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de Médecine, Université Laval, QC, Canada
gDepartment of Neurobiology, Care Sciences and Society; Center for Alzheimer Research, Division of
Neurogeriatrics, Bioclinicum, Karolinska Institutet, Solna, Sweden
hUnit for Hereditary Dementias, Theme Inflammation and Aging, Karolinska University Hospital, Solna, Sweden
iDepartment of Neurosciences, Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium
jNeurology Service, University Hospitals Leuven, Leuven, Belgium
kLeuven Brain Institute, KU Leuven, Leuven, Belgium
lFaculty of Medicine, University of Lisbon, Lisbon, Portugal
mFondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
nUniversity Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra,
Coimbra, Portugal
oCenter for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal

1These authors contributed equally to this work.
∗Correspondence to: Daniela Galimberti, PhD, Department of

Biomedical, Surgical and Dental Sciences, University of Milan,
Milan, Italy. Tel.: +390255033847; Fax: +390255036580; E-mail:
daniela.galimberti@unimi.it.

2List of GENFI consortium authors in the Supplementary
Material.

ISSN 1387-2877 © 2024 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms
of the Creative Commons Attribution License (CC BY 4.0).

mailto:daniela.galimberti@unimi.it
https://creativecommons.org/licenses/by/4.0/


S188 M. Serpente et al. / Long Non-Coding RNA Profile in Genetic FTD

pDivision of Psychology Communication and Human Neuroscience, Wolfson Molecular Imaging Centre,
University of Manchester, Manchester, UK
qDepartment of Nuclear Medicine, Center for Translational Neuro- and Behavioral Sciences, University
Medicine Essen, Essen, Germany
rDepartment of Geriatric Medicine, Klinikum Hochsauerland, Arnsberg, Germany
sDepartment of Neurology, Ludwig-Maximilians Universität München, Munich, Germany
tGerman Center for Neurodegenerative Diseases (DZNE), Munich, Germany
uMunich Cluster of Systems Neurology (SyNergy), Munich, Germany
vDepartment of Neurofarba, University of Florence, Italy
wIRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
zDepartment of Neurology, University of Ulm, Germany
aaUniversity of Lille, Lille, France
abInserm 1172, Lille, France
acCHU, CNR-MAJ, Labex Distalz, LiCEND Lille, Lille, France
adDepartment of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC,
Canada
aeMcConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
af Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
agDepartment of Brain Sciences, Imperial College London, London, UK
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Abstract.
Background: Long non-coding RNAs (lncRNAs) play crucial roles in gene regulation and are implicated in neurodegener-
ative diseases, including frontotemporal dementia (FTD). However, their expression patterns and potential as biomarkers in
genetic FTD involving Chromosome 9 Open Reading Frame (C9ORF72), Microtubule Associated Protein Tau (MAPT), and
Progranulin (GRN) genes are not well understood.
Objective: This study aimed to profile the expression levels of lncRNAs in peripheral blood mononuclear cells collected
within the GENetic Frontotemporal dementia Initiative (GENFI).
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Methods: Fifty-three lncRNAs were analyzed with the OpenArray Custom panel, in 131 patients with mutations in C9ORF72,
MAPT, and GRN, including 68 symptomatic mutation carriers (SMC) and 63 presymptomatic mutation carriers (PMC),
compared with 40 non-carrier controls (NC).
Results: Thirty-eight lncRNAs were detectable; the relative expression of NEAT1 and NORAD was significantly higher
in C9ORF72 SMC as compared with NC. GAS5 expression was instead significantly lower in the GRN group versus NC.
MAPT carriers showed no significant deregulations. No significant differences were observed in PMC. Disease duration did
not correlate with lncRNA expression.
Conclusions: NEAT1 and NORAD are upregulated in C9ORF72 SMC and GAS5 levels are downregulated in GRN SMC,
underlining lncRNAs’ relevance in FTD and their potential for biomarker development. Further validation and mechanistic
studies are crucial for clinical implications.

Keywords: Alzheimer’s disease, chromosome 9 open reading frame 72, frontotemporal dementia, long non-coding RNA,
microtubule associated protein tau, progranulin

INTRODUCTION

Long non-coding RNAs (lncRNAs) are RNA
molecules encompassing more than 200 nucleotides.
They do not possess canonical open reading frames1

and are not the product of alternative splicing of
a coding gene.2 LncRNA regulates gene expres-
sion in neurodegenerative diseases. The majority of
studies have been carried out in Alzheimer’s dis-
ease (AD). For example, it has been shown that
the lncRNA amyloid-� cleaving enzyme-1 antisense,
named BACE1-AS, is transcribed from the opposite
strand of BACE1 gene, and can form an RNA duplex.
It binds to the BACE1 mRNA to improve its stability
and translation, positively regulating the expression
of BACE1 protein and promoting an increase in the
cleavage of the amyloid-� protein precursor.3 More-
over, the lncRNA Brain Cytoplasmic 200 (BC200)
was found to be upregulated in brain tissues from
patients with AD and it has been shown that it
enhances the production of amyloid protein through
the regulation of BACE1 expression.4 Few data on
the role of lncRNAs in other neurodegenerative dis-
orders, including frontotemporal dementia (FTD) are
available, although it is known that they are involved
in a number of common mechanisms, such as inflam-
mation, oxidative damage and synaptic dysfunction
(see5 for review).

FTD encompasses several clinical syndromes. The
most common is the behavioral variant (bv)FTD,
characterized by the development of behavioral dis-
turbances, aggressiveness, lack of empathy, and
decline in social conduct, followed by non-fluent
variant primary progressive aphasia (nfvPPA) and
semantic variant (sv)PPA. About 50% of FTD cases
display a family history for dementia, often with
dominant traits.6 At histopathology, all syndromes

described are collectively classified as frontotempo-
ral lobar degeneration (FTLD). According to the type
of protein depositing, FTLD is classified into FTLD-
Tau, FTLD-TAR DNA Binding protein (TDP)43, and
FTLD fused in Sarcoma (FUS).7 Three major causal
genes responsible for autosomal dominant inherited
FTD have been discovered so far, including micro-
tubule associated protein tau (MAPT), characterized
by the deposition of tau protein in the brain, progran-
ulin (GRN) and chromosome 9 open reading frame
72 (C9ORF72), both characterized by deposition of
TDP-43. MAPT carriers quite often develop bvFTD
with parkinsonism, whereas GRN mutations are asso-
ciated with phenotypic heterogeneity, including the
classical syndromes but also atypical presentations
such as corticobasal syndrome (CBS) and progressive
supranuclear palsy (PSP).8 The C9ORF72 expansion
instead may present not only with FTD but also with
amyotrophic lateral sclerosis (ALS), or both, and is
often associated with late onset psychosis.9

In FTD and ALS the lncRNAs nuclear paraspeckle
assembly transcript 2 (NEAT2) and Metastasis
Associated Lung Adenocarcinoma Transcript 1
(MALAT1) co-localize at nuclear paraspeckles with
TDP-43 and FUS proteins.10 Moreover, the bind-
ing to TDP-43 is markedly higher in brains from
demented patients. 10 The expression of 84 lncRNAs
was analyzed in serum samples from genetic and spo-
radic FTD. Despite the statistical threshold was not
reached due to limited sample size, the results showed
a generalized deregulation of lncRNA expression lev-
els in both genetic and sporadic FTD as compared
with non-demented controls. In detail, a trend toward
downregulation was observed in GRN and C9ORF72
patients, whereas a trend toward upregulation was
observed in MAPT mutation carriers. Notably, a few
lncRNAs, including hepatocellular carcinoma upreg-
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Table 1
Demographic and clinical characteristics of the study population

Non carriers
(NC)

Presymptomatic
mutation carriers
(PMC)

Symptomatic
mutation carriers
(SMC)

Subjects (n) 40 63 68
Age, mean years (SD) 53 (15) 42 (11) 65 (8)
Age at onset, mean years (SD) – – 61 (8)
Gender distribution, females:males 27 : 13 36 : 27 28 : 40
Mutated gene n (%)

GRN 22 (35) 22 (32)
C9ORF72 21 (33) 24 (36)
MAPT 20 (32) 22 (32)

Age at onset, mean years (SD)
GRN 64 (7)
C9ORF72 59 (9)
MAPT 54 (6)

NfLpg/ml (SEM) 8.53 (0.18) 16.21 (2.83) 56.05 (3.81)∗
GFAP pg/ml (SEM) 103.15 (10.21) 107.42 (6.12) 175.44 (9.32)∗∗
∗p = 0.002; ∗∗p < 0.001.

ulated EZH2-associated (HEIH), Eosinophil Granule
Ontogeny Transcript (EGOT), and NEAT1, were
downregulated in all groups.11 The origin of circulat-
ing lncRNAs is not known and no studies on lncRNA
in circulating cells are available so far.

Here, we show results of profiling of lncRNAs in
peripheral blood mononuclear cells (PBMC) from the
very well characterized genetic GENFI cohort. To our
knowledge, a large study of these molecules has not
been carried out yet in genetic FTD, which represent
the best model of the disease as the pathology can be
predicted in life.

MATERIALS AND METHODS

Population

All demographic and clinical data, as well as sam-
ples included in the study, were collected within the
Genetic frontotemporal dementia initiative (GENFI),
a natural history study of genetic FTD involving
several research centers across Europe and Canada
(http://www.genfi.org.uk).12 The GENFI study was
performed in accordance with the Declaration of
Helsinki, reviewed and approved by all countries’
respective Ethics Committees and all participants
signed an informed consent to take part in the
research. This research study was performed in Italy,
Ethics Committee Milano Area 2, parere 882 2022
del 13-9-22.

Variables included were: age at sampling, age
at onset, Gender, mutation group (symptomatic
mutation carriers, SMC; presymptomatic mutation
carriers, PMC; non-carrier family members con-

sidered as controls, NC), mutated gene (MAPT,
GRN, C9ORF72). One hundred and seventy-one PAX
gene samples were collected, including 68 SMC (22
MAPT, 22 GRN, and 24 C9ORF72), 63 PMC (20
MAPT, 22 GRN, and 21 C9ORF72) and 40 NC. Car-
riers of other rare FTD causing mutations were not
included. Demographics of the population are shown
in Table 1.

Sample processing

PAX gene tubes were stored and frozen according
to the manufacturer. RNA was extracted using the
PAX Gene blood miRNA kit that enable the extrac-
tion of total RNA including small ncRNA, according
to the protocol of the manufacturer (Qiagen).

The quality and quantity of the extracted RNA
were assessed using a Bioanalyzer 2100. The RNA
Integrity Number (RIN) was determined, with values
ranging from 7.9 to 8.4 across the samples, indicat-
ing that the RNA is of sufficient quality for further
analysis (Supplementary Figure 1). Extracted RNA
was stored at –80◦C until use.

Retrotranscription and real-time PCR

Total RNA was retrotranscribed with the Super-
Script VILO cDNA Synthesis Kit. The OpenArray
Custom panel, comprising a total of 56 lncRNA
genes (53 target genes and three housekeeping genes:
B2M, ACTB and GAPDH, Supplementary Table 1)
was used following the manufacturer’s instructions
(Thermofisher, 2012). The reproducibility between
real-time PCR experiments was assessed by includ-
ing the same cDNA sample in each run.

http://www.genfi.org.uk
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Plasma neurofilament light chain and glial
fibrillary acidic protein

Plasma neurofilament light chain (NfL) and glial
fibrillary acidic protein (GFAP) levels were mea-
sured on the SIMOA HD-1 Analyzer as previously
described.13

Statistical analysis

Data were analyzed using the statistical spread-
sheets Jamovi v 2.5.6.0 (https://www.jamovi.org).
LncRNA expression levels (expressed as replicate
2–�Ct values for each gene) and gender were
considered continuous variables and expressed as
mean ± standard deviation (SD). Conversely, gender,
biological group (no mutations, MAPT, C9ORF72,
and GRN, respectively) and genetic status (NC, PMC,
and SMC, respectively) were all considered categor-
ical variables. Significant statistical threshold was
set at 0.05. Shapiro–Wilk’s test of normality was
performed for continuous variables, and intergroup
comparisons were carried out using ANCOVA test
(gender and age as covariates). Post hoc analyses for
multiple comparisons were performed with Tukey’s
correction. The Pearson test was applied for corre-
lations between deregulated lncRNAs and NFL and
GFAP protein levels.

RESULTS

Thirty-eight lncRNAs out of 53 were detectable.
Among those, the relative expression of two lncR-
NAs, NEAT 1 and NORAD, were upregulated in
C9ORF72 biological group.

In particular, the ANCOVA analysis of NEAT1
showed that the overall model yielded a significant
result (p = 0.003), indicating that these variables col-
lectively explain a significant portion of the variance
in 2–�Ct. Biological group showed a significant effect
(F(3,96) = 5.35, p = 0.003, p = 0.143), suggesting
differences in 2–�Ct levels among the groups. Specif-
ically, the C9ORF72 group differed significantly
from others in post hoc comparisons (0.098 ± 0.01
versus 0.04 ± 0.05-fold regulation, t(96) = –2.66,
p = 0.043) compared to NC. As expected, age also
had a significant influence (p = 0.046), indicating
that older age was associated with altered 2−�

Ct levels, but the interaction between biologi-
cal group and age was not statistically significant
(p = 0.256). Stratifying results according to genetic
status, the comparison between C9ORF72 SMC

and NC showed a statistically increased of NEAT1
2–�Ct values (0.12 ± 0.01 versus 0.04 ± 0.01-fold
regulation versus NC, t(43) = –2.49, p = 0.043,
Fig. 1).

Concerning NORAD analysis, the overall model
was significant (P < 0.001), indicating substantial
variability explained by these variables. Biolog-
ical group significantly impacted 2–�Ct levels
(F(3,99) = 5.61, p = 0.001, p=0.145), highlighting
variability across NC, MAPT, C9ORF72, and GRN
groups. Post hoc tests revealed that NORAD was
significantly more abundant in C9ORF72 biological
group as compared with NC (0.014 ± 0.01 ver-
sus 0.0038 ± 0.00391-fold regulation, t(99) = –2.49,
p = 0.041), but stratifying according to genetic sta-
tus, the comparison between NC and C9ORF72 SMC
showed a trend towards significance (p = 0.065), sug-
gesting potentially meaningful differences (Fig. 3).

In GRN biological group, one lncRNA, namely
Growth Arrest Specific (GAS)5 was significantly
lower than NC. The overall model was signif-
icant, indicating that the predictors collectively
explain a significant portion of the variance in the
dependent variable (p < 0.001). Age had a signifi-
cant effect (p < 0.001), as did the biological group
(F(3,105) = 3.65, p = 0.015, p=0.095). However,
nor did the interaction between biological group
and age (p = 0.142). Post hoc comparisons using
the Tukey test revealed that the GRN group sig-
nificantly differed from NC (9.20 × 10–4 ± 0.0011
versus 0.037 × 10–2 ± 0.1 × 10–3, fold regulation,
t(105) = 3.14, p = 0.025). In GRN biological group
GAS5 was significantly lower, also stratifying
results according to genetic status and after post
hoc analysis (SMC versus NC; 0.00164 ± 0.0019
versus 0.013 ± 0.024, fold regulation, t(55) = 2.78,
p = 0.020, Fig. 3).

Conversely, no significant lncRNA deregulations
were observed in MAPT carriers, both SMC and
PMC, versus NC.

No correlations between disease duration in symp-
tomatic individuals and lncRNA relative expression
was found (p > 0.05).

Considering NfL and GFAP levels, as expected,
significant increases were observed between SMC
and NC: NfL mean levels ± SEM were 56.05 ± 3,81
versus 8.53 ± 0.18 pg/ml, p = 0.002 and GFAP
were 175.44 ± 9.32 versus 103.15 ± 10.21 pg/ml,
p < 0.0001, respectively (Table 1). These differences
in mean values remained significant even when strat-
ifying symptomatic patients by the mutated gene
(p < 0.001).

https://www.jamovi.org
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Fig. 1. Box plots of NEAT1 profiling in PBMC from SMC and PMC carrying mutations in C9ORF72, GRN, MAPT as compared with NC.
Data are expressed as 2−�Ct fold regulation.

Fig. 2. Box plots of NORAD profiling in PBMC from SMC and PMC carrying mutations in C9ORF72, GRN, MAPT as compared with NC.
Data are expressed as 2−�Ct fold regulation.
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Fig. 3. Box plots of GAS5 profiling in PBMC from SMC and PMC carrying mutations in C9ORF72, GRN, MAPT as compared with NC.
Data are expressed as 2−�Ct fold regulation.

Considering instead the levels of NfL or GFAP
and the lncRNAs, no significant correlations emerged
(p > 0.05).

DISCUSSION

Herein, we showed that the relative expression
of NORAD and NEAT1 lncRNAs was higher in
C9ORF72 SMC, whereas relative levels of GAS5
were less abundant in GRN SMC. No significant dif-
ferences were instead observed in PMC, although this
group was very heterogenous as regards the age at
sampling, and many subjects were still far from the
mean age at disease onset in their families. Therefore,
we cannot rule out whether the change observed in
SMC occur in proximity of symptom manifestation.

LncRNA NORAD modulates the genome stabil-
ity. It is expressed in cells after DNA damage and,
when deleted, it expresses chromosomal instability
and aneuploidy.14 Notably, C9ORF72 expansions are
known to cause R-loops, in turn increasing genomic
instability and DNA damage, and generate dipeptide
repeat proteins, that lead to DNA damage and impair-
ment of the DNA damage response.15 Therefore,
DNA damage may play a role in the pathogene-
sis of the disease in carriers of the hexanucleotide

expansion. Here, we considered only patients with
FTD, therefore we cannot rule out whether the same
modifications are present also in carriers develop-
ing ALS. It is interesting to note that dendritic cells
isolated from C9ORF72–/– mice showed a marked
early activation of the type I interferon response, and
C9ORF72–/– myeloid cells were selectively hyperre-
sponsive to activators of the stimulator of interferon
genes (STING) protein, key regulator of the innate
immune response.16

As regards lncRNA NEAT1, in samples from
patients with AD, it was shown that NEAT1 expres-
sion is upregulated in different brain regions related
to the disease.17 Nevertheless, there are still contro-
versial data on the role of this lncRNA (damaging
versus protective) in AD and other neurodegenerative
diseases. (see18 for review)

LncRNA GAS5 has been shown to be down-
regulated in brain samples from patients with AD
compared to age-matched healthy controls.19 In line
with this observation, a previous human transcrip-
tomic analysis and microarray data of six brain
regions from AD patients also showed that GAS5 is
downregulated in AD.20

In a previous study, circulating levels of lncRNA
were evaluated but, despite trends toward increased
or decreased levels were observed, no significant data
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were obtained.11 It has to be considered however that
the source of circulating lncRNA cannot be deter-
mined and that there are no study comparing PBMC
and circulating lncRNA levels in the same individu-
als.

A strength of the study is represented by NC from
the same families, reducing the genetic background
variability. A weakness of the study is instead that we
did not compare the same subjects from the asymp-
tomatic to the symptomatic phase. As regards the
longitudinal analysis of PMC, the follow up of partic-
ipants in GENFI is ongoing and these findings could
be confirmed longitudinally in the next future.

Lastly, it has to be acknowledged that, despite the
extracted RNA being of good quality for subsequent
expression analysis, several long non-coding RNAs
were not detected. The lack of detection of long non-
coding RNAs (lncRNAs) in blood can be attributed
to several factors.

Firstly, the presence of ribonuclease enzymes in
blood can lead to the rapid degradation of RNA
molecules, including lncRNAs, making them difficult
to detect.21

Additionally, many lncRNAs are expressed at
intrinsically low levels, which may render them
below the detection limit of standard real time
PCR.22 Another significant factor is the tissue-
specific expression of many lncRNAs: if a lncRNA is
predominantly expressed in specific tissues such as
the brain or liver, it is unlikely to be detected in the
blood.23 RNA stability is another crucial element to
consider, as some lncRNAs may be inherently unsta-
ble in blood, despite protective mechanisms such
as encapsulation in exosomes or association with
proteins, leading to their rapid degradation.24 These
combined factors can explain the difficulty in detect-
ing lncRNAs in blood. Therefore, we cannot rule out
whether these lncRNAs play a role in neurodegen-
eration, and the present results need to be validated
in an independent cohort of patients, possibly also
including sporadic cases.

Conclusions

Relative expression of NORAD and NEAT1 lncR-
NAs is more abundant in PBMC from C9ORF72
SMC, whereas relative transcription of GAS5 is less
abundant in PBMC from GRN SMC, whereas no sig-
nificant changes have been observed in PMC. This
study emphasizes the importance of lncRNAs in FTD
and their potential for guiding genetic stratification
and developing biomarkers. Further validation and

mechanistic investigations are essential to facilitate
clinical application.
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Prefrontals Vetenskapsrådet Dnr 529-2014-7504,
EU Joint Programme-Neurodegenerative Disease
Research-GENFI-PROX, Vetenskapsrådet 2019-
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