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Abstract. We are moving towards ‘smart’ world in which industries, such as healthcare, smart cities, transportation, and agri-
culture have started using IoT (Internet of Things). These applications involve huge number of sensors and devices that generate
high volume of real time data. To perform useful analytics on this data, location and spatial awareness characteristics of devices
need to be considered. Wide range of location-based services and sensors in GIS have to manage moving objects that change
their position with respect to time. These applications generate voluminous amount of real time geospatial data that demands
an effective query processing mechanism to minimize the response time of a query. Indexing is one of the traditional ways to
minimize the response time of a query by pruning the search space. In this paper, we performed a detailed survey of the liter-
ature regarding the indexing of real time geospatial data generated by IoT enabled devices. Some major challenges relevant to
indexing of moving objects are highlighted. Various important index design considerations are also discussed. The goal is to help
researchers in understanding the principles, methods, and challenges in the indexing of real time geospatial data. This will also
aid in identifying the future research opportunities.
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1. Introduction

IoT characterize the future in which devices are
connected to each other using the Internet and allow
human-to-machine and machine-to-machine interac-
tion. IoT involves large number of devices connected
with each other to capture enormous amount of data.
Processing this huge amount of data is a crucial as-
pect in performing a valuable spatiotemporal analytics.
Nowadays, idea of Bring Your Own Device (BYOD)
has been propagated that has revolutionized the way
devices are used. With extensive use of location-based
services and sensors, geography has been inevitably
linked with modern technologies. Smart building de-
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vices, car navigation systems, and autonomous vehi-
cles must be equipped with location intelligence to
function properly. For example, in order for smart-
phones to correctly predict the directions they must
have to embed spatial awareness within them.

Wide range of IoT based applications have to man-
age spatial objects that change their position with re-
spect to time. Examples of such objects include oil
tankers, cars, and air planes. These objects are used
in number of GPS and location based applications in-
cluding crowd tracking, robot path planning, and traf-
fic monitoring. Utilization of such spatiotemporal data
plays an important role in addressing many societal is-
sues. Majority of applications in the domain of trans-
portation, military, agriculture, and business acquire
massive amount of spatiotemporal data from sensors
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that need effective management. Indexing techniques
emerged as a solution to prune the search space and
minimize the response time of spatial query opera-
tions.

This paper discusses the challenges faced during
spatial query processing. We begin with describing an
integration of GIS and IoT, the query model involved
in this integration, and brief background of spatial data
processing. Challenges, design considerations, and re-
search opportunities are discussed in the context of
spatial query processing. In many real life applications
such as Didi, the number of queries approach up to
several millions during peak hours. This makes spatial
query processing a challenging task. The sooner the
queries are entertained the better will be the validity
of results returned. For example, a quick response time
is needed in a disaster management applications such
that appropriate measures are taken on time. Many
spatial indexing methods have been designed to date.
But, all of them have not addressed some critical chal-
lenges in spatial index design and query processing.
Particularly, in case of indexing of moving objects,
the read/write query conflicts have not been addressed.
To design an indexing solution, one must focus on
some important design considerations and challenges
to make the solution suitable for real life applications.
Therefore, it is significant to have a study in place that
discusses these design considerations and challenges.

1.1. Difference from existing surveys

To the best of our knowledge, there is no study in
place that has thoroughly reviewed the domain of in-
dexing of real time geospatial data generated by IoT
devices and highlighted the challenges, index design
considerations, and research opportunities. This paper
has covered all of these shortcomings of existing re-
search works. This survey is focused on reviewing the
literature and domain of spatial indexing.

The survey [100] provided a summarized view of
recent research efforts made on spatial data mining.
Background of spatial data mining is presented while
briefly discussing the structure of spatial data and data
structures involved in handling it. The discussion is fo-
cused on machine learning based methods for knowl-
edge discovery in spatial databases. Generalization,
clustering, and many other variants are discussed in the
light of spatial data mining. The challenges in spatial
query processing has not been put into focus.

The paper [45] surveyed the whole big spatial data
domain briefly. As the focus of this survey is not on

some specific module of big spatial data domain (e.g.,
spatial query processing), therefore various aspects of
big spatial data processing, namely, visualization, un-
derlying architecture, implementation approaches, and
indexing are reviewed very briefly. Only some recent
works have been highlighted with regard to each com-
ponent.

In [221], a brief overview of modeling and man-
agement of spatiotemporal data is presented. The dis-
cussion includes only some of the research efforts
made for modeling and management of moving ob-
jects. However, the discussion of challenges in query
processing with moving objects and description of
landscape of literature is missing.

The spatiotemporal access methods used for index-
ing past, current, and future locations of moving ob-
jects have been discussed in [125]. However, the chal-
lenges with each data access methods have not been
discussed.

In view of the above discussion, the need for a sur-
vey on spatial indexing is obvious. Most of the ex-
isting surveys are focused on the review of big spa-
tial data domain. The focus of survey [100] is on spa-
tial data mining. Spatial indexing and query process-
ing has not been discussed in this survey. The research
work [45] reviewed some spatial indices very briefly
but didn’t consider spatiotemporal data in its discus-
sion. The research works, [221] and [125] have not
extensively evaluated spatial indices. As opposed to
these research works, we have provided a complete
overview to the domain of spatiotemporal indexing.
We discussed the challenges in query processing in this
domain. We have also extensively reviewed the litera-
ture starting from early 90s till to date. Our main con-
tributions are presented as follows.

– Detailed review of background on spatiotemporal
query processing.

– The significance of spatial indexing is highlighted
and extensive literature review is done.

– Comparative review of the literature is performed
on spatial indexing with regard to number of view
points and design considerations.

– Challenges and research opportunities related to
spatiotemporal query processing and indexing are
discussed.

The rest of the document is organized as follows: Sec-
tion 2 introduces the domain of IoT and spatiotempo-
ral data processing and various major concepts cov-
ered by these domains. Section 3 reviews the existing
research works related to the spatial querying and in-
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Fig. 1. Layered architecture of IoT based solution.

dexing of moving objects. Section 4 describes the chal-
lenges associated with spatial indexing. Section 5 de-
scribes the important design considerations relevant to
spatial indexing. Section 6 discusses research opportu-
nities. Section 7 concludes the paper.

2. Integration of IoT and GIS

IoT data is unstructured and has heterogeneous for-
mats as it is usually acquired from diverse sources.
Huge amount of data with spatiotemporal characteris-
tics will be generated by these diverse sensors. This
has made information representation, retrieval, man-
agement, and processing of spatiotemporal data a com-
plex process. Typical IoT based solution has three lay-
ers: 1) edge technology to acquire data using embed-
ded technology, 2) platform involved in manipulation
of data and extraction of intelligence from it, and 3)
applications that use this intelligence. Figure 1 depicts
this layered architecture. At edge, there are sensors, ac-
tuators, and devices for sensing the environment. Plat-
form layer involves processing, management, and ana-
lytics aspects.

The scope of this paper lies within layer 2 in which
processing of spatiotemporal data with moving objects
will be considered. Typically, the query model involves
sensors or GPS based devices deployed in the envi-
ronment and moving objects that report their location
to the server continuously. This has been depicted in
Fig. 2.

Processing of this spatiotemporal data should con-
sider the crucial aspects and issues in IoT domain, such
as limited battery life of sensors. With limited bat-
tery life, sensors would not be able to do extensive
processing. Therefore, it is important to minimize the
query processing time and communication among sen-
sors and the server. The primary focus of this paper

Fig. 2. Query model.

Fig. 3. Spatial applications.

is therefore on query processing and indexing of spa-
tiotemporal data generated by sensors distributed in the
environment. Indexing is essential to minimize the pro-
cessing costs in platform layer of IoT. The upcoming
sections introduce the domain of spatial query process-
ing and indexing and major concepts and applications
involved in it.

2.1. Spatial applications

A vast amount of spatiotemporal data is collected
in various applications in the domain of transportation,
neuroscience, agriculture, military, healthcare, and en-
vironmental science. The motivation for analysis of
data involving moving objects in various application
domains have been described in this section. Figure 3
illustrates some common spatial applications.

Transportation: Taxi pick and drop applications
have been used increasingly across the world. Nearby
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taxis can be found by employing spatial query process-
ing techniques.

Neuroscience: Temporal neural activities occurring
in brain can be analyzed to understand the principles of
brain and identify the mental disorders that made dis-
ruption to the normal working behavior of brain. This
will help in diagnosis of various neural problems and
devise therapeutic plans for patients.

Agriculture: Remote-sensing images of agricultural
area taken at regular timestamps can help in analyzing
the relationships between various factors such as ap-
plication of fertilizer, planting procedure, and quantity
of weeds. This will help to devise strategies to increase
crop yield.

Military: In the domain of military, there are many
applications involving spatiotemporal data. One such
application is to find the shortest route for supplying
food and weapons to the militants. Health care. Tem-
poral data related to diagnosis made to patients and en-
vironmental features can be analyzed to discover pat-
terns and spread of epidemic. Effective strategies can
be developed for the well-being of humans.

Environmental science: The spatiotemporal data re-
garding atmosphere such as pressure, humidity, and
temperature can be analyzed to identify important pat-
terns and devise mitigation strategies for adverse sce-
narios that might occur in future. For example, the pre-
diction about flow of wind or tornado can be made be-
fore the calamity happens in actual. In addition to this,
various sensors can be employed in air and water that
record data related to particles, ozone, oxygen, and car-
bon dioxide. This data can be utilized in measuring the
quality of air and water in terms of level of pollution
calculated using the data from sensors.

2.2. Spatial query processing and indexing

Spatial point is represented with the help of two co-
ordinates, longitude and latitude. Spatiotemporal data
is a spatial data with an additional temporal attribute
to define the evolution of object over some period of
time. Spatial query extracts the information about the
spatial objects present in our environment. Broadly, we
can group the spatial queries into three categories, as
illustrated in Table 1 that briefly describes each cate-
gory along with an example query.

The structure of spatial data makes it difficult to
be processed by traditional data processing methods.
Traditional data model such as relational data model
suits in scenarios when the schema and structure of
data is fixed and the data is one-dimensional. How-

Table 1

Categories of spatial queries

Description Example

Distance query Deals with distances
among spatial objects
and their geometries.
For example, inside,
overlap, encloses,
disjoint operations.

Do the two lakes A and
B overlap with each
other?

Direction query Deals with orientation
of spatial objects. For
example, top, bottom,
left, right operations.

Which houses are
north of 30 degrees
longitude?

Topological query Deals with relationship
between geometries of
spatial objects. For
example, range,
nearest neighbor
queries.

Find the three most
nearest hospitals to
patient’s location.

ever, spatiotemporal data is multi-dimensional in na-
ture that makes it difficult to apply traditional tech-
niques to process it. This is because the structure and
nature of spatiotemporal data introduce a number of
challenges from processing and management perspec-
tive. One such challenge is reduction of continuous up-
dates.

The eminence of big spatial data has made the man-
agement and processing of spatial data, a pervasive
component for research. The massive data generated
by majority of the GIS applications need an efficient
spatial query techniques to keep the response time low.
Moreover, the overhead of huge number of update op-
erations performed to track the up to date spatial loca-
tion of moving objects must be decreased.

Indexing methods aim at minimizing the cost of
searching large number of spatial objects and improv-
ing the response time of queries. Traditionally, index-
ing has been used to deal with one-dimensional data.
These one-dimensional indices cannot be used in spa-
tial data processing. This is because the structure and
nature of spatial data introduce a number of challenges
from processing and management perspective. As the
data related to moving objects has multiple dimen-
sions, therefore typical one-dimensional indices that
are created based on a single dimensional value such
as ‘salary’, cannot handle multi-dimensional values.
Therefore, to deal with spatial data, indices must be
designed considering the multi-dimensional nature of
spatial data. Further, unlike static spatial data, the man-
agement and processing of data with dynamic nature
(moving objects) needs special consideration. As the
moving objects continuously change their position at
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each time instant, therefore constant updates to index-
ing structure are required that highly degrades the per-
formance of an application.

2.3. Categorization of spatial indices

Primarily, there are two sub branches of spatial in-
dexing methods: space driven and data driven. In space
driven structures, spatial objects present in a 2D space
are divided into a rectangular grid of cells. Geometric
criterion is used as a basis for mapping the spatial ob-
jects to cells. Fixed grid had been proposed as a ba-
sic space driven structure. It partitions the space into a
fixed number of equal sized cells with each cell depict-
ing a secondary storage block. This structure cannot
handle skewed data well due to its static data distribu-
tion. Therefore, many variations of space driven struc-
tures have been proposed to overcome the limitations
of basic fixed grid structure. Quadtree, grid file, k-d
tree, and various space filling curve techniques have
been proposed such as z-order curve, Peano curve, and
Hilbert curve. Space filling curves transform a spatial
proximity problem from a higher dimensional space
to one dimensional space. In contrast to space driven
structures, data driven structures are focused on the
distribution of spatial objects rather than partitioning
of space. R-tree is a data driven structure proposed to
handle the indexing of multi-dimensional data. It is a
tree based structure that works on the concept of min-
imum bounding rectangles (MBRs) that hold a group
of spatial objects. Leaf node of a tree holds MBR and
an object’s identifier. It has several limitations such as
high overlap among MBRs resulting in high response
time of a query. To address these limitations, several
variations of R-tree have been proposed in the litera-
ture such as R+ Tree, parametric R-tree, FNR R-tree,
and X-tree.

With regard to timeline, the indexing of spatiotem-
poral data can be categorized into three groups. These
are: indexing with past spatial locations, indexing with
current spatial locations and indexing with future spa-
tial locations. Brief description and distribution of lit-
erature with regard to this grouping is defined in Ta-
ble 2.

2.4. Spatial indices for moving objects

The continuously changing data related to mov-
ing objects cannot be managed well using traditional
database management systems. In traditional relational
databases, the data remains unchanged otherwise un-

Table 2

Categories of spatial indices

State-of-the-art indices

Past spatial
locations

MV3R-tree [206], Muti-level index [29], Unified
spatiotemporal index [209], Trajectory-Bundle tree
and Spatiotemporal R-tree [163], Fixed Network
R-tree [53], MON-tree [37], Historical R-trees
[207], Robust index for spatiotemporal archive [64],
PA-tree [143], Graph Strip Tree [105], Compressed
Start-End Tree [218]

Current spatial
locations

LU-Grid [231], RUM-tree [188], Fast indexing
scheme [94]

Future spatial
locations

Short lived throw away index [41], Dynamic
external memory based index [98], Native space
indexing and parametric space indexing [165], Time
parameterized R-tree [177], Parametric R-tree [15],
Adaptive network R-tree [26]

less explicitly updated. For example, if the value in
employee’s age field is 25 then the database will re-
tain this value unless it is explicitly updated. In case of
moving objects such as cars, the positional information
needs to be updated continuously. Otherwise, this can
result in outdated query results. Continuously updat-
ing the information results in high performance over-
head. Frequent updates cannot be afforded in many
real life scenarios. For example, in wireless networks
domain, excessive bandwidth will be consumed due
to frequent updates. Tracking large number of objects
(e.g. millions of cars in a city) becomes a challenge
due to frequent update issue. The indexing of moving
objects is more challenging due to the overhead of re-
peatedly updating the index structure in case of loca-
tion updates. This must be addressed in the design of
index to gain performance benefits. Sampling the po-
sition of moving object along its trajectory emerged
as a traditional way of representing moving objects
in indices. One of the earliest research contributions
in this regard is presented in [140]. The sampled ob-
ject location is indexed using an R-tree index. Fol-
lowing it, a few efforts [163,206] are made to up-
date the existing spatial indices to make them han-
dle moving objects. The sampling methods have an
overhead of frequent location updates resulting in an
overhead of high workload on the system. To over-
come this, significant number of efforts are done that
model the moving objects using linear functions of
time and velocity [9,34,77,156,190,235], and [98]. In
this scenario, location update is required only when
the velocity of an object changes. This minimizes the
number of updates to some extent. The existing stud-
ies focused on making predictions during query pro-
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Table 3

Possibilities in movement

Moving data
objects and
Moving query

“police van patrolling to search for near by bus”
– Data object (bus)
– Query (van)

Static data
objects and
moving query

“Which hotel is closest to a taxi?”
– Data object (hotel)
– Query (taxi)

Moving data
objects and
Static query

“retrieve all the airplanes that will come within 30
miles of the airport in the next 10 minutes”
– Data object (airplanes)
– Query (airport)

cessing suffer from performance and functional defi-
ciencies. Most of the research works [71,205,217,245]
have considered movement of objects in Euclidean
space. However, in realistic scenarios such as road net-
works, we have to deal with network distances. Many
solutions involve prediction models that need to be
trained on massive amount of data in the form of tra-
jectories to produce accurate and realistic predictions
[8,8,71,81,89,198,205,217,245], and [208]. But, his-
torical data is not available due to privacy concerns.

Movement possibilities for indexing moving objects:
The continuous spatial query processing systems use
a client-server paradigm, consisting of data and query
objects. The query objects initiate the query about data
objects. There are three possibilities of movement of
objects as illustrated in Table 3. These objects share
their updated location and query to the server. The
server maintains the moving objects and process the
initiated queries.

3. Landscape of solutions

Recently, the attention of research community has
been directed towards integration of spatiotemporal lo-
cations and sensor data. The research works related
to Geo-IoT integration can be categorizes into five
groups: edge computing, device integration, data ac-
quisition and management, service provider, and appli-
cation related solutions. Recently, a short survey based
on this classification has been presented in [96]. The
focus of this paper is primarily on indexing of spa-
tiotemporal data generated by IoT devices. It should
be noted that existing surveys that have discussed data
management issues in Geo-IoT integration have not
considered spatiotemporal query processing and in-
dexing data aspects. Therefore, it is vital to have a
study in place that explores this domain and its chal-

lenges. In this paper, we extensively reviewed the do-
main of spatiotemporal data indexing (also known as
moving objects indexing, interchangeably).

The problem of spatial query processing and man-
agement has gained huge attention in recent times. In
this section, an overview of whole literature in the
light of spatial query processing and management is
presented. Some recent solutions have also been dis-
cussed briefly. A qualitative comparison of these solu-
tions with regard to design considerations will be pre-
sented in the next section.

A thorough study of domain is carried out. There
are approximately up to 250 research works that con-
tributed in spatial indexing. The main challenges iden-
tified in spatial querying of moving objects include
maintaining consistency, enhancing performance, and
reducing updates. These will be discussed in detail
later. The research works on spatial indexing (for both
static and moving objects) starting from early 90s till
to date are explored. During exploration of research
works on spatial indexing, we focused on both data
processing and management aspects. After detailed
study, we identified three important concerns that are
relevant in spatial indexing. These are mobility of spa-
tial objects, multi-user environment, and massive data
processing. Mobility defines whether the spatial ob-
jects are moving or static. In real life applications, both
static and moving objects play an important role. Some
examples of static and moving objects in real life sce-
narios are defined in Table 3. Multi-user environment
is the second most important concern that must be
considered while designing an indexing solution. Real
life applications are usually designed not only for one
user, but for multiple users. Multiple users might ini-
tiate queries related to same data items/objects. Thus,
synchronization and scheduling of these concurrent
queries must be performed to report reliable results to
queries. If the scheduling is not performed then this
might result in inconsistent query results. Third impor-
tant factor is the scale of data to be processed. As dis-
cussed in the last section, applications in today’s era
generate huge volume of data that must be processed
quickly. Returning the results in timely manner is cru-
cial for many real life applications. For example, in
any disaster management application, the results must
be processed and disaster alarms must be disseminated
timely. Thus, these three characteristics or concerns
are quite important to consider for an indexing solu-
tion. We defined four features for review and catego-
rization of indexing solutions proposed in the litera-
ture. The research works have been grouped into four



N. Chaudhry et al. / Indexing of real time geospatial data by IoT enabled devices 287

Fig. 4. Categorization of literature.

categories: Concurrency control, distributed and par-
allel processing, pure moving objects indexing, and hy-
brid. The percentage of research contributions in the
literature regarding each category is shown in Fig. 4.

Table 4 provides a comparative view of literature in
the light of categories defined.

The concurrency control category encloses the re-
search works that have discussed concurrent multi-
user queries on spatial data. The distributed and par-
allel processing category discusses the research works
that are focused on processing of spatial data and
queries in distributed and parallel way. The pure mov-
ing objects indexing category encloses the research
works that are focused primarily on the indexing and
query processing of moving objects, i.e. spatiotempo-
ral data. The hybrid category encloses the research
works that are two or more of the above mentioned cat-
egories. Primarily, the works in this category consist
of survey and review papers, discussing the domain of
spatial query processing generally. The timeline view
of these research works with relevant categorization is
defined in Table 4. The timeline view of literature is
depicted in Fig. 5.

3.1. Concurrency control

The paper [88] addressed the issue of maintain-
ing high concurrency in multi-dimensional indices. A
new protocol is proposed to eliminate the overhead
of blocking during node splits. A top down index re-
gion modification approach is proposed that avoids
simultaneous locks on nodes at multiple levels. The
dataset for experimental evaluation includes multi-

dimensional feature vectors fetched from Corel Image
Collection. These feature vectors are indexed in R-tree.
The experiments are conducted on shared memory sys-
tem with multiple processors. Varying workloads for
insert and search operations are considered. Insert ra-
tio and disk access ratio is varied and response time of
the query is estimated. Scalability is also tested. Exper-
imental results indicate that the proposed scheme pro-
vides higher throughput than the state-of-the-art tech-
nique, CGist. It also scales well with the increase in
number of processors.

Node splits and MBR updates are the two major fac-
tors that increase the delay of search operations and de-
grade the concurrency of indices. To lessen the query
delay, an enhanced concurrency control scheme is pro-
posed in [195]. Latches are held only during physi-
cal node split. A partial lock coupling method is in-
troduced that enhances concurrency by allowing lock
coupling only for shrink MBR operations. MBR shrink
operations occur less frequently than expansion oper-
ations therefore the proposed solution is more effec-
tive in eliminating excessive query delay. For evalu-
ation of proposed method, comparison is made with
the existing link technique, CGIST. Dataset with 20 di-
mensional feature vectors is involved in comparison.
Parameters involved in experiments are throughput,
response time, varying database and node size, page
buffer size, number of dimensions and processes, and
the parameter k in kNN queries. The results indicate
that the proposed algorithm outperforms the existing
algorithms with regard to response time and through-
put and also scales well.

The thesis work [35] is focused on the design of
an effective concurrency control and indexing method
for spatial data. Both stationary and moving objects
are put into focus. The main contributions of this re-
search work are: 1) design of an efficient spatial index-
ing method with object clipping, ZR+-tree. It elimi-
nated the overlap problems in leaf nodes.; 2) concur-
rency control protocol for object clipping: GLIP; 3)
concurrency protocol for linear spatial access indices:
CLAM; 4) concurrent query processing for moving
spatial objects; 5) Disposable index for Moving Ob-
jects (DIME) that eliminates the need for expensive
delete operations. In evaluation, compaison of query
performance and throughput of ZR+-tree and state-
of-the art techniques, R+-tree and R-tree is carried
out. To evaluate proposed schemes for moving objects,
datasets are generated by Brinkhoff network based
moving objects generator. Three range queries related
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Table 4

Timeline view of the research articles reviewed

Year Concurrency control Distributed and parallel processing Pure moving objects indexing Hybrid

1990 Lock-based
concurrency control
technique for spatial
index [183]

– – Pessimistic and
optimistic
concurrency control
techniques discussion
[68]

1995 Locking technique
for R-trees [101]

– – –

1997 – Parallel algorithm for proximity joins [179] MOST (Moving objects spatiotemporal)
and FTL (Future temporal logic) data
models [190]

–

1998 – Parallel spatial join [259] Algorithm for processing FTL in MOST
[191] Path planning algorithm in presence
of obstacles [54]

–

1999 Taxonomy of data
model, query
language, and spatial
index [181]

Algorithms for rectangular partitioning
[138] Parallel proximity join [3] Parallel
spatial join using R-tree [137] Parallel
R-tree search algorithm [215]

Discussion of nearest neighbor query in
mobile environment [99] Generic index for
spatiotemporal data [171] Access structures
and their evaluation [141] indices for
moving objects [47,98]

–

2000 Data consistency in
spatial databases
[261]

Spatial joins [93,113,157] [200] Data model of moving points and moving
regions [62] Data modeling and
management survey [221] Moving objects
indices [15,163]

Scalable continuous
query system [23]

2001 – Processing queries in broadcasted spatial
indices [66]

Logical concepts and queries in the context
of moving objects [197] Model and
language for road network [213] Querying
mobile objects [165,196,250] [14]

–

2002 Extensible index [7]
Non-blocking index
using node-splits [88]

Parallel spatial join algorithm [87] Indexing trajectories [148,161] Duality
transform based indexing [149] Moving
objects indexing and querying
[2,9,63,72,79,84,103,104,175,176,211],
and [167]

–

2003 – Distributed index (DIFS) [61] Range and nearest neighbor queries on
moving onjects [1,39,53,76,151,162,164,
169,180,210,233], and [227]

–

2004 Partial lock coupling
[195]

Parallel partitioning and join processing
[228] Query routing [262] Virtual memory
aggregation technique [60]

Adaptive cell based queries on moving
objects [32] Nearest neighbor and range
query processing
[13,58,85,94,97,111,159,205,224]
STRIPES index [156] Modeling moving
regions [12] Scalable incremental
processing [132]

Query processing and
indices [57,77], and
[16]

2005 – Fully distributed spatial index [108] Load
distribution in query processing [109,229]

Moving objects indices for past, current,
and future locations
[37,73,115,118,139,230,237], and [133]

2006 – Fully distributed spatial index [46]
Distributed spatial clustering Route
determination using trajectories [128]

[20,130] Indexing past and future locations
[25,160] Update tolerant grid based index
[231] Motion adaptive index [59] Robust
B+tree based index [80] Skyline query
processing [75] Reverse nearest neighbor
query processing [10]

[136] Cluster based
algorithm fr spatial
query processing
[142] Distributed
range query [217]

2007 – Hilbert curve based data partitioning [129]
Distributed quadtree based indexing [204]

Indexing future trajectories [26] Geometric
and probabilistic approach for indexing
[192] Exclusive closest pairs in query
processing [126] Distributed and
continuous query processing [106,150]

[121,225]
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Table 4

(Continued)

Year Concurrency control Distributed and parallel processing Pure moving objects indexing Hybrid

2008 Concurrency control
protocol for clipping
index [120]

Grid based spatial index [48] Spatiotemporal indices and query
processing algorithms [40,49,235,246], and
[30]

Reducing
communication cost
in distributed query
processing [116]
Online scalable query
execution [131]

2009 – Parallel spatial join [248] Distributed index
for error prone data broadcast [251]

Euclidean restriction based nearest
neighboring algorithm [38] Throw away
index [41] Indexing trajectories and
locations [24,74,78,158,186,212,244], and
[135]

Concurrent
operations in spatial
query processing [35]

2010 – Parallel index based of GPGPU [243] Index
using Hadoop based file system [112]

Trajectory and location based query
processing and indexing [19]

[155,199]

2011 – – Spatial keyword based query processing
[222] Thread level indexing [185]
Trajectory based nearest neighbor query
[201] Probabilistic count queries [51]
Shooting of index images [42] Moving
objects query processing [216]

[117]

2012 – CudaGIS [241] Parallel kNN join [239]
Distributed framework for query processing
[189] Spatial partitioning [52,82,145]

Spatial keyword queries [18,172]
Intersection join queries [247] Predictive
and partial history based querying [50]
Moving objects querying algorithm and
index [4]

[256]

2013 – Parallel spatial mashup [240] Quadtree
construction using GPGPU [242]

Activity trajectories [253] Spatial keyword
based queries [28] Moving objects indices
[178] [5]

–

2014 – Large scale parallel query processing [122]
Skew resistant spatial join [170] Data
partitioning framework [214] Data access
methods for spatial query processing [152]

– Trajectories based
indexing [90]

2015 – Bitmap indexing [184] Polygon overlay
processing [168] Spatial Hadoop [44]

Keyword query processing [27,56]
[220,254] Reverse nearest neighbor queries
[22] Predictive index [70]

Scalable spatial
search [153,238]

2016 Concurrent Quadtree
[258]

Data management on distributed and
parallel platforms [236] In memory data
management sing locationSpark [202]
Spatial query based virtual reality analysis
platforms [219]

Keyword aware kNN query [252]
In-memory kNN query [17]

–

2017 Concurrent spatial
operations [36]

Big spatial data processing framework
[6,65] selectivity estimation [21] Parallel
map projection [203] Spatial index for
cloud [86] Cumulative sum algorithm [127]

kNN search with road network constraints
[182] Neural network based algorithm for
spatial predictions [223] Indexing
trajectories [232]

Constellation query
processing [91]
Speculative real time
concurrency
algorithm [67]

2018 GPU based index
[146]

Parallel algorithm involving polygon
intersections [257] Point pattern search
[166] Priority R-tree algorithm [43] Index
for timeline similarity [69] RDF query
processing [144] Batch processing of
spatial queries [33]

Throughput optimized adaptive index [124]
GPU accelerated index [110] Road aware
moving objects mapping [249] Case study
on spatial database techniques [134] Range
queries [31,173,174,260], and [123]

[55,234], and [147]

to bicycles, vehicles, and pedestrians are defined for

moving objects. Throughput and mobility is evaluated.

Correctness analysis of concurrency control protocol

is also performed. Findings indicate that proposed pro-

tocols provide better results as compared to existing

solutions.
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Fig. 5. Timeline view of the research articles reviewed.

In [101], a concurrency control mechanism for
R-tree is proposed that is capable to store multi-
dimensional spatial data. R-link tree (a variant of
R-tree) is implemented and its comparison is per-
formed with R-tree. Illustra database engine is de-
ployed with multiple users sending requests concur-
rently to a database server. Each client process has
its own server in Illustra architecture. To evaluate the
performance of proposed protocol, two dimensional
dataset with 30600 non-overlapping rectangles is con-
sidered. Throughput and response time for insert and
search operation is evaluated that indicates that the
proposed solution outperforms the existing R-tree in-
dex.

In [258], a non-blocking scalable concurrent spatial
index is proposed. A decoupling approach for struc-
tural adjustment is presented that isolates logical re-
moval and physical adjustment of nodes. The proto-
col is theoretically evaluated using lemmas and cor-
rectness proofs. Experiments are conducted on a sin-
gle machine with hyper threading. State-of-the-art so-
lutions: ctrie, kary, and patricia are involved in com-
parative analysis. Two dimensional and uniformly dis-
tributed point objects dataset is used in experimenta-
tion. Performance in terms of throughput is evaluated
for both high and low contention scenarios. The results
indicate that the proposed index is better in terms of
throughput than the existing solutions.

3.2. Distributed and parallel processing

In [95], a novel GPU and tree based parallel index:
G-tree is proposed that overcome the issue of curse of
dimensionality. Existing tree-based methods conven-
tionally use stacks and queues to handle results with
GPUs. G-tree uses a novel data structure: structure of

arrays for traversals. Breadth first search based traver-
sals are employed instead of depth first search based
traversals that resulted in maximization of parallelism
over indexing nodes. G-tree use a selective dimension-
ality filtering approach in which few dimensions out
of total number of dimensions are extracted to work
on. The extracted set of dimensions are processed on
GPUs in a parallel way. The time complexity of a
proposed index on range query is theoretically evalu-
ated. Dataset of size up to 9.6 Gb is involved in ex-
periments. Two types of datasets are considered. One
dataset is real world dataset involving SURF features
with skewed distribution. The other one is a synthetic
dataset uniformly generated with dimensionality of up
to 256. Experimental results indicate that the perfor-
mance of the parallel index proposed in this research
work is better than the state-of-the-art indexing meth-
ods for multi-dimensional data.

The paper [92] proposed a tree based index focussed
on both CPU and GPU architectures. CPU is involved
in navigation of internal nodes of a tree. Navigation
of leaf nodes is performed by GPUs in a linear way
utilizing large number of processing units. Host mem-
ory of CPU and device memory of GPU is utilized in
storing internal and leaf nodes. Various opportunities
and guidelines for making balance of the workload be-
tween CPU and GPU architectures and co-processing
of queries by both the architectures are studied. Three-
dimensional point datasets are taken from National
Climate Data Center. The datasets have two dimen-
sional longitude and latitude points along with time
and number of sensor values such as wind speed, tem-
perature, and precipitation. Various parameters are in-
volved experimental evaluation. These are amount of
memory assessed, scan size, average query response
time, number of GPU blocks, speed up, average count
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of conditional instructions with respect to each query,
load throughput, number of concurrent queries, query
execution time, selection ratio, and number of GPU
blocks. The results indicate that the proposed hybrid
index provides 12× faster response time for queries as
compared to the existing algorithms for traversals.

The paper [116] proposed two different indexing
schemes to deal with high communication cost prob-
lem in moving object querying. Hybrid distributed so-
lution involving both on-demand and broadcast op-
erations helps in effective querying of moving ob-
jects. The server broadcasts the query information re-
peatedly. Grid of cells are used to represent object
movement. During the movement, spatial object down-
loads the query related information by tuning to broad-
cast channel without interrupting the server for infor-
mation. Simulator is designed in Java for evaluating
the proposed solution. Parameters varied in simulation
are packet size, cell size, and number of objects and
queries. Comparison is performed with MobiEyes. The
results show that the proposed solution saves 30%–
60% of the communication cost.

Two designs of indices: two level hierarchical in-
dex and centralized global index are proposed in [139].
To enhance the scalability, replication protocol is pro-
posed for both the index designs. The proposed index
extends GMIL to distributed storage. In the proposed
scheme, local index is held by each data server. Global
index holds MBRS of root nodes and decides about the
traversal of local index. To evaluate the two proposed
schemes, dataset with three dimensional satellite im-
ages of size 30 GB is considered. Storage Resource
Broker (SRB) is used to implement distributed index-
ing schemes. The results indicate that centralized in-
dexing scheme introduces scalability issues for insert
and search operations. On the other hand, two level hi-
erarchical index allows better scalability. Replication,
however makes centralized scheme faster than the two
level hierarchical scheme.

3.3. Pure moving objects indexing

An efficient range query processing method is pro-
posed in [147] for moving objects. The aim is to min-
imize the computation and communication cost. Mov-
ing objects change their location dynamically, server
must be contacted which increases the communication
cost. Existing methods use a concept of safe region
which ensures that moving object affect the result of
query only if it is moving within it. Design of safe re-
gion is another challenging task. To avoid this, pruning

rules are introduced in this research work. A spatial in-
dex: partition retrieved list is proposed that helps in ef-
ficiently constructing safe region. Dataset considered
for performance evaluation consists of 100K moving
objects in LosAngeles. The results show that the com-
putation and communication cost of the proposed so-
lution is low.

The research work [103] proposed an R-tree based
index: LUR-tree to deal with moving objects. It re-
duces unnecessary update operations by ensuring that
index gets updated only if the object leaves its cor-
responding MBR. A sample application of automo-
bile tracking is considered. To evaluate the perfor-
mance of proposed index, its performance for update
and search operation is compared with R∗-tree on the
basis of number of page accesses. Spatiotemporal data
is considered for performance evaluation. The datasets
are synthetically generated with uniform and Gaus-
sian distribution. Update query, kNN query, and range
search query performance is evaluated. LUR-tree is
better in terms of its update performance than R∗-tree.
Whereas, R∗-tree is better with respect to its search
performance.

The paper [175] proposed an efficient R∗-tree based
indexing method to deal with moving objects. With re-
spect to continuous object movement indexing, there
are two scenarios. One is to index positions of objects
in future and the other one is to index the history of ob-
ject’s movement. Primary focus is on indexing the fu-
ture movements of objects and making future predic-
tions. Timeslice and window queries are discussed. A
skewed 2D data is simulated using a workload gener-
ation script Generalized Search Tree Package (GiST).
Number of destinations, number of data points, update
interval length, querying window size, are query size
are considered as workload parameters in simulation.

A hybrid solution is proposed in [117] that can re-
duce the communication cost incurred during location
updates. Two different index structures are proposed,
Grid and direction index. Grid of cells is labeled us-
ing Hilbert curve. The processing if a query is dis-
tributed among moving objects. When a query arrives,
the server finds the monitoring region for it. It then up-
dates the relevant data bucket. The server then com-
municates new monitoring region for this query with
the resident objects of an old monitoring region. The
proposed index is compared with MobiEyes. The find-
ings indicate that the access time grows linearly with
the increase in number of objects.

In [37], a new indexing scheme: MON-tree for mov-
ing objects is proposed. Two models of network: edge
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oriented and route oriented are used. MON-Tree deals
with storage and retrieval of past states of moving ob-
jects. The index structure is focused on polyline based
bounding boxes and movements of objects along them.
The bounding boxes make the top of R-tree whereas
indexing of movements is performed at the bottom part
of the R-tree. The proposed index overcome the prob-
lem of high dead space in polyline MBBs. A hash
structure is used at the top level of R-tree consisting of
identifier for polyline and a pointer for the bottom part
of the tree. While inserting an object, polyline identifi-
cation is used to fetch the bottom R-tree. MBB approx-
imations are utilized in indexing polylines. The bottom
part of R-tree stores movement of object represented
by a position and time interval. To experimentally
evaluate MON-Tree, network based moving objects
generator is used consisting of road network of Ger-
many. Dataset contains three models: edge, segment,
and route. The comparison is made among the pro-
posed MON-Tree (edge and route model) and FNR-
tree. Number of disk accesses are estimated with vary-
ing page size, window size, time interval size, speed,
number of objects. As per the results, MON-Tree has
shown good performance and scalability.

The paper [163] introduces two access structures,
TB-tree and STR-tree. The movement of an object
is depicted with a polyline representing its trajec-
tory. Two types of spatiotemporal queries are involved
in study. These are coordinate and trajectory based
queries. The proposed technique overcome the limita-
tion of high overlaps in R-tree. In addition to spatial
closeness in R-tree, STR-tree allows trajectory preser-
vation. That is, line segments that belong to same tra-
jectory are kept together. TB-tree preserves trajecto-
ries in more strict manner than STR-tree. It bundles
up the geometries to trajectory bundle. This trajec-
tory preservance introduces an overhead of minimized
spatial discrimination. Combined query processing in-
volving STR-tree and TB-tree is also discussed. Syn-
thetic datasets of line segments are generated using
GSTD generator. Comparison of STR-tree and TB-tree
is done with R-tree. TB-tree proved out to be more ef-
ficient in dealing with trajectory-based queries.

In [226], a tree-based index named as Q+R-tree is
proposed for indexing moving objects. It is a combi-
nation of Quadtree and R∗-tree. The aim is to mini-
mize the cost for update operation. Two types of object
movements: fast movement and quasi-static is consid-
ered. Quasi-static is defined as a state in which ob-
ject is neither static nor moving fast. The performance
degradation happens mainly due to fast moving ob-

jects. Quasi-static and fast moving objects are indexed
on R∗-tree and Quadtree respectively. Quadtree is bet-
ter in terms of update performance as compared to
R∗-tree. On the other hand, R∗-tree has better query
performance than Quadtree. The combination of these
two approaches helps in an efficient indexing. Datasets
with moving objects ranging from 100K to 1M are
generated for experimentation. Comparison of R-tree,
Quadtree, and proposed index is done with respect to
insert and search time. Q+R-tree has shown best per-
formance among the rest of the indices.

The paper [77] designed a an indexing scheme:
B+tree to index moving objects efficiently. Lineariza-
tion of moving objects’ locations is performed by
using space filling curve technique. Subsequently,
B+tree indexing is performed. Partitioning of index
is done on the basis of update time. Time axis is di-
vided into intervals whose duration is approximated
with maximum duration between the two update op-
erations. The update operation is located in a parti-
tion defined by a timestamp of a phase during which
it occurred. Efficient algorithms for range and KNN
queries are defined and discussed. Two versions of in-
dex are implemented. One with Z-curve as a space
filling technique and other using H-curve. Dataset of
moving objects is synthetically generated. Page size,
node capacity, maximum update and predictive inter-
val, query window size, dataset size, k for KNN, and
number of queries are used as parameters in experi-
mental evaluation. Storage efficiency is also evaluated.
The results indicate that proposed index outperformed
the rest of the indices. The effects of concurrent ac-
cess are also estimated. Multi-user environment is sim-
ulated by multi-thread programs varying from 1 to 8.
Throughput and response time is evaluated. The re-
sults indicate that proposed index is more effective as
compared to existing index, TPR tree.

In on-demand querying method, client sends their
location to server that processes the query and sends
the results back to client. If there are large num-
ber of simultaneous queries, then service delays are
introduced. On-demand environments face a chal-
lenge of congestion on server for complicated queries
with moving objects. Distributed indices involving
client/server model have several limitations such as
compromise on privacy, server dependency, and in-
sufficient support for moving objects. In [153], an
indexing algorithm is proposed for moving objects
in a broadcast environment. It processes queries effi-
ciently by using grid cells. An energy efficient query
processing algorithm is also proposed. Cost model is
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presented and simulation based experiments are per-
formed to evaluate the proposed solution. The com-
parison is made with Hilbert-curve index. Access and
tuning time is involved in comparison. Dataset consist-
ing of 39231 MBRs of Montgomery Country Roads is
considered. The results indicate that the proposed al-
gorithm scales well for kNN and range queries and is
also energy efficient.

In [17], a scalable kNN query processing technique
is proposed that is based on in-memory structure. The
focus is on road network with moving objects. R-tree
is used to store road network topology. Grid model
manages the movement of objects. In kNN, proposed
technique: SIMkNN incrementally expands the search
region based on distance based evaluation of nearest
neighbors. Real and synthetic datasets are involved in
experiments. Road network of CA, Los Angles, and
USA with 193320 nodes and 264521 edges is taken as
real dataset. Moving objects on a network of road are
synthetically generated using Brinkhoff road network
generator. Overall, simulation of 1 million moving ob-
jects is performed. Average performance on random
queries is reported. Memory usage, estimation time,
I/O count, update time, and response time is evaluated.
Results show that SIMkNN performs better in terms of
memory and time efficiency as compared with baseline
algorithm, MOVNet and IER-PHL.

3.4. Hybrid

[173] addressed the indexing issue with moving ob-
jects for KNN and range queries. The authors proposed
a hybrid index based on both grid and R-tree based in-
dex structures to provide better performance on search,
insert, and update operations. The proposed technique
is scalable and robust. R-tree is used at root node and
grid based index is used at leaf nodes to aggregate
the benefits of the two indexing schemes. R-tree is
beneficial for search operations whereas uniform grid
based indices are efficient in processing update oper-
ations. To experimentally evaluate the effectiveness of
the proposed index, comparison is made with R-tree
and U-Grid based indices. The comparison is based on
the response time of each of the indices with KNN and
range based queries. CPU time utilized in update op-
eration is also taken into consideration. Bucket size,
node size, grid cell length, number of objects, and per-
centage of selectivity area is varied and the effect is an-
alyzed. Datasets generated by Open source moving ob-
ject trace generator (MOTO) are used in experiments.

Findings indicate that the proposed solution is scalable
with respect to varying number of moving objects.

In [146], authors proposed a GPU based parallel
indexing scheme: G-PICS that supports concurrent
query processing. The queries are grouped and as-
signed to a thread. G-PICS supports range query, point
query, within-distance query, kNN query, and spatial
joins. The performance is evaluated on two types of
datasets: real and synthetic with 9.5 million data points
each. Real dataset constitutes of molecular simulation
of lipid bi-layer system. The data points in real dataset
are uniformly distributed whereas synthetic data gen-
erated by Zipf distribution is highly skewed. The pa-
rameters involved in experimentation include speedup,
processing time for range query, and percentage of
moving data points. As per the results, the proposed
scheme makes good use of resources of GPU by pro-
cessing large datasets.

The paper [7] proposed an extensible index: SP-
GIST supporting space partitioning trees. Space par-
titioning trees is a class of data structures that hi-
erarchically divide the search space to disjoint por-
tions. With one framework dealing with variety of tree
structures is attractive from the database design view
point. In this paper [7], common characteristics of
spatial space partitioning tree based indices are stud-
ied to develop a framework that can represent vari-
ous tree based structures and eradicate the complexi-
ties that hinder the adoption of such tree based struc-
tures in database engines. To enhance query perfor-
mance, interface method named as Cluster is proposed.
Three clustering algorithms are presented: fill factor
clustering, deep clustering, and breadth clustering. To
evaluate the proposed framework, extensions of PR
quadtree, MX quadtree, Patricia trie, and trie are im-
plemented. Results indicate that applying clustering
techniques help in reducing the number of pages ac-
cessed.

In [154], authors proposed a quadtree based in-
dex that expresses location of each object as a se-
quence of bits. It uses a grid based hierarchical di-
vision of quadrant. Location of each object is repre-
sented with point of interest. Both kNN and range
based search algorithms have also been presented. The
proposed index is evaluated with both real and syn-
thetic datasets. Real dataset consisting of around 39K
data objects represented with MBRs is considered. Ac-
cess and tuning time is evaluated by varying the size
of data. The proposed index is compared with Hilbert
curve based distributed spatial index and exponential
sequence scheme. It is found that proposed binary in-
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dex has fastest access time. Hilbert curve based dis-
tributed index performed worst among all.

The research works related to moving objects in-
dexing differ from one another on the basis of type of
index used (data structure followed in index design),
dataset considered (real dataset/simulated workload),
and mobility pattern followed. Table 5 provides a com-
parative view of solutions in the literature regarding
moving objects indexing with regard to features: index
type, dataset involved in evaluation of proposed index,
and movement type supported by each solution.

3.5. Discussion

In view of the above discussed literature, we have
identified some research gaps and challenges in the de-
sign of index for moving objects. The challenges are
discussed in detail later in the next section. First, it can
be seen that both the spatial and spatiotemporal data
have been explored well for indexing. However, these
research works have not considered the read/write con-
currency conflicts in detail. The effect of multi-user
environment and concurrent read/write requests has
been studied very briefly. Some research studies that
have considered this consistency aspect have used lock
based concurrency control schemes, that have an over-
head of high latency due to locks. Especially, in case
of moving objects, consistency is very critical to main-
tain because the objects continuously update their lo-
cations and proper scheduling of read/write operations
is mandatory. Otherwise, inconsistent and outdated re-
sults might be reported. Most of the concurrency con-
trol protocols in the literature have been designed for
static data, typically based on a flat transaction model
of a relational database. The protocols proposed for
conflict resolution (which is a core component in con-
currency control solutions) can be divided into four
categories: Pessimistic techniques (2PL) with variants,
Optimistic concurrency control techniques with vari-
ants, hybrid of 1) and 2), and multi-versioning. Each of
these categories has its own pros and cons. Pessimistic
techniques have an issue of cascade of blocking and
deadlocks. Optimistic concurrency control techniques
overcome these issues but have a serious issue of re-
source wastage. Multi-versioning techniques do not
seem fit for long running transactions such as spatial
range queries as it results in an overhead of excessive
versions. The management of large number of versions
is a very challenging task. Therefore, the only feasi-
ble solution will be to have a hybrid solution of 1)
and 2), covering positive aspects of these techniques.

Second, mostly, tree-based indices have been used in
which MBRs are used enclose moving objects. Over-
lapping in these indices has been identified as a very
serious issue that can have a negative impact on con-
sistency and performance. Due to overlapping, a single
search or update operation might need to traverse mul-
tiple nodes of a tree, thus degrading the overall perfor-
mance. Third, the amount of updates that must be per-
formed as a result of change in object’s location must
be reduced. In that case, previous obsolete location
must be updated with the up to date location. Forth, it
is important to note that majority of the contributions
in the literature considered only small or medium sized
datasets with few million data points only. However,
most of the applications in today’s era have to deal
with huge volume of data. Further, majority of the pro-
posed indices have been evaluated on a single machine
architecture. Evaluation in distributed environment is
necessary to test scalability of indices. Fifth, in terms
of data structure used in indexing, trees and grids have
been used in the literature. Both these structures have
their own pros and cons. The primary issue with tree
based structures is the poor handling of updates. The
reasons include expensive operations of split and over-
lap. Grid based structures, on the other hand, is better
in terms of update performance. The idea of integrat-
ing these two data structures to implement the benefits
of both of these structures has recently got attention in
the literature. One such proposal is presented in [173],
in which a hybrid index consisting of both tree and grid
structures in its design is proposed. Tree based struc-
ture helps in achieving good search and query perfor-
mance whereas grid based structure supports efficient
updates. Sixth, the nature of movement considered in
moving objects indexing is a very important aspect to
consider. Many efficient solutions have been proposed
but they only support movement of one of the entities
(data object and query object) with the other one as-
sumed as static. These indices are feasible for appli-
cations that have either static data objects and mov-
ing query objects or static query objects and moving
data objects. Sample queries and applications of such
scenarios have already been discussed in 3. However,
many real life applications have dynamic data objects
and query objects. To deal with such applications, so-
lutions proposed in [59,132,135,230], and [175] can be
utilized.
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Table 5

Comparison of literature on moving objects query processing

Research work Year Spatial index type Dataset used Movement type supported

Static data
objects/moving query

Moving data
objects/moving query

[163] 2000 tree-based Synthetic datasets of line segments generated
using General Spatio-temporal data (GSTD)
generator.

Yes None

[84] 2002 grid-based Synthetic data generated with uniform, skewed,
and hyper skewed distribution

Yes None

[103] 2002 tree-based Synthetic datasets of points generated using
GSTD

Yes None

[175] 2008 tree-based Simulated objects using a workload generation
script Generalized Search Tree Package (GiST)

Yes Yes

[167] 2002 tree-based Synthetic dataset of points Yes None

[76] 2003 tree-based Simulated objects using a workload generation
script Generalized Search Tree Package (GiST)

Yes None

[169] 2003 tree-based Synthetic datasets based on Gauss distribution None Yes

[226] 2003 tree-based City Simulator, developed at IBM Almaden Yes None

[132] 2004 grid-based Brinkhoff network based moving objects
generator

Yes Yes

[77] 2004 tree-based Synthetic dataset of points Yes None

[73] 2005 tree-based Simulated dataset using discrete event-driven
simulator

Yes None

[133] 2005 grid-based Brinkhoff network based moving objects
generator

Yes None

[237] 2005 grid-based Synthetic dataset of points Yes None

[230] 2005 grid-based Brinkhoff network based moving objects
generator

Yes Yes

[37] 2005 tree-based Brinkhoff network based moving objects
generator

Yes None

[136] 2006 tree-based Brinkhoff network based moving objects
generator

Yes None

[75] 2006 grid-based Synthetic datasets involving spatial and
non-spatial attributes

Yes None

[10] 2006 tree-based Synthetic datasets of points generated using
GSTD

Yes None

[80] 2006 tree-based COST benchmark moving objects generator Yes None

[59] 2006 index structure
independent

Synthetic datasets Yes Yes

[231] 2006 grid-based Synthetic datasets of points generated using
GSTD

Yes None

[160] 2006 tree-based Brinkhoff network based moving objects
generator

Yes None

[150] 2007 tree-based and
grid-based

real spatial dataset of North America Yes None

[26] 2007 tree-based Brinkhoff network based moving objects
generator

Yes None

[225] 2007 grid-based Brinkhoff network based moving objects
generator

Yes None

[246] 2008 tree-based Synthetic datasets of points generated using
GSTD

Yes None

[131] 2008 grid-based Brinkhoff network based moving objects
generator

Yes None
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Table 5

(Continued)

Research work Year Spatial index type Dataset used Movement type supported

Static data
objects/moving query

Moving data
objects/moving query

[30] 2008 tree-based Synthetic datasets Yes None

[40] 2008 tree-based Real traffic network data of Beijing Yes None

[235] 2008 tree-based Synthetic datasets Yes None

[49] 2008 tree-based Brinkhoff network based moving objects
generator

Yes None

[212] 2009 tree-based Synthetic datasets of points generated using
GSTD

Yes None

[24] 2009 tree-based 1) Cellular automation (CA) simulator and 2)
Brinkhoff network based moving objects
generator

Yes None

[186] 2009 both tree-based
and grid-based

COST benchmark workloads Yes None

[244] 2009 tree-based Synthetic datasets Yes None

[74] 2009 algorithm
proposed

Synthetic datasets Yes None

[135] 2009 grid-based Synthetic datasets Yes Yes

[35] 2009 tree-based 1) Real dataset of California road network and 2)
Brinkhoff network generator

Yes None

[19] 2010 tree-based Brinkhoff network based moving objects
generator

Yes None

[216] 2011 tree-based Brinkhoff network based moving objects
generator

Yes None

[247] 2012 tree-based Synthetic datasets of points generated using
GSTD

Yes None

[5] 2013 tree-based Synthetic datasets Yes None

[238] 2015 grid-based Synthetic datasets Yes None

[70] 2015 tree-based Minnesota traffic generator Yes None

[232] 2018 tree-based Trajectory data from express road system Yes None

[174] 2018 grid-based 1) Check-in data from Yelp about Los Angeles
and 2) Brinkhoff network based moving objects
generator

Yes None

[260] 2018 tree-based Real and synthetic dataset from
“http://www.chorochronos.org”

Yes None

[173] 2018 hybrid index MOTO (Moving Object Trace generator) Yes None

[147] 2018 grid index dataset (keyword-based) from Yelp about Los
Angeles

Yes None

[31] 2018 tree-based Trajectory data from GeoLife Project Yes None

4. Challenges

Overall, five major challenges in continuous spatial

indexing are highlighted from the existing literature.

These are 1) maintaining consistency, 2) eliminating

phantom updates, 3) enhancing performance, 4) avoid-

ing overlap issue, and 5) reduction of updates. These

are discussed as under:

4.1. Maintaining consistency

There are multiple isolation levels in data manage-
ment systems to ensure isolated execution of simul-
taneous read/write. Serializable isolation level is the
most protective of all that provides high protection for
concurrent queries on one-dimensional data, but they
are not optimal for spatial indexing due to underlying
expensive locking techniques. Lock based concurrency
methods end up in either locking the resource for long,

http://www.chorochronos.org
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Fig. 6. Lock-based concurrency control in R-tree index.

or locking more resources than necessary. The lock-
able granules have a high overhead due to maintenance
of locks. The lock duration must be minimized to im-
prove the throughput. For example, consider the Fig. 6
in which objects are indexed by R-tree index. One so-
lution to ensure consistent results would be to have the
search and update windows place shared locks on leaf
nodes, A and B. As both the leaf nodes share the object
C, therefore another feasible solution would be to have
object level locking. This could result in huge number
of locks in case of high volume of data. For example,
if the search query has to return 1 billion objects as a
result, then it means 1 billion locks will be placed at
the search time. Thus, no efficient concurrency control
techniques exists to ensure serializable operations in
moving objects’ indexing.

4.2. Eliminating phantom updates

Phantom update is defined as an update opera-
tion occurring before the search operation commits,
thereby returning inconsistent results. Consider an ex-
ample of R-tree index in Fig. 7. A delete operation is
performed on data points covered by object C as spec-
ified by update window, U. Objects that should be re-
turned by search query window, S are C and E. How-
ever, as the delete is performed before the search com-
mits, the deleted object C is also returned as a result.
This update/delete operation is referred to as phantom
update. One solution to this problem is to lock the area
spanned by a update window U to stop search win-
dow from accessing the deleted object. In-existence of
proper concurrency control measures causes incorrect
results returned by a query due to phantom update is-
sue. Figure 8 considers a scenario in which inconsis-
tent results are returned by the query due to lack of
concurrency control mechanisms in place. A vehicle S
has to keep track of all the ambulances that are trav-
eling within 2 miles range. The query is evaluated at
two consecutive timestamps t1 and t2. Two ambulances
(ambulance A and ambulance B) are initially travel-
ing outside the query range of S. Ambulance A must

Fig. 7. Inconsistent results due to phantom update issue.

Fig. 8. Phantom update issue in querying of moving objects.

be returned as a result at timestamp t2 if everything
goes fine. However, if there are no concurrency con-
trol mechanisms adopted then this will lead towards
following scenarios exhibiting inconsistent results.

– Pseudo disappearance: The query returns null re-
sult if it is evaluated before ambulance A updates
its new location after deleting previous one.

– Back order: Back order is an issue in which obso-
lete results are returned by the query. In this case,
ambulance B or both ambulances A and B will be
returned as an answer to the query.

These inconsistencies can be avoided if a well-designed
concurrency control protocol is employed in query
processing engine.

4.3. Enhancing performance

Executing the results of a query in a parallel way
can certainly result into high performance gain. How-
ever, lock-based concurrency control algorithms intro-
duces difficulties to introduce parallelism in query so-
lution. The queries and location updates occurring at
the same time on the shared data item can give incon-
sistent results. With lock based concurrency control
mechanisms, query has to wait for the update operation
that holds an exclusive lock. This highly deteriorates
the parallelism. Moreover, a long running query on one
core introduces long idle period due to locks despite
the available resources on other cores of a CPU. As a
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result of this, workloads comprising of queries and up-
dates cannot scale well as the cores of a CPU will be
under-utilized.

4.4. Avoiding overlap issue

Overlapping is major concern in evaluating a query
performance in multi-dimensional index trees. Due to
overlapping, a point query might need to go through
multiple index tree’s branches if the point exists in an
overlapped area.

4.5. Reduction of updates

Unlike static spatial objects, moving objects must
have to update their old location with the new one. As
the moving objects continuously change their position
at each time instant, therefore constant updates are re-
quired to indexing structures that highly degrades the
performance of an application. To overcome this chal-
lenge, pruning rules and effective algorithms must be
designed that reduces the number of positional updates
relevant to a moving object.

5. Design considerations

In this section, some important considerations that
are relevant in the design of spatial index are discussed.
The comparative view of some recent and potential re-
search works related to indexing of spatial objects is
provided in Table 6. The comparison is made with re-
spect to some important design considerations. These
design consideration are identified by reviewing the lit-
erature and assessing the important aspects related to
management and processing of spatial data. We also
identified the aspects that are crucial to the workflow
of spatial query processing. After thorough analysis,
we identified some spatial index design considerations.
These design considerations have been discussed in
the next sub sections. The motivation for consider-
ing these design features is also discussed along with.
The relevant research works are also cited that discuss
the respective design feature and its significance. This
weighs the reliability of our feature selection and justi-
fies the need for considering these design features dur-
ing spatial index design. The comparative review helps
in identification of research gaps for doing research in
the domain of spatial indexing.

5.1. Concurrency control protocol used

As previously discussed, the read/write conflicts
must be resolved during spatial query processing to
obtain consistent results. The spatial index must have
concurrency control protocol embedded to ensure con-
sistency. The core aspect in concurrency control pro-
tocol’s design is conflict resolution. It can be divided
into four categories: Pessimistic techniques (2PL)
with variants, Optimistic concurrency control tech-
niques with variants, hybrid of 1) and 2), and multi-
versioning. Pessimistic techniques have an issue of
cascade of blocking and deadlocks. Optimistic con-
currency control techniques overcome these issues
but have a serious issue of resource wastage. Multi-
versioning techniques do not seem fit for long running
transactions such as spatial range queries as it results
in an overhead of excessive versions. The management
of large number of versions is a very challenging task.
Therefore, the only feasible solution will be to have
a hybrid solution of 1) and 2), covering positive as-
pects of these techniques. The need and significance
of concurrency control measures for spatial indexing
has been discussed in [35] in which phantom update
issue, occurring due to simultaneous query processing
has been explained. A concurrency control method is
proposed for R-tree based spatial index..

5.2. Read/write conflicts

When multiple spatial queries run, there is a chance
of conflict among them. The conflict is resolved us-
ing various schemes such as blocking or use of time
stamps. It is also important to note whether the con-
flicting transaction (or query operation) is read or
write. This is closely related to the semantics of query
results and their consistency. Handling of conflicts
among two read queries is different and more critical
as compared with that of read write query pair. Be-
cause, the updates made by the write operation must
be made visible to the simultaneous read operation to
ensure consistent results. These conflicts must be min-
imized in the designed spatial index.

5.3. Spatial query operation

The multidimensional spatial queries are more com-
plex to handle as compared to one dimensional queries.
As discussed earlier, there are three categories of spa-
tial query operations: distance, direction, and topo-
logical. Various spatial querying methods specific to
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Table 6

Comparison with regard to index design considerations

Research
work

Year Spatial
index
type

Geometry Concurrency
control

protocol
used

Read/write
conflicts

Hardware
setup

Index design characteristics

Scalable Skewness Overlap Parallelism

[154] 2019 grid-
based

Moving, Points Points None Single
machine

None None None None

[95] 2018 tree-
based

Static, Image
dataset feature
points

None None Single
machine

Yes, in
terms of
dimen-
sionality

Yes None Yes

[173] 2018 hybrid
index

Points None None Single
machine

Yes None None None

[92] 2018 tree-
based

Static, Points concurrently
navigate the
internal tree nodes

Read/write
conflicts

Single
machine

None None None Yes

[146] 2018 tree-
based

Moving, Points Parallelize
multiple queries
running
concurrently

Read/write
conflicts

Single
machine

None Yes None Yes

[17] 2018 hybrid
index

Moving, Points None None Single
machine

Yes Yes None Yes

[83] 2018 grid-
based

Static, Polygons None None Single
machine

Yes None None Yes

[119] 1997 tree-
based

Static, Points Lock-based Read/write
conflicts

None,
theoretical
discussion

None None None None

[7] 2001 tree-
based

Static, Points Lock-based Read/write
conflicts

None,
theoretical
discussion

None None None None

[88] 1998 tree-
based

Static, image data Non-locking,
region
modification

Read/write
conflicts

Single
machine

Yes None None None

[102] 2002 tree-
based

Static, Points and
polygons

None None None,
theoretical
discussion

None None None None

[139] 2005 tree-
based

Static, image data None None Distributed
setup
(cluster)

Yes None None Yes

[35] 2009 tree-
based

Moving, Polygons
(Roads)-confirm

lock-coupling-
based concurrency
control

Read/write
conflicts

Single
machine

Yes Yes Yes Yes

[258] 2018 tree-
based

Moving, Points Non-blocking Read/write
conflicts

Single
machine

None None None None

[101] 1995 tree-
based

Static, Polygons Lock-based Read/write
conflicts

Single
machine

None None None None

[194] 2001 tree-
based

Static, feature
vectors

Enhanced partial
lock coupling
based concurrency
control algorithm

Read/write
conflicts

Single
machine

Yes None None None

[117] 2011 grid-
based

Moving, Points None None None,
theoretical
discussion

None None None None
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Table 6

(Continued)

Research
work

Year Spatial
index
type

Geometry Concurrency
control

protocol
used

Read/write
conflicts

Hardware
setup

Index design characteristics

Scalable Skewness Overlap Parallelism

[61] 2003 tree-
based

Static, Points None None None,
theoretical
discussion

None None None None

[11] 1996 tree-
based

Static, Points None None Single
machine

None None Yes None

[204] 2007 tree-
based

Static, Polygons None None Single
machine

None None None None

[153] 2015 grid-
based

Static, Points None None Single
machine

Yes None None None

[109] 2005 grid-
based

Static, Points None None Single
machine

None None None None

[116] 2008 grid-
based

Static, Points None None Single
machine

None None None None

[48] 2008 grid-
based

Static, Points None None Single
machine

None None None None

[256] 2012 Both tree
and grid-
based

Static, point, line,
polygons

None None Distributed
setup
(cluster)

Yes None None None

[52] 2013 grid-
based

Static, Polygons None None 13 virtual
machines
used for
scaling ex-
periments

Yes None None Yes

[86] 2017 Both tree
and grid-
based

Static, Points None None Single
machine

Yes None None None

[152] 2014 tree-
based

Static, Points None None Single
machine

Yes None None None

[251] 2009 grid-
based

Static, Points None None Single
machine

Yes None None None

[147] 2018 Both tree
and grid-
based

Moving, points None None Single
machine

None Yes None None

[103] 2002 tree-
based

Moving, points None None Single
machine

None None None None

[175] 2008 tree-
based

Moving, points None None Single
machine

Yes Yes None None

[37] 2005 tree-
based

Moving, polylines None None Single
machine

Yes None None None

[163] 2000 tree-
based

Moving, lines None None None,
theoretical
discussion

None None None None

[70] 2015 tree-
based

Moving, points None None Single
machine

Yes None None None

[227] 2003 tree-
based

Moving, points None None Single
machine

None None None None

[77] 2004 tree-
based

Moving, points None None Single
machine

Yes None None None

[167] 2002 tree-
based

Moving, points None None Single
machine

Yes None None None
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these query categories have been proposed in the lit-
erature. Various indices have also been designed keep-
ing in view the particular spatial query operation such
as nearest neighbor query. The spatial index calculates
and stores the shortest paths to various data points
and query points. It is important to note that calculat-
ing these shortest paths is of no use in range based
query operation. Thus, the working of spatial index
has to be adjusted according to particular query opera-
tion under focus. For example, [92,95], and [83] have
proposed indices that can handle range queries only.
Method proposed in [17] works only for kNN queries.
However, in [173], algorithms for both range and kNN
queries have been proposed.

5.4. Geometry/dimension of data

The core aspect in the design of spatial index is the
structure of geometry and dimensions of spatial data
with respect to which the spatial index is to be de-
signed. It is highly important to consider this factor as
the overall structure and working of spatial index is
dependent on the nature of spatial data. For example,
the index designed to query data points will not work
to query the regions and line-oriented data such as a
road path. Thus, it is very important to consider this
factor while the design of spatial index. For example,
the index proposed in [17] assumes that the data model
consists of multi-dimensional points and moving ob-
jects do not have any extent. This index cannot at any
case store and process moving objects with some ex-
tent such as polygons. To deal with polygons we need
indices that have been proposed specifically for poly-
gons, e.g. [83].

5.5. Nature of movement (data object and query)

For moving data objects, the three possibilities of
movements as described earlier are important to con-
sider. One index designed with regard to moving data
objects and static query objects cannot be used to sup-
port the querying of moving data objects and moving
query objects. Thus, while designing a spatial index
for an application. All the possible movements must be
taken into consideration in index design. The various
possibilities of movement of objects along with real
life application scenario is illustrated in Table 3. For
example, [173] proposed an index for scenario with
static data objects and moving query objects. As this
index assumes that data objects will not move, there-
fore location updates for data objects will simply be

ignored. This will cause the queries to report inconsis-
tent results with this index. Thus, this index will only
work in scenarios where we have static data objects.
If the environment has moving data and query objects
then indexing solutions that have a support for it must
be considered, e.g. [135].

5.6. Data model (past trajectories/current locations)

Data model is the essential component in data pro-
cessing and management. The whole semantic of a
spatial query is dependent on the underlying data
model. The justification for considering this feature
while index design is the same as we discussed for the
geometry of data. The extent of spatial object changes
the way it is stored and managed by indexing struc-
ture. Apart from extent, timeline of queries also heav-
ily affects the design of index. Specifically, in case of
query processing with moving objects, the timeline of
movement of these objects is very relevant to focus on.
For example, if we consider historical data of moving
objects, then this data will be in the form of trajecto-
ries represented with lines and object identifier. On the
other hand, the current location data of moving objects
will have longitude and latitude locations with associ-
ated timestamp value and object identifier. Thus, the
structure of index will highly be dependent on the data
model. This must be evaluated while designing of a
spatial index.

5.7. Scalability

The designed query processing algorithm or index
must be able to deal with massive data and scalabil-
ity demands of an application. The increase in amount
of data inserted must not cause the insert operation’s
performance to degrade. The problem of scalability
has been studied with regard to scalable incremental
query processing [131,132,230], and [142]. The solu-
tions proposed use a shared execution mechanism or a
moving object grouping mechanism to reduce usage of
resources. However, the challenge of scaling to multi-
ple servers is not considered. Moreover, the incremen-
tal processing seems inappropriate in terms of perfor-
mance considerations.

5.8. Skewness

It is a well-known fact that moving objects have a
skewed distribution [107,255], and [193]. If we use a
grid based index, then the capacity of cells in a grid
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structure varies significantly that deteriorates the per-
formance of a query processing algorithm. Consider an
example of 4KNN query initiated by query point q. S0
depicts the search space initially explored. This grid
encloses only two set of points p1 and p2. The search
space needs to be expanded to fetch the other two
closes points apart from these two points. When we
expand the search space to S1, the network/Euclidean
distance must be found from 15 points. Thus, for pro-
cessing 4KNN query we need a large number of dis-
tance calculations which is very expensive computa-
tionally. If we can reduce the grid cell size then we
will end up in minimizing the number of nearest neigh-
bor calculations. But, this increases the number of grid
cells. We have to consider the tradeoff between query
performance and storage usage while designing a spa-
tial index.

5.9. Communication cost

For both tree and grid like structures, there is a
communication mechanism that is initiated whenever
a merge/split operation occurs on a cell or a node.
Whenever a new cell or a node enters or leaves dur-
ing these operations, the neighborhood must be up-
dated about it. While designing a spatial index, this
cost incurred during neighbor communication must be
evaluated. Strategies must be designed that can help
to improve the performance and minimize the com-
munication cost. It should be noted that communica-
tion cost overhead is not only associated with node
split or merge operations. The communication aspect
goes along all the phases of query processing such as
parallel data broadcasting, parallel query processing,
intra-cluster communication, grid cells’ communica-
tion, and communication during location updates. For
instance, when the data and query objects move, they
have to communicate with the server to send their lo-
cation updates. Thus, the focus should be to reduce the
overhead of communication happening at any phase of
spatial query processing. The problem of minimizing
the communication cost while spatial query processing
has been discussed in [17].

5.10. Overlap

Overlapping is major concern in evaluating a query
performance in multi-dimensional index trees. Due to
overlapping, a point query might need to go through
multiple index tree’s branches if the point exists in an
overlapped area. [35] discussed the overlapping issue

and proposed a spatial index with zero overlap (ZR-
tree).

5.11. Parallelism

To cater the massive amount of spatial data, there is
a need to exploit the modern computational hardware
by employing parallelism to increase the performance
of a query. Some recent research works, [95,114,185,
187], and [48] have discussed the need for parallelism
and proposed parallel spatial indexing methods.

6. Research opportunities

The domain of spatial data processing can be clas-
sified into two groups: modeling and querying. In data
modeling sub group, the existing works revolve around
proposing a new query language mapped to a real life
scenario or designing a better moving object’s location
prediction function. For example, in [260] range query
based on complex shaped obstacles in environment has
been proposed. In the second sub group, the focus is
primarily on designing an efficient query processing
algorithm or index. Some important research opportu-
nities are discussed as under:

– Propose an efficient algorithm or pruning rule
(such as safe region techniques) that can cater all
the possible movements of data and query ob-
jects. This will help in reducing the amount of up-
dates required when the object moves.

– As discussed earlier, the proposed indices are not
evaluated with regard to read/write conflicts. It
is therefore significant to incorporate read/write
conflict resolution mechanisms in the indexing al-
gorithm designed. This can be done by mapping
the existing concurrency control solutions in the
literature to the spatial indices.

– Majority of the indices designed till date have
been evaluated on small datasets on a single ma-
chine. However, considering the dynamic nature
of spatial data and big data characteristics, it is
very important to evaluate these indices for huge
data volume in a distributed environment to high-
light and test their scalability.

– Parallelism is an effective tool to speedup the re-
sponse time of any algorithm. At hardware level,
parallelism can help to equally utilize all the cores
of the system. In the domain of spatial indexing,
parallelism can help in meeting the challenges of
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high update cost and excessive computations. It
would be an interesting work to parallelize the
spatial indexing solution and overcome the chal-
lenges previously discussed and highlighted in
this paper.

7. Conclusion

IoT has gained prevalent attention across the globe.
It consists of billions of sensors and devices con-
nected through the Internet to acquire, process, man-
age, and analyze data. Integration of geospatial tech-
nology with these sensors has transformed the ways
of data processing and management. The use of these
sensor nodes and mobile devices has been backed up
with issues such as limited network bandwidth and en-
ergy consumed by these devices. Thus, the real time
spatiotemporal data processing need to use indexing
mechanisms to minimize the overhead of extensive
query processing. In this paper, we performed a de-
tailed survey of the literature regarding the indexing of
real time geospatial data generated by IoT devices. Af-
ter a thorough review of literature, some major chal-
lenges relevant to query processing and indexing of
moving objects are highlighted. Various important in-
dex design considerations are discussed in detail. The
goal is to help researchers in understanding the prin-
ciples, methods, and challenges in the indexing of real
time geospatial data. This will also aid in identifying
the future research opportunities.
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