the ALG-2A algorithm.

4. Experiments

In this section, several use case scenarios are conducted to analyse localization accuracy of the algorithms de-
scribed in Section 3. The analysis of the parameters on which the localization accuracy depends is realized through
a testbed platform, which includes: 1) Mobile app which dump to CSV file information from beacons with high-
est RSSI values and data from built-in accelerometer; 2) Texas Instruments (TI) CC2540 USB BLE dongle and
SmartRF BLE packet sniffer software; 3) Java app for raw BLE packets data pre-processing and dump; and 4)
Matlab™ software for automatic beacons deployment and localization algorithms comparison.

Mobile apps for BLE beacon configuration are most often specific to each manufacturer (Gimbal, Kontakt.io,
iBKS, etc.) in order to ensure a higher level of security. Through them, the beacons can be configured by setting
a specific value for each parameter, for example, advertising interval, Major, Minor, RSSI0, and TxPower. Using
TI CC2540 BLE dongle, it is possible to scan any BLE channel for data from BLE devices. Data from CC2540 is
analyzed using TI SmartRF BLE packet sniffer software. It allows setting the identifier of the BLE channel, which
should be sniffed, as well as how to visualize the contents of the data packets. The application allows broadcasting
BLE packets to other applications using UDP protocol. A Java application that starts a UDP server to capture packets
transmitted by the SmartRF packet sniffer is developed. This app allows real-time recording of raw and filtered data
as CSV files. Subsequently, this data is processed by a Matlab™ application that allows statistical analysis of data
from CSV files.

4.1. Use case scenario 1

The aim of the first experiment is to analyze the applicability of the algorithm for beacon’s data pre-processing.
The experiment was conducted in a lecture hall for 50 students. The dimensions of the hall are 11 m × 6 m × 3.3 m.
Six BLE beacons were used, four of which were located in the corners of the hall, and two were located in the
middle of the longer sides of the hall. They are located at a height of 1.5 m from the floor of the room. The same
configuration parameters are set for all beacons: advertising interval (200 ms), RSSI0 (−52 dBm), and TxPower
(4 dBm). To obtain the parameters of the log-distance path loss model, Matlab™ cftool is used (see Fig. 5).
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Fig. 5. Lecture hall path loss model, γ = 2.533 (95% confidence bounds).

Fig. 6. Java app for beacons data pre-processing and dump.

The SmartRF BLE packet sniffer software is used to select a specific BLE channel (37, 38 or 39) to read beacon’s
packets. The developed Java app starts a UDP server and capture packets transmitted by the TI SmartRF packet
sniffer. This application has a graphical user interface (see Fig. 6) and allows: 1) Initialization of the app using pa-
rameters from a configuration file (minimum value of RSSI below which the data from the corresponding beacons is
not processed; UUID of the beacons to be analyzed; maximum number of beacons to be analyzed; filter parameters,
etc.; 2) Real-time visualization of RSSI data from the three closest to target node beacons; 3) Filter type selection:
MA filter, Kalman filter or a combination of both filters; 4) Start / stop saving data into a CSV file – the application
shows how many samples are recorded and how much time has elapsed since the beginning of the recording.

One hundred records received from different beacons and channels were analyzed for the specific distance be-
tween target and reference nodes, and noise in the BLE chanels. For each of the five distances (1 m, 2 m, 3 m, 6 m,
and 8 m), 20 records were obtained. Each record contains about 500 samples (100 seconds). Matlab™ software is
used to visualize the results obtained. The length of the time window N is set to 10 samples. AKF returns a result
every second. To make this possible, a 50% overlap of time windows is used. In order to analyze the proposed AFK,
two types of experiments have been implemented in a real environment. During all tests, there is a movement of
people crossing the line that is formed when connecting the positions of the reference (beacon) and target node
(visitor). The aim is to simulate the alternation of LOS and NLOS scenario. In the first experiment, the RSSI data
obtained from a target node that is stationary and located at a specific distance (dref ) from the reference node are
analyzed. Figure 7 shows the results obtained after analyzing two records at a distance between nodes of 1 m and
8 m. Large decreases in RSSI values occur when the direct visibility between the two nodes is lost. An overall
summary of the results for all distances are shown in Table 1. For each filtering algorithm and for each reference
distance between the beacons, the min, max and average distances were calculated, as well as the standard deviation.
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Fig. 7. Beacon’s data pre-processing – raw data (green), filtered data (MA + AKF): average curve (green circles), maximum curve (red), and
minimum curve (blue): (a) 1 m distance between reference and target nodes; (b) 8 m distance between nodes.

Table 1

Summary of result obtained in dynamic environment with the static target node used

Filtering algorithm Distance, m

Error, m 1 2 3 6 8

Raw min 0.24 0.91 1.34 2.05 3.31

max 1.72 4.16 8.22 8.10 7.29

avg 0.04 0.13 0.23 0.28 0.35

std 0.24 0.39 0.77 0.98 1.41

MA min 0.10 0.22 0.70 0.89 1.84

max 0.33 0.44 0.85 1.42 2.39

avg 0.03 0.11 0.28 0.24 0.18

std 0.08 0.12 0.38 0.47 0.95

MA + AKF min 0.02 0.01 0.12 0.46 0.73

max 0.04 0.20 0.54 0.78 1.53

avg 0.003 0.10 0.18 0.23 0.25

std 0.016 0.05 0.15 0.28 0.72

It can be clearly seen that in a dynamic building environment, fluctuations in RSSI data result in large errors in the
calculated distance between the nodes – from 0.24–1.72 m at dref = 1 m to 3.3–7.3 m at dref = 8 m.

When using an MA filter, the error in the calculated distance decreases, but for dref > 3 m it is over 1 m
(0.9–1.42 m for dref = 6 m and 1.84–2.39 m for dref = 8 m). When using a combination of MA filter and proposed
AFK (Velocity = 0), the maximum error for all tested reference distances is less than 1 m.

In the second experiment, the target node (visitor) moves in the lecture hall from one reference distance between
the nodes to another reference distance. The visitor uses a mobile app through which the data from the six beacons
and his/her speed of movement are recorded in a CSV file. Using Matlab™, it is analyzed for how long the reaction
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Fig. 8. Beacon’s data pre-processing in dynamic environment and moving target node: (a) non-adaptive KF is used; (b) proposed AKF is used.

of a non-adaptive KF and the proposed AKF converge to the actual value of RSSI. During all the recordings, people
move in the room. Figure 8 shows the result after filtering the RSSI data obtained by moving the target node from
the reference node at an initial distance of 1 m (−52 dBm) to a final distance of 2 m (−60 dBm). It is clear that when
using a non-adaptive Kalman filter (Fig. 8a) the convergence time is over 100 samles (20 seconds). When using
the proposed AFK (Fig. 8b), this time is reduced to 15 samples (3 seconds). Experiments show that a non-adaptive
Kalman filter does not give satisfactory results if the target node is not stationary. In this case, the convergence of
the KF is insufficient to take into account the dynamics of the target node.

4.2. Use case scenario 2

The aim of the second experiment was to validate the localization algorithms in an simulated environment at
different target node positions relative to the reference nodes position, different values of the fluctuationsin the
RSSI values, and different distances between the reference nodes (beacons). To validate the algorithms, localization
accuracy is calculated. The localization accuracy εt is the measure of the correctness of the obtained estimate for
the position of the target node, which is calculated as the difference between the actual position of the target node,
pt = (xt , yt ) and the estimate for this position, p̂t = (x̂t , ŷt ):

εt =
√

(xt − x̂t )2 + (yt − ŷt )2. (19)

All experiments were performed under the assumption that the signals from three reference nodes were analyzed,
which form an equilateral triangle. The accuracy of localization at three different distances between the beacons
(3 m, 6 m, and 9 m) and three different positions of the target node is analyzed. We test localization accuracy for
the following target node positions: 1) Target node is in the center of an equilateral triangle; 2) The position of the
target node coincides with the position of an reference node; and 3) The target node is outside the triangle. For each
of these three positions, 50 estimates were made for the target node position at four different maximum values for
the random noise level in RSSI (0 dBm, ±3 dBm, ±6 dBm, and ±9 dBm). Figure 9 shows the average localization
accuracy estimates for all possible target node positions at different distances between reference nodes and noise
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Fig. 9. Comparison of algorithms localization accuracy: (a) distance between beacons is 3 m; (b) distance between beacons is 6 m; (c) distance
between beacons is 9 m.

in RSSI values. The ALG-2A and ALG-2B algorithms have almost constant accuracy for all values of noise and
distances between reference nodes. This is expected because ALG-2 algorithms are not significantly affected by
noise in RSSI data. The more accurate is ALG-2B, which guarantees average localization accuracy less than 1 m
for all test scenarios. The ALG-1 algorithm has approximately the same accuracy as the ALG-2 algorithms for
noise in RSSI data up to ±6 dBm. Trilateration and NLLSQ algorithms can be used for micro-localization only
at a small distance between beacons and low noise levels in communication channels. These requirements cannot
be guaranteed in a real environment. Analysis of the position of the target node shows that all algorithms are most
accurate when the target node is at the center of gravity of the triangle the three nearest beacons form. However,
at this target node position, the Trilateration and NLLSQ algorithms guarantee micro-localization only when the
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distance between the beacons is less than 3 m. The ALG-1 and ALG-2 algorithms are most inaccurate when the
position of the target node is outside the triangle the reference nodes form. In this case, these algorithms guarantee
micro-localization only if the distance between reference nodes is less than 6 m.

4.3. Use case scenario 3

This experiment analyzes how the beacons’ density and deployment shape affect the accuracy of the localization
algorithms [4,11,24,25,27]. The localization accuracy increases as the distance between the beacons decreases. In
large public buildings, the cost of the deployment increases as the distance between the beacons decreases. For this
reason, a compromise should be made between the deployment cost and the localization accuracy. Experiments
show that in addition to the beacons’ density, the localization accuracy also depends on the shape the beacons form.
In [24], the authors prove that the best placement of beacons is when every three of them form an equilateral triangle.
This shape is called Crystal-shape iBeacon Placement (CiP), and it gives better results compared to the Z-curve
placement strategy described in [23]. In a real building environment, these shapes cannot be guaranteed due to the
specific dimensions of the rooms and corridors as well as the need for different localization accuracy in different
rooms and corridors.

Matlab™ software has been developed to deploy beacons automatically, taking into account the desired shape
and deployment density. All analyzed localization algorithms were tested for a simulated space of 200 m2 (20 m ×
10 m) in the following two scenarios:

• CiP shape and a distance between the beacons 5 m (5 beacons) and 10 m (14 beacons).
• Rectangular shape and a distance between the beacons 5 m (6 beacons) and 10 m (15 beacons).

For each scenario, the localization accuracy was analyzed for 50 test points with pseudo-random coordinates.
Different random noise with maximum amplitude of ±5 dBm has been added to the RSSI data. The obtained
results are shown in Fig. 10 as a box-and-whisper plot. Trilateration and NLLSQ algorithms have better localization
accuracy if a CiP shape is used. Conversely, ALG-2 algorithms have better accuracy if a rectangular shape is used.
The reason for this is that ALG-2 algorithms have less accuracy when the target node is outside the triangle formed
by the nearest beacons. Such a scenario is possible due to the noise in the radio channels. The localization accuracy of
the ALG-1 algorithm depends less on the deployment shape and beacon’s density compared to other algorithms. At
a distance between the beacons of 5 m, only the ALG-1 and ALG-2B algorithms can be used for micro-localization.
For example, for a CiP shape, the accuracy of the ALG-1 algorithm is less than 1 m for all test points. In this case, the
ALG-2A algorithm has three test points, and the ALG-2B algorithm has two test points for which the localization
accuracy is over 1 m but less than 1.5 m. At a distance between the beacons of 10 m, the best localization accuracy
has the algorithm ALG-2B when a rectangular shape is used. In this case, none of the localization algorithms
guarantees accuracy below 1 m for all test points.

4.4. Use case scenario 4

The aim of this use case scenario is to validate the analyzed beacon’s data pre-processing and localization algo-
rithms in a real indoor environment. Specially developed apps for Android OS and Matlab™ are used to realize this
scenario. The experiment was conducted in a lecture hall described in Section 4.1.

Two experiments were performed in this scenario. The first experiment analyzes the accuracy of the localization
algorithms at nine test points in the room (see Fig. 11). The positions of these points are selected to simulate different
positions of the test point relative to the positions of the beacons. When a participant in the experiment reaches a
test point, he/she presses a button so the mobile app can receive information about this event. The route with test
points is passed 20 times in one day.

During the experiment, five people move into the room. The software saves in a CSV file the information from
beacons and accelerometer every 200 ms. The Matlab™ software calculates the localization accuracy for each
analyzed algorithm at all test points (see Fig. 12).

For each test point, the value of the minimum (blue dots), the maximum (red dots), and the average (different
marker) of localization accuracy for each of the localization algorithms is obtained. The average localization accu-
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Fig. 10. Comparison of different type of beacon deployment–box-and-whisper plot (n = 50, �RSSI = ±5 dBm): (a) rectangle shape, d = 5 m;
(b) triangle shape, d = 5 m; (c) rectangle shape, d = 10 m; (d) triangle shape, d = 10 m.

racy of the ALG-1 and ALG-2 algorithms is less than 1 m for all test points. The average accuracy of algorithm
ALG-2A is over 1 m for test points 1, 6 and 7. The reason for this is that this algorithm has poor localization accu-
racy when the target point is near the side of the triangle the beacons form. The Trilateration algorithm gives a high
localization error for test point 5, since for some of the measurements, the highest RSSI value give beacons 1, 3 and
5 that form a straight line, not a triangle.
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Fig. 11. Test environment–lecture hall: beacons (red rectangles); test points (gray circles); furniture (yellow and green rectangles).

Fig. 12. Localization accuracy for all analyzed localization algorithms at all test points.

Trilateration and NLLSQ algorithms cannot be used for accurate localization, as there are measurements where
the error is higher than 1 m. The best results are obtained using the ALG-2B algorithm. The next most accurate
algorithm is the ALG-1.

The second experiment analyzes the localization precision of the algorithms when participants cross the route,
which is formed by all test points. To compare the localization precision of the different localization algorithms, an
estimate is obtained for the overall deviation from the path (the shortest distance between the calculated position
and the route). Figure 13 shows the results obtained when traversing the route from test point 1 to test point 9.

The target node position is obtained every second. The length of the path is 30 m. The average time to complete
this experiment is 40 seconds. The average speed of movement is 2.7 km/h. Figure 13 shows the ideal route (dark
gray) and the routes obtained using each localization algorithm. The ALG-2B algorithm has the best localization
precision (see Fig. 14). In this case, the deviation from the route is less than 1 m for all measurements. The next
most accurate algorithm is ALG-1, for which only one measurement has a deviation greater than 1 m but less than
1.2 m. Trilateration, NLLSQ, and ALG-2A algorithms do not guarantee micro-localization.

5. Conclusions

In this article, the possibility of creating low-complexity IPS for accurate localization in smart buildings using
BLE beacons is analyzed. A new adaptive algorithm for reducing noise in BLE beacon data has been proposed. The
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Fig. 13. Estimated routes vs. ideal route (dark gray).

Fig. 14. Comparison between different localization algorithms according localization precision.

algorithm is based on a combination of a Moving Average (MA) filter and an Adaptive Kalman Filter (AKF). AKF
uses fuzzy logic to estimate the noise in RSSI data and to capture visitor’s dynamics. This algorithm is designed
to implement in real time. Several use case scenarios have been implemented to compare five localization algo-
rithms. Two of these algorithms are specifically designed to be less sensitive to noise in RSSI data and require little
computing power. We validate the proposed algorithms in different simulated and real building environments. The
advantages and limitations for each of the algorithms are identified, based on an analysis of how their localization
accuracy and precision depend on factors such as: noise level in the beacons’ data, beacons’ density, placement
shape, and position of target node relative to the position of reference nodes. The following is a summary of the
main results obtained after the experiments:

• In a real building environment (presence obstacles for radio waves and many moving visitors) obtaining micro-
localization without the use of adaptive filtering of data from beacons is not possible. The proposed data pre-
processing algorithm combines MA filter and an AKF. The time to estimate the target node position is fixed to
one second in order to simplify AKF calculations.
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• The level of fluctuations in RSSI data is 2–9 dBm and depends on a number of factors, such as distance
between the beacons and multipath effect. The most dependent on noise level are the Trilateration and NLLSQ
algorithms. The least noise-sensitive is ALG 2B algorithm.

• The ALG-1 and ALG-2 algorithms are more sensitive than the Trilateration and NLLSD algorithms to position
of the target node only if there is no noise in the RSSI data. In a real environment where there are obstacles
and moving people, this is impossible. All algorithms have the highest accuracy when the target node is in the
center of gravity of the shape the reference nodes form.

• The density of the beacons is a major factor that affects the accuracy of all algorithms. In a real building
environment, Trilateration and NLLSQ algorithms cannot be used if the distance between reference nodes d is
greater than 3 m. The other algorithms guarantee accurate localization when d < 10 m. Micro-localization is
guaranteed when d < 6 m.

• The deployment shape affects the accuracy of the localization, but in a different way for the different local-
ization algorithms. For example, the Trilateration and NLLSQ algorithms are most accurate if the shape is
an equilateral or isosceles triangle. Conversely, the ALG-1 and ALG-2 algorithms are more accurate if the
placement shape is rectangular.

• The NLLSQ and ALG-1 algorithms can calculate the target node position using data from two or more beacons.
• The choice of beacons to calculate the position of the target node should not be based solely on RSSI values.

In a real environment, it is guaranteed that only the beacon with heights value of RSSI is selected correctly. For
the other beacons, it should take into account what shape they form with the selected beacon. If it is necessary,
the next pair of beacons should be selected.

• When localizing moving objects in a real building environment, the ALG-2B algorithm has the best precision,
followed by the ALG-1 algorithm.

The proposed algorithms for data pre-processing from BLE beacons and precise localization can be used in many
services for visitors to smart buildings, for example: delivery of customized content depending on the location of
each visitor; precise navigation of people with visual impairments in large public buildings [14]; detection of social
interactions among humans [2], etc.
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