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Abstract. This article presents the conception of a new method developed mainly in Python to automate the reading process of
water meters with an analog display using computer vision and machine learning. A camera captures the consumption value in
the water meter, and the yielded image undergoes image processing until the digits are detected and isolated. Then the digits
are passed into an SVM machine-learning model that carries out a high accuracy OCR. The software is executed over an ARM
platform running Linux. The data resultant from the automated metering, such as the device identification number, event date
and time in UTC, consumption value, volume and time variations, flow, and display image, are locally stored and transmitted to
a cloud server through VPN in a Wi-Fi and cellular network connection, or by SMS, enabling a remote supervision. Thereby, the
automatic metering method features a new way to perform predictive analysis and management of water and meters proactively
and can be replicated for digital-display water meters, as well as extended to handle automatic metering on electricity and gas
meters as well.

Keywords: ARM platform, computer vision, internet of things, machine learning, water meter

1. Introduction

With the development of Smart City [15,33], Indus-
try 4.0 [3], and the improvement of the standard of liv-
ing, there has been a rapid augmentation in the num-
ber of residential customers of gas, water or electric-
ity services. As a result, suppliers’ metering fees are
increasingly prominent. The drawbacks of the billing
and payment management of manual metering become
an obstacle for metering companies to improve effi-
ciency, management, and service levels. Below are the
problems in the conventional, manual metering:

– Access to the house is difficult because of security
and privacy.

– The data collection is not timely, and cannot re-
flect the real-time system status, nor provide ac-
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curate and reliable data for the relevant applica-
tion system, or effectively monitor user behavior.

– High bills can create disputes with customers,
leading to delays in the operation and manage-
ment of payment processing.

The objective of the present article is to solve the
above issues by providing a convenient and innova-
tive method of metering automation that yields accu-
rate data collected from the automatic metering of me-
ter instruments by using computer vision and the Inter-
net of Things (IoT).

With the advent, popularization, and falling costs of
ARM (Advanced RISC Machine) computer-based ma-
chines with the size of a credit card (85 × 56 × 17 mm)
and sufficient processing power to run computer vision
applications, the use of boards such as Raspberry Pi,
Lemon Pi, Banana Pi, and Orange Pi becomes cost-
effective. With less than 35 dollars, it is possible to
have an HD camera, Wi-fi, Ethernet, USB, cellular net-
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work, GPIO pins, among other features. This set of de-
vice features allows the process of automatic reading
of flow-instruments by supporting and handling the ex-
ecution of image processing and machine learning de-
ployment, as well as data transmission through the In-
ternet or SMS.

This work presents a new method developed in
Python that uses OpenCV (Open Source Computer Vi-
sion Library) to automate the reading process of instru-
ments such as water, gas, and electricity meters with
analog or digital display. Briefly, the pipelined algo-
rithm of the method captures the metering value and
processes its image to identify the digits shown on the
meter display. It uses machine learning to predict the
consumption value, and that data digitalized from the
metering is published to enable asset management and
predictive analysis. Thus, the method adheres to the
Internet of Things [2] applied to the automatic reading
of meters.

This article is organized as follows: Section II
presents related work; Section III introduces an ar-
chitecture proposal for analog metering digitalization
through computer vision; Section IV goes over the
computer-vision method that predicts digits of con-
sumption values taken from a water meter display;
Section V explains the software implementation; Sec-
tion VI focus on the experimental setup, performance
evaluation, and results; and Section VII concludes this
study and points out future works.

2. Related work

Automatic meter reading (AMR) [15,47] is the tech-
nology of automatically collecting consumption, diag-
nostic, and status data from water meter or electricity
metering devices and transferring that data to a central
database for billing, troubleshooting, and analyzing.
AMR has numerous benefits over manual reading, and
some of the most important benefits include: (1) ac-
curate meter reading; (2) energy management through
data graphs; (3) low cost; (4) reliable data transmis-
sion; (5) improved billing; (6) security for premises;
(7) less financial burden correcting mistakes; (8) less
time to obtain meter readings. This technology mainly
saves utility providers the expense of periodic trips to
each physical location to read a meter. Another advan-
tage is that billing can be based on near real-time con-
sumption rather than on estimates based on past or pre-
dicted consumption.

Sun et al. [38] make some systematical reviews of
the development and deployment of smart energy me-
ters, including smart electricity meters, smart heat me-
ters, and smart gas meters. By examining various func-
tions and applications of smart energy meters, as well
as associated benefits and costs, their investigation pro-
vides insights and guidelines regarding the future de-
velopment of smart meters. Before smart meters, con-
ventional electromechanical meters were the primary
type of devices for measuring electricity flow. These
old meters usually display the consumption value on
an analog counter, which requires personnel reading to
assess usage. Smart meters are electronic devices that
measure consumption and operate in two-way commu-
nication regarding the usage information and billing,
besides providing network status of the grid.

As claimed by Sun et al. [39], the significant in-
crease in energy consumption and the rapid develop-
ment of renewable energy, such as solar power and
wind power, have brought considerable challenges to
energy security and the environment, which, in the
meantime, stimulate the development of energy net-
works toward a more intelligent direction. Smart me-
ters are the most fundamental components in intelli-
gent energy networks (IENs). In addition to measur-
ing energy flows, smart energy meters can exchange
information on energy consumption and the status of
energy networks between utility companies and con-
sumers. Furthermore, smart energy meters also allow
monitoring and control of home appliances and other
devices according to each costumer’s individual needs.

According to Barbierato et al. [7], a new generation
smart meters are a crucial enabler of advanced meter-
ing infrastructure (AMI) and foster new energy-related
services such as demand response (DR). Aguirre et al.
[1] and LeMay et al. [22] presented two smart-meter
systems that allow bidirectional communication with
a centralized DR management platform. Aguirre et al.
[1] presented a new generation smart-meter designed
to support new requirements for operation and con-
trol of the distribution network grid. LeMay et al. [22]
described a meter gateway architecture for integrated
control of loads by energy aggregators. Not only smart
meters are essential in such a context. For instance,
Mashima and Chen [24] presented a DR system frame-
work leveraging on a DR client mobile app able to di-
rectly control IoT devices according to user policies.
In this scenario, AMI [42] and IoT devices (i.e., smart
meters [40] and smart appliances), are key technolo-
gies to foster novel services in the smart grid [30],
such as the DR in residential contexts. In these regards,
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smart devices are part of AMI and allow a fine-grained
collection of energy measurements. In particular, the
new smart meters [40] can sample data spanning in
the range of 1 second to 15 minutes [6], depending
on the services to provide. Disaggregating and post-
processing these measurements allow retrieving infor-
mation about consumer behavior in households, such
as appliance activation and energy usage [25]. These
post-processed data can feed other novel energy ser-
vices, such as DR in households [29].

In the commercial solution [34], there are two al-
ternatives to achieve water-usage reading remotely,
which is also true for gas meter and electricity me-
ter. The first alternative consists of a walk-by method,
which is encouraged when the amount of homes to
cover is reasonably significant. In this method, a re-
source company personnel is responsible for going
through the streets with a data acquisition device com-
posed of a data logger and an antenna, which allows
access to each homeowner resource consumption. Af-
ter collecting all the usage data intended for the day,
the collector device syncs with a computer via Blue-
tooth, which then pushes the just-acquired data onto
the company’s database.

The second alternative is composed of one concen-
trator strategically put in an area where it is capable
of collecting data from points in a radius of 0.5 Km.
This concentrator receives data periodically from the
flow meter in range via GPRS communication, which
guarantees an automate and effortless usage reading.
At the moment of the signal reception, incoming data
is stored in an XML file, which is afterward sent out to
the company’s cloud. This second alternative is meant
for a smaller amount of residences, as opposed to
the walk-by one; however, adding more concentrators
makes it possible to attend a more substantial amount
of clients.

The solution carried by Ciasey [34] provides a better
water consumption management for their customers.
Abnormalities and malfunctions in their water meters
can be detected using initially-known setup parame-
ters, which are characteristic for their system and their
software application. When the reading is not plausi-
ble, an alarm goes off, which helps to discover emer-
gent issues instantly, as well as frauds and functioning
state.

Concerning other patented solutions, such as the
one found on Brazilian National Institute of Indus-
trial Property (INPI), namely PI0901651-1 [13], de-
nominated “Automatized water meter”, they come up
with the conception of a water meter with a pulse sen-

sor, battery, GPRS module, and integrated circuitry.
To put the work described in this patent into practice,
it requires replacing the home’s current water meter
with a new one built with the mentioned components.
This water meter swapping would undoubtedly turn
the solution more costly, both in equipment dimen-
sions and implantation cost. Moreover, the patent can-
not be reusable in other sorts of applications, such as
in the reading of electricity usage.

Metretek Inc. [27,28] presents apparatus and method
for remote sensor monitoring, metering and control
(U.S. Patent 4,241,237 and U.S. Patent 4,455,453).
Their invention relates to remote monitoring systems
and, in particular, to an automatic meter reading and
load management system. Examples of metering sys-
tems utilizing a power line as the communications
link are described in U.S. Pat. Nos. 4,012,734 [19],
3,973,240 [16]), 3,914,757 [14], and 3,445,814 [36].
Similarly, examples of unit metering systems wherein
the communication link is provided through an exist-
ing telephone system are described in U.S. Pat. Nos.
3,829,835 [37], 3,820,073 [44], 3,492,649 [31], and
4,008,458 [46].

Wi-Fi (Wireless Fidelity) [45] is a versatile plat-
form that can be used by a variety of electrical home
appliances to provide wireless TCP/IP communica-
tion using the 802.11 protocols. Devices such as the
smart thermostat permit a utility to lower a home’s
power consumption to help manage power demand.
The wireless communication may significantly con-
tribute to their overall battery consumption, and mini-
mizing the energy consumption of wireless interfaces
and networking protocols is one of the prerequisites
for the IoT.

In the same context, the city of Corpus Christi in
Texas [15] became one of the first cities in the United
States to implement citywide Wi-Fi, which had been
free until May 31, 2007, mainly to facilitate AMR af-
ter a dog attacked a meter reader. Today, many meters
have Wi-Fi embedded in their transmission design, and
a drive-by hand-held receiver reads them through the
802.11 protocol.

The China patent CN107767645A from 2017, de-
nominated “Novel water, electricity, and gas automatic
meter reading device” [33], presents a novel water,
electricity, and gas automatic meter reading device.
This device comprises a meter reader and data collec-
tors linked to it, wherein a low-voltage power circuitry
connects data collectors and a data concentrator.

The patent CN108830271A from 2018, denomi-
nated “Digital display instrument reading identifica-
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tion method based on convolutional neural network”
[23], introduces a method based on a convolutional
neural network to read the resource usage in an in-
strument’s digital display. The method consists of ob-
taining consumption data, processing that data, con-
structing a deep-network model, and reading the con-
sumption value in the instrument. The system reaches
a high-accuracy on its reading identification, which is
realized by a learning and training process grounded in
a significant amount of data acquired from the instru-
ment. Another remarkable characteristic of the system
is that it also has a high real-time performance.

In the INPI patent PI1101278-1 from 2011, de-
nominated “Digital water meter with wireless network
transmission” [12], an electronic system for metering
and data transmission replaces the manual process of
reading water consumption. The metering is done au-
tomatically using electronic components in the digital
water meter and transmitted to interjacent devices us-
ing ad-hoc wireless networks. Then, other mediate de-
vices relay the signal to a central station via cellular
network.

The patent CN208271375U from 2018, denomi-
nated “A kind of intelligent meter data recording sys-
tem and intelligent meter reading robot” [48], presents
a utility model for recording data with an intelligent
meter by using computer vision.

Another approach currently being used is a solu-
tion based on a mobile software application for iOS
and Android. In this solution, Anyline’s SDK (https://
anyline.com) and Pixometer’s SDK (https://pixometer.
io) are utilized to develop optical character recogni-
tion (OCR) for flow-meter applications. In Germany,
Anyline’s computer-vision SKD is already used by a
company named Waterloo, whose goal is to help with
water-metering automation and management in sev-
eral cities of the country. To do that, Waterloo makes
its application – Waterloo 365 (https://waterloo.io/en/
waterloo-365-my-water-meter-more/) – available for
water providers. The application brings a variety of so-
lutions to integrate their customers into better manage-
ment of water consumption.

Zhao et al. [49] introduce a novel method by design-
ing the architecture of a remote metering system that
can read a power meter through computer vision. Dif-
ferently from the typical automatic metering system
that must obtain the resource-consumption value from
a digital communication interface, the new method
recognizes the meter reading by utilizing computer-
vision techniques, which configures a no-touch man-
ner of measuring. In their work, the local metering in-

formation of distributed substations is transmitted to a
central station through computer network. In an exper-
iment conducted, the results from the computer vision
are accurate enough to monitor the running parameters
of the remote substation.

Gallo et al. [17] propose an automated solution
of gas metering with computer vision for a situation
wherein some company personnel has to go to resi-
dences or industries and read customers’ gas usage.
In addition to the human meter reading, the person-
nel takes a picture of the flow-instrument display at
the scene, which becomes a checking element to try
to mitigate human reading mistakes later on. Nonethe-
less, according to the research, that checking process
could take far too long, depending on the number of
customers, turning it into a tiresome and costly task.

In their work, Gallo et al. [17] implement an auto-
matic reading algorithm grounded in a big database of
different and diverse images taken of gas meters. In
this database, there are shots of a large number of gas
meters from various angles, with a full diversity of col-
ors, blur, and brightness. From the image capturing un-
til the digital displaying of the usage value, there are
fundamentally three steps: the localization of the me-
ter, the detection of the digits on its display, and the
computer reading of that arranged set of digits.

Kompf [20] presents an OCR software development
for electricity meter, in which the computer code was
written in C++, utilizing OpenCV. The flowchart of
the algorithm employed by the software is found in
Fig. 1.

Kompf [20] inspired the development of the method
proposed in this work. The difference is that Kompf’s
work is implemented for energy meters, whereas this
investigation is applied to and validated in water me-
ters. Ultimately, the focus is on deploying the Inter-
net of water meters. However, the solution in this work
can be extended to meters of gas and energy as well,
relying on the generic framework proposal elaborated.

Lecun et al. [21] reveal a literature review upon ma-
chine learning applied to image processing and com-

Fig. 1. Flowchart of a computer-vision metering method for electric-
ity meter [20].

https://anyline.com
https://anyline.com
https://pixometer.io
https://pixometer.io
https://waterloo.io/en/waterloo-365-my-water-meter-more/
https://waterloo.io/en/waterloo-365-my-water-meter-more/
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puter vision. In their investigation, the development of
a machine learning solution for digit classification of
analog metering systems, with either digital or ana-
log displays, takes place with supervised learning algo-
rithms. To solve the problem, they focus on three dif-
ferent algorithms: k-nearest neighbor (kNN), support
vector machine (SVM), and neural network.

Puttnies et al. [32] try to resolve the contemporary
matter of integrating conventional devices into the In-
ternet of Things context. More specifically, Puttnies
et al. [32] work upon the challenge that is to turn an
analog electricity meter into a digital, intelligent one
that has the capability of connecting to the internet and
using network services to provide a remote reading.
The proposed way to tackle this problem is by utiliz-
ing computer vision to identify and extract the usage
indication from electricity, gas, and water meters.

According to Tafti et al. [41], a set of different OCR
platforms are now available. Aside from lending the-
oretical contributions to other practical fields, such
platforms have demonstrated successful applications
in real-world problems. Tafti et al. [41] present sev-
eral qualitative and quantitative experimental evalua-
tions that have been performed using four well-know
OCR services, including Google Docs OCR, Tesser-
act, ABBYY FineReader, and Transym. Their paper
analyzes the accuracy and reliability of the OCR pack-
ages employing a data set that includes 1227 images
from 15 different categories. Furthermore, their inves-
tigation reviews the state-of-the-art OCR applications
in healthcare informatics. Their work is expected to ad-
vance OCR research, providing new insights and con-
sideration to the research area, and assist researchers to
determine which service is ideal for optical character
recognition.

Cui et al. [11] present an overview of the industrial
applications of machine learning in the domain of IoT,
in particular, the use of machine learning to improve
the efficiency of smart meter operation.

Bae et al. [5] investigate a camera-based character
recognition system, which is implemented for mobile
devices such as personal digital assistant (PDA) and
cellular phones with color cameras. First, a camera-
based character recognition system is developed for
a personal computer (PC), including techniques such
as image enhancement, local adaptive binarization,
and blob coloring to effectively extract character re-
gion and remove the noise of camera-captured images.
Then, Bae et al. [5] converts the PC-based OCR system
into an embedded OCR system for cellular phones.
Several functions are specially developed since most of

the mobile telecommunication devices typically don’t
have functions for numerical computing and have a
limitation of memory space.

The method created by Oliveira et al. [26] recog-
nizes the characters of a specific type of an electric me-
ter (M1A-T), utilized in Brazil. The algorithm com-
prises three major steps, processing input images of a
fixed size and format. Firstly, the homomorphic filter
is applied to reduce the effects of non-uniform illumi-
nation. Secondly, binarization and morphological op-
erations are performed to obtain both the ROI and the
separated digits. Thirdly, the segmented digits are clas-
sified by the kNN algorithm.

According to Chen et al. [9], to build a significant
infrastructure of data collection, a network of vision-
based smart meter and its gateway are provided to a
community of gas supply system that uses traditional
mechanical meters. In the network architecture, the
gas-meter reading values are captured by embedded
image-sensor nodes and then are transmitted to a gate-
way, designed to implement image recognition, and are
collected in the embedded database of that gateway.
Moreover, the web-based monitoring system designed
in HTML5 allows a household to check the gas con-
sumption and history, as well as the gas company to de-
velop an effective energy management system and an-
alyze energy-consumption models of the community
using the database.

Vanetti et al. [43] have a new approach for the au-
tomatic gas-meter reading of real-world images. The
gas-meter reading, usually done on-site by an operator
who takes a picture of it as proof of reading in case
needed later, is prone to errors. In this study, the au-
thors present a method to support the validation pro-
cess to reduce human effort. Their algorithm is trained
to detect and recognize the text of a particular region of
interest (ROI). Firstly, they detect the ROI and segment
the text contained in it using a method based on an en-
semble of neural network models. Then, they perform
an optical character recognition using Support Vector
Machine.

Cerman et al. [8] come up with a mobile platform-
based system able to scan electricity, gas, and water
meters. The methodology comprises two stages: digits
detection and optical character recognition. A pipeline
of operations accomplishes the detection of digits.
OCR is achieved by employing two different ap-
proaches: Tesseract OCR [35] and Convolutional Neu-
ral Network. Convolutional Neural Network signifi-
cantly outperforms the Tesseract OCR for all types of
meters.
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The approach introduced by Chouiten and Schaeffer
[10] is more general. It works on five models of gas
meter, which are employed by the major gas provider
in France formerly called GDF SUEZ, currently EN-
GIE. The experiments are carried out by sixteen smart-
phone models with the Android platform and four
smartphone models with the iOS platform. The com-
putation is performed offline to address areas lacking
internet connection and takes three seconds at max-
imum. The ROI is detected using Haar Cascade and
converted afterward to the HSV color system. By nor-
malization of the V channel, the image is divided into
two sub-images, including the significant consump-
tion part in a black background and the insignificant
decimal part in a red background, respectively. The
sub-images are thresholded by the Otsu binarization
method, and morphological operations are applied, ob-
taining blobs that are then passed to an OCR module.
The final number is validated based on the history of
consumption.

In the work fomented by Auerswald [4], the OCR is
responsible for recognizing the digits from digital me-
tering instruments with seven-segment displays. The
image in which the pattern of segments resides is in-
put into the system algorithm that, in turn, computes
and interprets the segment-pattern traces of the num-
bers and returns the digital, recognized sequence of
digits accordingly. Float and negative values are also
detected, as well as combinations of both of them.

Cybersecurity is crucial in the Internet of Things.
Humayed et al. [18] suggested that only authorized
personnel can remotely access field devices and that
the access should be strictly secured by using desig-
nated devices through Virtual Private Network (VPN).

Several products in the market propose a solution for
the problem related to the metering automation and the
transmission of its derived data through data collectors
or flow-meter with a pulse sensor.

The proposed method is innovative. There is no
news about any registered patent or any product in the
market that does the real-time and online metering au-
tomation of devices with the analog or digital display
through image processing and data transmission via a
VPN channel or SMS, using an ARM platform. Like
never before, the proposal allows users to keep the ac-
tual analog flow-instrument and performs the meter-
ing on display in an automated fashion. That is, the re-
trieval of resource usage requires no invasive action,
which means no need to disassemble or replace the
current flow-meter. On the contrary, commercial solu-
tions available nowadays are grounded in software ap-

plications designed to mobile platforms like Android
and iOS to assist with the reading of resource con-
sumption and cloud storage of the related data, which
are hardly ever real-time and online.

Therefore, the proposal is a kit for non-invasive me-
tering automation of gas, water, and electricity meters,
allowing data transmission via the Internet or SMS,
flow instrument monitoring, and consumption value
estimation through OCR.

3. A new method for automatic metering
supervision

The new method consists of a computer-vision ma-
chine on an ARM platform that is responsible for au-
tomating the metering process and allowing remote su-
pervision. It uses a CCD/CMOS camera and considers
the utilization of a solid-state relay to turn off resource
supply on-site.

The computer-vision machine takes a picture of the
flow-instrument display. That photo undergoes several
image-processing algorithms, which leads to the de-
tection of digits from the display. Subsequently, the
recognition of digits from the resource consumption
takes place using OCR.

Once the OCR outputs the consumption data, a lo-
cal database stores the string value of the reading, the
device identification, the event date and time, the float-
type consumption value, and a picture of the meter
counter. Then, the system publishes the local data via
VPN using a Wi-Fi connection or cellular network, or
SMS.

All of the data from the metering enables automatic
management. For instance, aside from improving the
billing system, it can bring better resource usage anal-
ysis to prevent water leakage by looking at the con-
sumption history every ten minutes. Other benefits are
the potential capability to turn off the water supply via
the internet or SMS and sending emails and SMS to
the final customer to let them know about the utility
closure, the closing of a bill, or to warn them about the
possibility of a leakage detected by an abnormal con-
sumption history.

The cloud server connects to the computer-vision
machines via the Internet using one of the follow-
ing connection architectures: client/server, publisher/
subscriber, or SMS data exchange.

The first connection architecture has remote meter-
ing devices like media servers, whereas applications
such as browsers, remote terminal, and HTML/Web



G.V. Santiago and A.J. Alvares / Framework for the Internet of water meters using computer vision on ARM 41

are the clients. That setup makes it possible to access
events in real time, such as the image and progressive
video of the display. In this connection architecture,
one has complete-remote access to the metering device
via Secure Shell (SSH) and can eventually turn off the
water flow on any site.

The second connection architecture is based on the
Message Queuing Telemetry Transport (MQTT) pro-
tocol. The publisher is the remote metering device and
the subscriber, a cloud server. The cloud server re-
ceives the data (device identification, event’s times-
tamp, usage reading, and images) periodically, within
a predetermined period as needed. This data is stored
in the cloud accordingly to each flow meter’s unique
tag. All of the flow meters installed on final customers’
sites must have their clock synced with a reference
clock, namely the Universal Coordinated Time (UTC).
The clock synchronization is dictated by a world time
server, as opposed to remote automation units of the
electrical segment that rely on a GPS synchronization.
Such system synchronization is crucial and avoids in-
consistencies when calculating the usage automati-
cally, transitioning from/to daylight saving time, or
warning about resource leakage or consumption out of
the pattern.

The third connection architecture is given by a full-
duplex channel, with the employment of SMS over
the cloud server. This architecture is a cheap solution
that takes advantage of cellular networks to establish a
connection. With a SIM card dedicated to only send-
ing and receiving text messages, which has a low op-
erational cost, the communication can carry with just
flow-instrument identification and the captured water
usage, for instance. There is no need to have an internet
plan, which makes the solution ideal for low-income
families. Despite that, the resource service shutdown is
still technically applicable.

The proposed method allows the final customer
to continue utilizing their previously-installed analog
flow meter. That is, the solution is cost-effective be-
cause it saves one from the hassle of replacing the cur-
rent and yet-properly-working instrument for a smart
version of it. As a result, the installation process cost
is minimized, and the only requirement to put the au-
tomation system up and running is an outlet plug to
feed the little ARM-platform computer.

Although the method does not call for a physical re-
placement of the flow-instrument, if there is the need
for the implementation of service shutdown remotely,
an actuator valve has to be installed to block the re-
source supply.

With the use of this innovative conception of meter-
ing automation for water, gas, and electricity meters,
the inconvenient home visiting for resource consump-
tion reading is resolved in a practical, cheap, and non-
invasive fashion.

3.1. The general architecture

Figure 2 introduces the general architecture of the
new analog metering method, which is broken down
into five modules:

1. water, gas or electricity meter with an analog (or
digital) display carrying no communication in-
terface/protocol, and eventually having a Hall-
effect or alike pulse sensor, or even an automatic
shut-off actuator valve;

2. ARM-based computer platform such as Rasp-
berry Pi, Orange Pi, Lemon Pi, or alike with
GPIO pins to read sensor pulses and turn off the
resource supply remotely, camera interface, cel-
lular network through a SIM card, Wi-Fi, ports
for Ethernet, USB, HDMI, and power supply, mi-
cro SD card slot, among other features;

Fig. 2. The architecture created for the Internet of water meters.
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3. software for capturing, processing, recognizing,
storing, and transmitting images and video via
TCP/IP, VPN with remote client/server, SMS
message exchange with cloud server, local and
server storage of events, e.g., resource usage,
timestamp, display picture, device identification,
Web and SSH access to the device, online inter-
actions (client/server, publisher/subscriber, and
clock synchronization) via TCP/IP;

4. cloud server for storing computer-vision meter-
ing data received through TCP/IP or SMS and
management of flow meters, enabling resource
leakage detection based on consumption pat-
terns, and notification to final customer to at-
tempt to diminish resource waste in the case of
water leakage; and

5. remote clients to allow TCP/IP connection to the
ARM platform via SSH or Web to monitor con-
sumption metrics and supervise the running pro-
cess through real-time video.

Figure 3 illustrates a monitoring screen as a client
of the ARM computer-vision metering device. Via
TCP/IP and HTTP, it provides the reading result, es-
timated flow, leakage-detection status, and the pro-
cessed image of the water meter in a test bench. The
monitoring screen is available on the following URL:
http://medicaohidrometro.alvarestech.com.

3.2. The novelty of the proposal

Below are the reasons why this work is unprece-
dented.

1. The method for remote supervision of water, gas,
and electricity meter via the Internet and SMS is
a new way of automating the flow-metering pro-
cess on instruments that carry an analog or digital
display. The method captures and recognizes the
consumption displayed by a counter using image
processing and machine learning algorithms, and
transmits the metering event data in real time, as
explained in Fig. 2. Advantages are the possible
leakage detection in water meters, as well as the
ability to turn off the service remotely. Therefore,
it is a complete solution for the management of
assets.

2. The innovative conception to acquire, process,
and transmit metering data uses an ARM plat-
form and Linux as the operating system. Pictures
of the display are taken with a CCD/CMOS cam-
era and processed with OCR to estimate the con-

Fig. 3. Monitoring screen of water-meter automatic metering via
web.

sumption value, which in turn can also be read
by a pulse sensor, depending on the flow-meter
interface. All the data derived from the reading
are stored locally and transmitted using SMS or
via a VPN on a Wi-Fi or cellular network.

3. The flow metering and data transferring does not
depend on communication-channel availability
or pulse sensor in the flow meter. The proposed
metering automation method is meant not to re-
place flow meters already in use and provides a
non-invasive, automatic instrument reading.

4. The method architecture orchestrates three types
of communication: client/server using VPN for
the communication channels and TCP/IP proto-
cols such as HTTP and SSH; publisher/
subscriber using MQTT, another TCP/IP proto-
col wherein the cloud server is the subscriber for
the publication of metering data; and SMS be-
tween the cloud server and the flow-meter au-
tomation kit installed in every residence, indus-
try, or commercial site.

http://medicaohidrometro.alvarestech.com
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4. Proposed computer vision method to recognize
consumption value (digits) on a water meter
display

The method is developed using the open-source li-
brary OpenCV. For the sake of fast and effective pro-
totyping, as well as the availability of language library
support, Python was the programming language cho-
sen to implement the computer vision algorithms.

For better comprehension of the method, it is di-
vided into three parts: metering algorithm workflow,
machine learning, and computer-vision machine zero-
ing.

4.1. The metering algorithm workflow

In summary, the metering algorithm follows five
steps to recognize the digits of the water meter dis-
play: 1) straighten frame, 2) find region of interest
(ROI), 3) make sure ROI is upright, 4) locate digits,
and 5) recognize digits.

It is worth mentioning that the machine learning
process takes place before the software is set up to ex-
ecute the whole pipeline of the metering algorithm. So
between steps 4) and 5), three machine-learning mod-
els are generated from their respective algorithms and
saved in their files. The three algorithms are k-Nearest
Neighbor (kNN), Support Vector Machine (SVM), and
Perceptron Multi-Layer (MLP) are trained with 4,500
images – in fact, there are 5000 altogether (500 digit
snippets of each class), but 10% are randomly taken
and put against the remaining 90% to cross-validate
and evaluate the machine learning models. The files
can then be easily read to load the models in step 5) of
the pipeline to make predictions, saving both time and
computer resources (RAM/swap) when the program is
in execution.

The 5 steps of the metering algorithm workflow are
chronologically introduced one after another as fol-
lows.

4.1.1. Frame skew correction
First of all, instead of working with the image in the

three-color dimension (RGB), the frame captured by
the camera is converted into a monochromatic image
with 256 shades of gray.

At this phase, the main goal is to straighten the im-
age. To do that, the angle by which the water-meter dis-
play is skewed on the frame needs to be found. Hough
Transform for lines is the key to discover such devi-
ation. This way, an image processing is initialized to

make the image adequate to undergo the Hough Trans-
form.

Then, the monochromatic image receives a Bi-
lateral-filter operation to smooth the image but, more
importantly, without taking off high-frequency edges.
After that, to make those borders even more vivid, the
following kernel K is applied in a convolutional man-
ner over the image:

K =
⎡
⎣

1 1 1
1 −7 1
1 1 1

⎤
⎦

This kernel is given by the subtraction of the Lapla-
cian of the image from the image itself.

The next operation is driven with Canny to detect the
edge in the image, which finishes the current image-
processing stage. The results of the operations listed
are shown in Fig. 4.

Although many of the lines revealed by Canny can
be used to align the image, the target is a couple of
lines above and perpendicular to the digits of the rect-
angular display.

With that in mind, Hough Transform for lines is ap-
plied with a vote threshold of 100. The targeted lines
are found, and the angle of its deviation with regard to
the vertical is obtained.

Because the 2-D rotational matrix algorithm, used to
rotate the image appropriately, has the horizontal axis
as a reference, the angle found with Hough Transform
is compensated with regard to the abscissa. This way,
the angle correction of the frame becomes possible,
and the image is straightened. Figure 5 illustrates the
straightening process.

4.1.2. Region of interest determination
The ROI is defined as the rectangular box in the

water-meter display wherein the sequence of digits that
represents the water consumption resides. To get to this
rectangular region, a vast series of image processing
operations have to come about.

First, the geometric aspect of the water-meter dis-
play is exploited in hopes of shrinking down the prob-
lem. As the water meter has a circular display that sur-
rounds the ROI, the goal is to detect that circumfer-
ence.

To do that, the angle-corrected, monochromatic im-
age is taken as input and once more submitted to a Bi-
lateral operator (d = 9, σclr = 10 e σspc = 10). Next, a
conventional Binarization operation is employed with
a high threshold to filter the high-frequency pixels. The
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Fig. 4. Preparation for hough transform for lines.

Fig. 5. Frame angle correction through hough transform.

contours of the resultant segmented image are found,
and the one that most resembles a minimum enclos-
ing circle is picked out. This circle tends to represent
the inner radius of the display, which is Ri = 29 mm
radius-wide. Because this radius does not englobe the
whole ROI, the external circumference of the water
meter, which is Re = 32.5 mm radius-wide, has to be
considered. As a result, the previous radius is forced to
have a length increase of about 10% and then is drawn
in the picture, as shown in Fig. 6.

Next, a new binary image is originated with the
same center and radius of the circle drawn previously.
Inside of the circumference, all the pixels are assigned
white (255), and the outer pixels receive black (zero).
This binary image is then involved in an and opera-
tion with the angle-corrected, monochromatic one. At

this stage, the problem of encountering the ROI has de-
creased significantly in terms of image-convolutional
size and present features.

To further simplify the problem in size and feature
extension, the height of the point (line) yielded by the
Hough Transform for lines is taken into consideration
to run an analysis of light-pixel density over the re-
duced, semi-circular image.

In that direction, the image is divided into two parts
through the Hough Transform line. The analysis of
light-pixel density evaluates which of the parts has a
higher summation in the magnitude of shades of gray.
The component pixels of whichever part is the whitest
are assigned zero. This way, the remanding part is a
smaller semi-circle wrapping the ROI, which can be
seen in Fig. 7.

After removing most of the irrelevant information
from the captured image, the region where the water-
consumption counter is in the display is roughly the
only one that has a significant concentration of high-
frequency pixels. So the goal is to make the very few
segments of low frequency vaguely disappear in the
rectangular counter area, which is accomplished by
employing a convolution of the reduced, remaining
monochromatic image with a reasonably large mean
kernel of 30 × 30.

Subsequently, the image is subjected to a median
threshold to reveal a somewhat rectangular region
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Fig. 6. Detection of the minimum enclosing circumference that englobes the ROI entirely.

Fig. 7. Removal of unnecessary information from the image.

around the surroundings of the consumption counter
as a segmented white object. An adaptive threshold is
used to determine the edges of the desired object. Al-
though the response of that operation can produce a lit-
tle coarse, thick borders, it is already enough to obtain
the contours. A rectangle is then generated in a circum-
scribed way and drawn in the image. That means the
region of interest (rectangle) is finally discovered, as
presented by Fig. 8.

If the ratio between the base and height of ROI ex-
ceeds 2.6, the monochromatic semi-circle undergoes
a histogram equalization. That way, the image inten-
sities are adjusted in such a fashion that the contrast
is enhanced throughout the image. Once that happens,
the process goes back to that same sequel of operations
already described, from blurring to drawing the rect-
angle that eventually surrounds the new and intended
ROI.

4.1.3. Upright state verification
This step is a very straightforward one, but also nec-

essary, especially if the camera is not well-positioned
or the best position for it happens to be upside-down
when installing.

What the metering algorithm has done so far does
not require the camera to have captured an upright
frame. That said, even if the captured frame is upside-
down, the algorithm does not turn out finding a
ROI other than the rectangular region of the water-
consumption counter. However, the ROI must be up-
right for further operations. After all, an irresponsible
extraction of upside-down numbers would most likely
output mistaken consumption values in the OCR car-
ried out with any classifier in use later on.

Given this circumstance, the solution lies in the
same light pixel density analysis used to eliminate the
irrelevant part of the exploited display circumference,
yet keeping the ROI and its surroundings. But, in-
stead of blacking out the image, the metering algo-
rithm turns back to the circular monochromatic image
and takes advantage of that light-pixel density analysis
to determine whether an image rotation is necessary.
Grounded in the assumption that the concentration of
whiter pixels must be at the top, the image is rotated
180 degrees around its central pixel if it is found to be
at the bottom. Otherwise, the image is kept the same,
with no rotation.
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Fig. 8. Localization of the region of interest.

Fig. 9. Cropped ROI.

After making sure the image is upright, the ROI is
properly cropped and, as of then, referred to in order
to execute further operations. The cropped ROI is in-
troduced in Fig. 9.

4.1.4. Digit detection
In the first place, global histogram equalization is

applied in the image with the intent of raising the im-
age contrast and eventually fading any glare.

As there is still irrelevant information inside the
ROI, it still needs to be diminished in a matter of height
to make the digit identification processes more effec-
tive, controllable, and clear.

So Canny is utilized to locate the top and bottom
boundaries of the rolling digit units in the ROI. For
that, the lower and upper thresholds are calculated
based on the median of the monochromatic ROI. They
are, respectively, the minimum between 0 and the im-
age median decreased by a factor of 33% and the max-
imum between 255 and the image median increased by
a factor 33%.

With the detection of the edges done, to find out
where to crop the ROI at two different heights, Hough
Transform for lines is used with a vote threshold of
100. While Hough Transform loops through the image,
a total of 10 lines or whatever number of lines smaller
than that found in the image is segregated into two
groups in a function of their position with regard to the
image centroid’s height. The two groups are the upper
and lower lines. The top and bottom cut-off points are
derived from whichever horizontal line from each of
the groups that are the closest to the ROI centroid. The
new cropped region of interest can be seen in Fig. 10.

Fig. 10. ROI with height reduction.

Fig. 11. Discovery of objects (digits).

The next step is to segmentize the new ROI to pro-
duce clear and contiguous objects (digits) on the fore-
ground with the least amount of noise. A 5 × 5 Gaus-
sian blurring filter is convoluted three times. Besides,
a 5 × 5 Bilateral filter is applied with sigmas at 100,
both in the color space and in the coordinate space.

Then, a Laplacian operator is employed. This oper-
ator produces float signed numbers as pixel intensities
in OpenCV, which are corrected by the use of a Bina-
rization operator with a threshold at zero. After that,
morphological operations with a flat 2 × 2 kernel are
utilized. The false objects are removed with an open-
ing operation; the little holes in the real objects are
suppressed with a closing operation. By doing that, the
objects are also reshaped back into their previous body
thickness. Figure 11 shows some stages involved in the
process of discovering the objects.

After that, the Canny algorithm takes place one
more time over the closed image. This time, the lower
and upper thresholds are 1000 and 1500, respectively.

As expected, the set of objects is composed of dig-
its and gaps between one another. The presence of the
intermediary, gear-shaped objects is unfortunately in-
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evitable; there is no way to avoid them in the edge de-
tection process. And it turns out that Canny made their
edges as noticeable as the intended digits’, which aug-
ments the complexity of the digits detection.

All of the most external contours from the top left
until the right bottom are then compiled into a list.

Afterward, an algorithm that filters only the digit
contours, leaving behind everything else, is done in
two phases.

In the first phase, a scanning is conducted in the list
of contours L to verify if the ratio λd , defined by the
digit’s height divided by its width, is a minimum of 1.5
for digits other than 1 and a maximum of 4.5 for the
digit 1, since the digits’ heights are around 4 mm and
the width, approximately 2 mm, with the exception of
the digit 1, whose width is about 1 mm. Moreover, the
contour has a higher likelihood to be a digit if its height
is from 50% to 90% tall, regarding the ROI’s height. If
a contour satisfies the above constraints, it is assigned
to a subcategory list L′, which is sorted in ascendant
order in terms of the x coordinate of each contour. In
other words, the passing contours are organized in list
L′ from the left to the right of the ROI.

In the second phase, if the new list is not empty, an-
other scanning is run throughout this list (L′). In the
scanning process, the x coordinate term of the horizon-
tal center from the current contour Ci and the posterior
Ci+1 are taken and respectively checked if greater than
8% and lower than 98% of the ROI’s width – respec-
tive start and end of the probable zone wherein digits
are present. After that, two propositions are made and
verified:

a) the distance between the centers of Ci and Ci+1

is shorter than a minimum distance dmin, equiva-
lent to 8% of the ROI’s width;

b) the current index i is not equal to two subtracted
from the length of the new list.

If the answers for a) and b) are no, the contour Ci

is assigned to another new list Lf , which is the one
created to store filtered digit contours. Otherwise, the
contour Ci+1 is removed from the current list L′ being
scanned, the variable that stores the maximum num-
ber of iterations to scan the whole list is decremented
by 1, and the new contour Ci+1 in the updated list is
computed. Then, two other propositions are evaluated
here:

c) the distance between the centers of Ci and Ci+1

is shorter than a minimum distance dmin and
longer than a maximum distance dmax, respec-

Fig. 12. Result of the digit detection.

tively equivalent to 8% and 16% of the ROI’s
width;

d) the x coordinate term from the horizontal center
of the contour Ci+1 is smaller than 98% of the
ROI’s width.

If both of these propositions are true, the contour
Ci is appended to the list Lf . From there, the index
i increments to go to the next iteration that starts at
the very beginning of the second phase of the digit-
detection algorithm. This process repeats until it finds
the second to the last digit – the sixth one, in this case.

To obtain the last digit (seventh), another compar-
ison takes places recursively, regarding Ci and Ci−1
this time. The reason why is that the last element at-
tached to the list Lf is Ci−1, leaving Ci aside (sup-
posed to be the last element).

In the particular case of the last element, the two
subsequent propositions are analyzed:

e) the distance between the centers of Ci and Ci−1
is shorter than a minimum distance dmin and
longer than a maximum distance dmax, respec-
tively equivalent to 8% and 16% of the ROI’s
width;

f) the x coordinate term from the horizontal cen-
ter contour Ci is smaller than 98% of the ROI’s
width.

If both are true, Lf then receives Ci , its last element.
Finally, if the size of Lf is equal to the desired amount
of digits to be found, i.e., seven, all of the contours car-
ried by it are drawn in green rectangles over the ROI.
Figure 12 illustrates the detection of digits.

It is important to mention that, sometimes, depend-
ing on the positioning of the least significant rolling-
digit unit, the shadow of its gear in the segmented ROI
is filtered into the list L′ as a false digit. However,
propositions e) and f) make sure this false digit does
not get assigned to list Lf .

4.1.5. Digit classification
The digit classification takes place if, and only if, the

desired amount of digits (seven), which integrates the
consumption value, is detected in the digit-detection
phase.

Whenever all the wanted digits are detected, the
algorithm looks for the Python version in execution,
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whether 2 or 3, and the kind of classifier model among
kNN, SVM, and MLP chosen for the optical number
recognition. This way, the model originated from the
machine-learning training and cross-validation pro-
cesses of the chosen classifier, in a correspondingly-
specific Python version, is loaded from their respective
file.

At this point, the snippets of the wanted seven dig-
its are resized accordingly with a standard digit dimen-
sion picked out of 10 × 20.

Each snippet is input in the prediction model. Itera-
tively, every snippet is checked whether unacceptably-
skewed by utilizing image moments, and they are
straightened if so.

Then each of them undergoes a Histogram of Ori-
ented Gradients (HOG). In this process, each snippet is
broken down into four cells, and values of magnitude
and angle in each cell are divided into sixteen bins.
As the HOG features are histograms, Hellinger Dis-
tance, under RootSIFT to some extent, is used to pro-
duce a vector with sixteen feature descriptors per snip-
pet, with which the predictions are made for the whole
set of numbers.

The water consumption usage predicted is trans-
formed into a float number with three decimal places,
indicating the amount of water in cubic meters.

At each usage prediction, the system UTC times-
tamp is regarded and saved, as well as the predicted
value, which enables the smart machine to come up
with an estimation for the instantaneous water flow and
the average water flow.

There are three rules of plausibility employed that
determines if the algorithm should proceed with fu-
ture operations as the water consumption value is pre-
dicted. The rules are the following:

i) The current prediction value must be bigger than
the previous one;

ii) The volume variation between the current mea-
suring and the previous one must be bigger than
a minimum incremental consumption volume of
interest specified; and

iii) The estimated instantaneous flow must be
smaller than or equal to the nominal water flow
of the meter under supervision.

If every of the above rules is attended and the UTC
timestamp is always progressive at every iteration, the
program will save both the cropped and digit-detected,
segmented ROIs (Figs 9 and 12(b)) with a JPEG com-

pression factor of 75%, as well as the processed RGB
image of the instrument’s display (Fig. 8(c)), for fur-
ther presentation of customer history consumption.
In addition to that, metering metrics abstracted from
the prediction process such as float-point consump-
tion value, UTC timestamp, and derivatives are also
stored in two files, differently. The first file is always
re-written with the present metering metrics that be-
come the previous ones at the consecutive iteration,
which assures a back-on-track operation in case of a
system outage. The second file is a log, history one that
has the metering metrics appended to itself, and is the
object of future data analysis.

In the situation wherein the current predicted con-
sumption value does not change and all the other
prepositions are true, only the re-writable file, respon-
sible for storing just the very present/previous meter-
ing metrics, is updated. Otherwise, none of the files are
modified.

4.2. Machine learning

All the data set necessary to conduct the machine
learning is generated through steps 1) to 4) of the me-
tering algorithm. Such pipeline is executed recursively
over a four-hour-long period of digit-snippet extrac-
tion, in which it gathers a reasonably-big amount of
data samples from the counter of the water-meter dis-
play. At the moment of extraction, the segmented digit
snippets are resized to 20 × 10. When the extraction
process is over, the data samples are diligently reduced
in quantity and separated into classes of 500 snippets
each, from 0 to 9, including digits with 50% of its
representation hidden by the spin of their rolling gear

Fig. 13. Machine-learning image data set.
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unit. The resulting data set is then put together into a
1800 × 1250 only image, presented by Fig. 13.

Next, a data preparation process for the training
stage aims to transform all the 5,000 digit snippets into
5,000 vectors of feature descriptors. This data prepara-
tion is accomplished in three steps.

Fist, a permutated vector with the size of the big
data-set picture is created by using a number picked
out as a random state seed to do the index permuta-
tion throughout that vector. The non-duplicate random
values (no duplicates), i.e., random indexes from 1 to
5,000, of such permutated vector are used to random-
ize the vector of digit snippets as well as the vector
of respective labels, keeping the previous correlation
between them unaltered.

Secondly, each digit is checked whether its incli-
nation is admissible, which is done using image mo-
ments. If the absolute value of the second-order cen-
tral moment of the image (translation invariant) in y is
lower than 0.01, the digit snippet is kept the same. Oth-
erwise, the skew angle is calculated in terms of second-
order central moments, input into a 2-D rotation ma-
trix, which then is used to correct digit-snippet skew-
ness.

Thirdly, HOG is employed in the list that contains
5,000 digit snippets, one at a time. It utilizes Sobel op-
erator to obtain image edge components in x and y.
Then, each vectorized pixel undergoes a coordinate-
system transform from Cartesian to Polar, creating one
vector of magnitudes and another one of angles. Both
image vectors are broken down into 16 bins, and the
angle vector is normalized in a feature-scaling manner,
bringing the values in a new range from 0 to 16. After-
ward, both vectors, still carrying an image-format pat-
tern, are divided into four cells. Each bi-dimensional
values of the two vectors (magnitude and angle) are
multiplied, respectively, matching their indexes, finally
forming a histogram of 16 bins. From there, the digit-
snippet histogram is normalized ([0, 1]), the Hellinger
Distance is applied, and the Frobenius norm (L2)
is computed. This somewhat modified RootSIFT al-
gorithm yields the ultimate sixteen-feature-descriptor
sample vector.

Next, the supervised learning starts by separating
90% of the 5,000 feature-descriptor samples randomly
mixed in the vector in order to train the machine-
learning algorithms, namely Support Vector Machine
(SVM), k-Nearest Neighbor (kNN), and Multi-Layer
Perceptron (MPL), which are exploited to perform the

digit recognition. The remainder 10% are taken to run
cross-validation and test on the models of the three
mentioned machine-learning algorithms. For both of
the subsets, their respective labels are accordingly sub-
divided.

The calibration of hyperparameters for each classi-
fication algorithm is then carried out in the training
process. For that, the implementations of the machine-
learning algorithms from Scikit-Learn Developers li-
braries are leveraged.

Each model’s cross-validation achieves a satisfac-
tory fitting to the recognition problem, by putting
together adequate and right parameters. The final
tuned hyperparameters of the models are shown sub-
sequently.

The accuracy of each model is verified and study
through a confusion matrix, generated at the end of the
training process, and a picture with the 500 test sam-
ples (digit snippets), indicating in red which predic-
tions among them are faulty as in Fig. 14.

The trained models are saved into Pickle binary
files. Then, the corresponding file of whichever model
defined to predict the water consumption is loaded ev-
ery time the metering algorithm is called.

4.2.1. Support vector machine
The best error penalty C and the kernel coefficient

γ found are the following:

C = 2.67 and γ = 5.383

The remaining hyperparameters of the algorithm are
the default ones. And it is important to highlight that
the SVM algorithm used from Scikit implements an
“one-against-one” approach for multi-class classifica-
tion.

4.2.2. Multi-layer perceptron
The hyperparameters calibrated are the hidden lay-

ers sizes Nc, the initial learning rate a0, the random
state erand, the tolerance for optimization δopt, and the
penalty for L2 normalization α. To train the algorithm
in a back-propagation fashion, the values of such pa-
rameters are the following:

Nc = 380, ao = 10−2, erand = 1,

δopt = 10−5, and α = 10−5

4.2.3. k-nearest neighbor
The only hyperparameter chosen here was the num-

ber of neighbors to regard to, which is k = 3.
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Fig. 14. Test samples for each machine-learning model after the training process with a random state, Srand = 123 for vector permutation.

4.3. Computer vision machine zeroing

The zeroing of the computer-vision machine needs
to be executed immediately after the installation of
the automation module upon the water meter instru-
ment. Its purpose is to establish a starting point for the
machine in terms of water consumption volume and
time.

The zeroing algorithm allows better positioning of
the module, through real-time visualization of the
computer-vision processing, to achieve a correct digit
localization in the display. Furthermore, it handles the
initialization of important files that deal with installa-
tion records, water consumption history, and tempo-
rary variables.

To understand the zeroing algorithm workflow, con-
sider the alluded two main tasks as follows.

4.3.1. Computer vision visualization
The computer-vision visualization uses the pipeline

from steps 1) to 4) of the metering algorithm to set up
the automation module. In a debug mode, this pipeline
is executed and intends to show on a screen the out-
come of the image processing and the detection of dig-
its utilizing images such as in Figs 5(b) and 12(b). The
real-time exhibition of both images aids in verifying a

better angle-position adjustment to assure the detection
of all the digits in the water-meter display.

4.3.2. Initialization of software files
The initialization of the software files takes advan-

tage of the exhibition of the water-meter display so that
the current initial consumption value can be read.

The algorithm launches a terminal in which it asks
to input the consumption value seen in the water me-
ter. After that, it starts two quick processes. When both
of them end, the program is terminated, and the auto-
mated metering is conducted by Crontab, indefinitely.

The first process saves an image of the actual ROI,
such as in Fig. 9, naming the image file with the mo-
mentary UTC timestamp (Unix time). Besides that, it
creates a file in which it stores UTC time and date, the
initial consumption value, and the ROI filename. This
file gathers information regarding the setup process;
therefore, the file is not modifiable.

The second process takes care of initializing a
temporary-variable file and a history-consumption
one. The first file is re-writable and has the UTC times-
tamp and instantaneous consumption. The second file
holds the following metering metrics, which are fed
into it every time the detection of all digits is success-
ful and consumption value is unique:
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Fig. 15. Software workflow: metering algorithm with web-page update.

– UTC date and time, Timestamp, Consumption
(string), Instant usage (float), Volume variation
(liter), Time variation (second), Instant flow (L/h),
Average flow (L/h), and Number of attempts

5. Software implementation

The programming paradigm employed to build the
software is mostly procedural programming, although
OpenCV itself, as well as the libraries from Scikit
Learn applied as machine learning tools, is fundamen-
tally object-oriented.

The computer-vision software created also has com-
patibility with Windows (10, 64-bit) and macOS, even
though developed on a Linux platform, which is the
target for generally being adopted as the operating sys-
tem on ARM (Advanced RISC Machine) mini boards.
The prerequisite to run the software is having installed
a Unix shell application and Python (either 2 or 3) on
the computer.

The software is constituted of two scripts by which
everything is done. The first script is a setup one that is
used likely just once, immediately after the computer-
vision machine is physically installed upon the water
meter. All it does is to handle the execution and termi-
nation of programs needed to perform the computer-
vision machine zeroing.

The second script is accountable for carrying out
the metering algorithm workflow, which implements

the computer vision and OCR to automate the water-
consumption metering. Moreover, this script updates a
web page with the new metering data available from
the very last metering. This web page is the interface
that turns possible the supervision of the water con-
sumption remotely. The whole workflow of the second
script is presented in Fig. 15.

To run the second script, Crontab, or any other task
scheduler alike, is utilized. The task scheduler is input
with a time that dictates how soon to re-run the script
periodically.

The employment of a task scheduler is very bene-
ficial to the computer-vision machine in a matter of
autonomy. If there is an outage, for whatever reason,
causing an unexpected shutdown in the machine, it
can reboot itself and get right back on track with the
water-consumption metering, time to time as desig-
nated, when the energy is back.

In this context, the temporary-variable file in which
time and consumption value are re-written is crucial as
well for the system autonomy hallmark. Through this
file, the system can always have a notion of the very
previous metering metrics regardless.

As far as the arguments passed in for both of the
scripts, the user can specify which version of Python
to execute the programs. Besides that, another input ar-
gument is the camera device identification. If nothing
is provided when calling the scripts, the machine as-
sumes that the default arguments are intended, which
are Python 3 and camera identification zero.
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In the particular case of the second script, there is
a third argument that is reserved for assigning which
of the three machine-learning models to utilize for
the consumption-value prediction. The argument must
be provided according to an enumerate-list fashion. If
nothing is provided, the machine uses SVM as the de-
fault model.

Inside the main function of the metering algorithm,
called by the second script, the computer-vision ma-
chine is purposely given a chance of 5 attempts to
detect all the digits in the display that compose the
consumption value. Each turn ends whenever any step
from the start until the digit detection phase of the al-
gorithm fails. When there an execution failure in the
workflow between both of the mention stages, the main
function restarts. If the machine is not able to find all
the digits by the fifth try, it waits for the subsequent
execution of the second script by the task scheduler.

Exception handlers are spread all over the metering
algorithm, from frame-skew correction to digit classi-
fication. So taking into consideration that the software
needs a relatively light environment for its computer
vision to work properly, any sudden lack of sufficient
light does not impact negatively in its performance.
The software even saves energy by not going further
with the computer-vision processing whenever an ex-
ception arises.

When it comes to the upload of metering images
and metrics into the database, at every iteration, the
RGB, cropped ROI is saved if 1) all digits are detected
and the clock is synced with UTC server, 2) the plau-
sibility tests are satisfied, and 3) the metering value
has changed. Also, the history file is fed with meter-
ing metrics – same is true for the temporary-variable
file, but only the most current set of metrics remains
in it from one iteration to another. Such ROIs and file
are made available online to the user to consult any
consumption event of interest or to analyze and predict
water-consumption history through graphics.

At the end of the workflow of the second shell
script, there is a Python routine called to update an
HTML file. The routine looks for parameters of time
and volume in the temporary-variable file, as well as
the digit-detection ROI and the water-meter picture, to
fetch them and update the web page as seen in Fig. 3.
Thereby, the automatic-metering supervision via Web
can be done wherever and whenever by the user.

6. Results

In order to finish the automatic metering solution,
on the one hand, it was necessary to choose a machine-
learning model among SVM, kNN, and MLP to carry
out the OCR of the water meter. A cross-validation
process was then driven with the mentioned models to
highlight their performance likelihood and reveal the
most likely better model to be employed in the OCR in
terms of recognition success rate.

On the other hand, as far as software performance,
an evaluation of each machine-learning model embed-
ded alone in the computer-vision software was also
led. Several tests were run with the different versions
of the software, and the total real and user times of
each automatic metering were observed and taken.

From the recognition and runtime assays, SVM was
found to be the most appropriate model for the re-
mote metering supervision of the software because of
its higher success rate of recognition and its lower run-
time when compared to the kNN and MLP models.

With the software utilizing SVM for OCR, an exper-
iment was conducted on the test bench, where the wa-
ter meter was. As seen in Fig. 16(a), the water meter’s
nominal flow was 750 L/h. The test bench (Fig. 16(b)),
in turn, was able to deliver a constant flow charge of
approximately 144 L/h by its washer-drain radial pump
in normal conditions. That means that the least rolling
gear of the water meter kept rolling from one digit to
another, marking a new liter consumption, every 25
seconds.

The experiment consisted of letting the computer-
vision machine run its automatic metering for 26.3
hours. Environment artificial light was used for most
of the period, except when purposely turned off to test
the automatic metering device. The system had only
five attempts per call, by the task scheduler, to find all
digits in each captured frame. Altogether, 773 mea-

Fig. 16. Elements with which the experiment was led.
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surements were successfully collected within the men-
tioned time. Therefore, the data analysis to be done re-
gards to the space sample comprising these 773 meter-
ing vales and their respective derivatives such as time
variation �t , volume variation �V , flow estimation
Qest, moving-average flow Qma, and the number of
metering attempts Noa.

6.1. Validation of the machine-learning models

After the hyperparameter tuning of the machine-
learning models, they were an object of cross-vali-
dation/test to study their digit-recognition effective-
ness. In order to do that, the vector of 5,000 feature-
descriptor samples was permuted 10 times. Every time
a unique vector permutation took place as a result
of the assignment of a new and different random
state, and then the SVM, kNN, and MPL’s models
were trained with the 90% of the samples and cross-
validated with the remaining 10%. The outcome of the
cross-validation is presented in Table 1.

Overall, the three means computed suggested that
SVM was the best out of the three models, with a
recognition success rate of 99.4%. Behind, the second-
best rate was found with KNN (98.3%), and the third,
with MLP (97.6%).

The accuracy level of SVM recognition perfor-
mance over the MLP’s was somewhat unexpected and
caused some strangeness. Although implementing the
“one-against-one” approach for multi-class classifica-
tion, SVM is yet a linear algorithm, and it should not
have been better than MLP in a level of accuracy;

Table 1

Cross-validation of the machine-learning models with various ran-
dom states

Random state Error [%]

SVM kNN MLP

50 1.0 2.2 2.4

100 1.0 1.0 1.8

150 0.4 0.8 2.4

200 0.4 1.0 1.2

250 0.6 0.6 3.4

300 0.6 1.2 3.2

350 0.6 1.8 1.8

400 0.4 1.8 1.8

450 0.4 1.4 2.6

500 1.0 1.6 3.0

Mean 0.6 1.3 2.4

however, the reverse would have been true and more
understandable because of the non-linear aspect of
MLP. The reason for that is probably linked to the fact
that there was no testing stage for the peculiar model,
but only training and cross-validation. There is also
a chance the MLP model’s hyperparameters may not
have been at their best tuning.

6.2. Software performance

The software performance was analyzed with re-
gard to each of the three machine-learning models.
The software assay was carried on a Raspberry Pi 2
Model B (900 MHz quad-core CPU, 250 MHz GPU,
and 1 GB RAM shared with GPU) running Arch Linux
with Xfce. Instead of a Pi Camera, a Microsoft Life-
cam Cinema (webcam) was plugged into the board via
USB, and the resolution of the captured frame was al-
ways OpenCV’s default 640 × 480. Each model got to
be run 10 times through the software, which had five
attempts to find all the digits at every call by the task
scheduler. Every time the automatic metering was suc-
cessful, the real and user times were collected. Table 2
shows the data gathered throughout the various execu-
tions of the software.

According to the data acquired, the SVM model is
most suitable for the software application because the
ARM platform took nearly nine seconds on average to
carry out the whole processing and yield the metering
value automatically.

Even though a nine-second period seems to be sig-
nificant for a computer board to be executing the water

Table 2

Software execution time with each of the three machine-learning
models

Test No. SVM (s) MLP (s) kNN (s)

Real User Real User Real User

1 16.6 13.3 16.7 13.5 16.2 12.5

2 13.1 7.4 14.7 10.4 16.5 13.3

3 14.0 9.0 12.9 7.5 16.7 13.4

4 16.6 13.4 15.0 10.0 16.5 13.2

5 13.1 7.5 13.1 7.7 14.0 9.0

6 13.0 7.4 15.7 11.8 16.4 13.2

7 13.0 7.7 13.0 7.5 13.1 7.7

8 13.1 7.6 14.1 9.1 16.4 13.1

9 13.0 7.6 16.5 13.5 16.6 13.4

10 14.0 9.0 13.0 7.6 16.2 13.0

Mean 13.9 9.0 14.5 9.9 15.9 12.2
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metering, it is important to bear in mind that the soft-
ware had five attempts to find all the digits. Depending
on the digits’ positioning and rolling speed in the wa-
ter meter, the computer-vision machine can take up to
the fifth attempt – or not even be successful whatsoever
with all the chances given.

From a different perspective, a real time of 13.9
seconds on average, considering I/Os and eventually
elapsed-time pieces from other processes, implies that
the update period specified in Crontab should not be
around 15 seconds. Otherwise, the ARM platform
would be overloaded with such a use of its operational
resources. In addition to that, the constant processing
overload could shorten the system’s lifetime and also
drain much more energy, which goes against the IoT
principle of the energy economy.

6.3. Remote metering supervision

The remote, automatic metering was achieved by
applying SVM through the computer-vision software.
The task scheduler used to invoke the software was
Crontab, and the update time set up within it was one
minute.

A small sample of the history file used to keep
track of all the successful metering performed by the
computer-vision machine is introduced in Fig. 17. The
metering metrics shown can be accessed online for
water-consumption supervision by the user. Addition-
ally, the web page in Fig. 2 is also used for remote su-
pervision.

It is worth mentioning that, as designed to do, the
software did not collect any repeated metering value.
Just unique metering values were input in the history
file.

Fig. 17. Small sample of metering metrics from the consumption
history file.

Table 3

Statistics measurements of the experiment space sample

�V [L] �t [min] Qest [L/h] Qma [L/h] Noa

x̄ 4.49 2.04 128.65 128.09 2.42

x̃ 2 1.03 121 128 2

mo 2 1 118 118 1

s 6.31 2.83 25.84 15.49 1.41

min 1 0.93 15 58 1

max 141 63.93 593 360 5

6.4. Experiment data analysis

In the experiment conducted for 26.3 hours, the soft-
ware application was able to gather a space sample
of 773 metering values and derivatives. That means,
at each successful and unique water-consumption me-
tering, besides reading the momentary consumption in
the water meter, the software would also store the time
variation �t , the volume variation �V , the flow es-
timation Qest, the moving-average flow Qma, and the
number of metering attempts Noa. Below, in Table 3,
are some statistics measurements of the whole space
sample for every metering derivative.

To better understand how the software application
behaved in the experiment and support the statistics
and likelihood behind its performance and functional-
ity, the data analysis is broken down into four sections:
1) water usage, 2) volume and time variation, 3) flow
estimation, and 4) number of metering attempts.

6.4.1. Water usage
The water usage was supposed to be 144 L per h

in the test bench, which was its pump highest flow
charge delivered in normal conditions. In counter-
part, employing a linear regression upon the water-
consumption scatter over time, Fig. 18 shows that the
flow consumption was actually about 131.8 L/h. That
reveals a relative error of 8.5%, which could be ex-
plained by the heating of the pump’s motor over time.
That might have diminished the flow charge delivered
to the pipes. Despite that, assuming that there could
have been an error of such dimension, the computer-
vision machine detected the flow in the pipes reason-
ably well.

Another finding in Fig. 18 that draws attention is the
vast and abrupt change in volume variation �V situ-
ated at the points in time 15 and 20 (hours). Towards 19
hours since the start of the experiment, 141-liter con-
sumption is registered from one metering to another –
the maximum ever found. Such a variation happened
because the lights were turned off for approximately
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Fig. 18. Automatic metering behavior throughout the experiment.

one hour, generating a volume variation of 144 liters
theoretically. The absence of artificial light then dis-
closes a weakness of the computer-vision system: the
need for light to work.

6.4.2. Variations of volume and time
As the computer-vision machine would detect and

read unique, new water-consumption values, the
amount of volume variation and the time elapsed from
one metering to another, respectively �V and �t ,
would also be computed and input into the history file.
At the end of the experiment, it was noticed that the
automatic metering registered some scattering varia-
tions of volume and time, including the 141 liters and
64 minute due to the substantial concentration of scat-
ters in the intervals (0, 14] liters and (0, 7] minutes
respectively, according to the histograms presented in
Fig. 19(a). In the histograms, bins which accumulated
the most significant amount of volume and time varia-
tions were the first from the left ((0, 2] liters and (0, 2]
minutes), indicating a tendency of the software to de-
tect variations of volume and time lower than two lit-
ters and less than two minutes most of the time.

As a matter of fact, by creating a continuous Weibull
distribution of the volume and time variations samples
as in Fig. 19(b), other inferences were possible to be
made. Under the experiment’s constraints, the prob-
ability distributions suggest that the computer-vision
machine can detect volume and time variations lower
than ten liters 90.56% of the time and less than five
minutes 93.18% of the time.

6.4.3. Flow estimation
The approach used to estimate the water flow at ev-

ery successful and unique metering was to divide their
respective �V by its �t . Qest was equal to the float
quotient of that division, whereas the mean between
the current and previous estimated flows was assigned
to the moving-average flow variable Qma.

The flow estimation within the course of the experi-
ment is displayed in Fig. 20(a). As the hydraulic circuit
is expected to have a constant flow of nearly 144 L/h, a
few scattering traces of Qest, by a difference of at least
±50 L/h, reveals that the SVM model may have mis-
taken in the respective predictions of water consump-
tion.

But the real concern about the digit-recognition per-
formance of the machine-learning model comprises
the interval between 22 and 23 h in the time axis,
which corresponds to the interval from 198.21 to
198.34 m3 in the usage axis from the linear regression
equation u(t) (Fig. 18). In the mentioned period, there
were two explicit prediction errors, poorly estimating
383.3 L/h and 593 L/h of water flow – both variations
were not prevented by the third plausibility rule, as the
meter’s nominal flow is 750 L/h (Fig. 16(a)). Through
the history file of the water usage, it is seen that it
jumped from 198.265 to 198.278 m3 in 122 seconds
and from 198.228 to 198.238 m3 in 60 seconds, re-
spectively. The first jump shows that the SVM model
probably predicted digit 6 as 7 and digit 7 as 8, and
digit 0 as 8 in the second jump.

In counterpart, the input moving-average flow val-
ues suffered smooth magnitude variations along the
experiment as already expected. In fact, as visualized
in Fig. 20(b), although Q̄est and Q̄ma are practically
the same (128 L/h), their standard deviations differ by
about 10 units. That is, the flow estimated by the mov-
ing average is within 82 and 175 L/h in 99.7% of the
time, against 93.1% of the time for the simple flow-
estimation approach. Therefore, the moving-average
estimation is the most suitable and reliable as a flow
indicator.

6.4.4. Number of metering attempts
At every call by Crontab, the number of attempts

the software had to take to find all the digits in the
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Fig. 19. Statistical analysis of volume and time variations.

picture of the water meter was recorded. Such number
(Noa) would vary in a range from one to five. In case
the recognition was not successful, the software’s new
set of tries would be in roughly 60 seconds from then,
which actually could take less depending on how many
attempts had just been used.

A histogram of the number of attempts from each of
the 773 successful and unique metering values is pre-
sented in Fig. 21(a). From the histogram, it is perceived
that the software accomplished the complete detection
of digits with no failure (at the first time) only 35.7% of
the time. The remaining part of the histogram appears
to be arranged in a geometric-progression pattern.

As the software has the same probability of full-
detection success from trial to trial, the histogram of
the scatter of the number of attempts was modeled
with a Geometric distribution function (Fig. 21(a)).
This way, it turned possible to study the computer-

vision machine’s number of attempet in an extended
range. Figure 21(b) highlights that, if the only con-
straint changed in the experiment was Noa = 10, the
computer-vision machine would have been able to per-
form the full digit detection by the 10th trial with a
likelihood of 97.76%, against 87.4% by the 5th trial.
Upon the successful-metering likelihood difference of
barely 10%, perhaps the addition of five more trials in
the software would not be worth the fairly longer re-
source overload of the computer board.

From another perspective, the light was off for 64
minutes. Subtracting this period from the experiment’s
total time, the computer-vision system acquired 773
metering values, whereas it should have done 1514
ideally – with a call scheduled every one minute.
Therefore, the solution designed roughly collects me-
tering values 50% of the time.
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Fig. 20. Performance of the simple and moving-average flow estimators.

7. Conclusion

This work presents a new automation architecture
for analog metering digitalization through computer
vision. The elaborated method recognizes the digits of
an analog water meter to obtain a momentary water
consumption data through Optical Character Recogni-
tion (OCR), in addition to estimating the water flow
in the instrument and making the supervision process
available online, remotely.

Primarily, the detection of the digits was performed
in two steps. First, the image was aligned by correct-
ing its skew angle with Hough Transform, and the wa-
ter meter display and usage counter were found based
on its circular and rectangular shapes, respectively.
Second, edges were detected in the rectangular usage
counter by Canny, and the desired digits were filtered
based on the contours and specific rules of proportion
and distances with regard to the digits’ dimensions,
yielding the digits’ coordinates. By means of such co-
ordinates, the desired digits were snipped and isolated.

The digit snippets were grouped into a set of 5,000
samples to drive the process of machine learning with
the classifiers Support Vector Machine (SVM), im-

plemented in a “one-against-one” approach, k-Nearest
Neighbor (kNN), and Multi-Layer Perceptron (MLP).
After training and cross-validating the three machine-
learning models, their recognition success rates re-
vealed that the SVM model produced the lowest recog-
nition error rate (0.6%), whereas kNN and MLP mod-
els were respectively the second and third lowest. Fur-
thermore, as far as the execution time of the software,
SVM model took the shortest period (nine seconds),
followed by MLP and then kNN, which took the 12.2
seconds on average – the longest as expected due to its
computational complexity. Because of SVM model’s
outstanding performance in both recognition success
rate and software runtime, it was chosen to carry out
the OCR in the software.

As the metering values were acquired, it was found
that the artificial vision functioned relatively well
under certain conditions. With adequate light inside
the laboratory and a semi-transparent plastic material
around the webcam, used to avoid light reflection on
the water-meter display, the detection of the digits was
found to be angle-invariant from the camera position
within a certain distance.
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Fig. 21. Analysis of the set of the number of attempts and its geometric distribution.

From an experiment whose duration was longer than
24 hours, with a metering execution scheduled for ev-
ery one minute, it was possible to derive some impor-
tant information with respect to the computer-vision
machine’s metering ability and capability. Under the
constraints already mentioned, it can detect the flow in
the test bench’s pipes with a negative, relative error of
8.5%, arguably shorter, with the best flow estimation
done by a moving-average estimator, where 99.7% of
the time the detected flow lies between ±36% around
the average flow (mean). It can also detect volume and
time variations smaller than ten liters and less than five
minutes in more than 90% of the time, and achieve
successful metering of unique usage value, by taking
until the fifth trial, in 87.4% of the time. Overall, the
solution designed has a likelihood of recognizing and
collecting unique consumption values at a rate of 50%
of the time – in this case, every two minutes instead of
every one minute as initially set.

Thus, the proposed architecture and method were
validated for analog water meters, obtaining outstand-
ing results in the metering digitalization. The used
method could also be replicated for the metering au-
tomation of gas and electric meters and carries the po-

tential to be utilized in a metering-automation solution
kit to handle the mentioned kinds of meter instruments
with either analog or digital display.

The created solution at this point, though, can al-
ready deploy the Internet of water meters by publish-
ing metering data into a cloud server for further pro-
cessing, aiming for some predictive analysis and the
consumption management of the finite resource. This
way, possible leakage could be detected and better use
could be achieved, avoiding waste and improving the
resource-distribution service.

Future investigation may concentrate in two aspects:
automate the metering of other water-meter models
used by the Water Supply Company of Brasilia, Brazil
(CAESB), realizing the machine-learning process ac-
cording to the methodology elaborated; and propose
and implement a method of predictive analysis based
on the metering data stored on the cloud, perhaps uti-
lizing IBM Watson for this purpose.

The automated metering of the analog water me-
ter, performed by the computer-vision machine in the
test bench, can be accessed through the following
URL:http://medicaohidrometro.alvarestech.com. The
outcome of this framework allowed the validation

http://medicaohidrometro.alvarestech.com
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of the proposed architecture and method using non-
invasive and low-budget metering automation, requir-
ing no replacement of the water meter and utilizing a
Raspberry-Pi board with Arch Linux and OpenCV.
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