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Abstract.
Background: In the era of disease-modifying therapies, empowering the clinical neuropsychologist’s toolkit for timely
identification of mild cognitive impairment (MCI) is crucial.
Objective: Here we examine the clinimetric properties of the Montreal Cognitive Assessment (MoCA) for the early diagnosis
of MCI due to Alzheimer’s disease (MCI-AD).
Methods: Data from 48 patients with MCI-AD and 47 healthy controls were retrospectively analyzed. Raw MoCA scores were
corrected according to the conventional Nasreddine’s 1-point correction and demographic adjustments derived from three
normative studies. Optimal cutoffs were determined while previously established cutoffs were diagnostically reevaluated.
Results: The original Nasreddine’s cutoff of 26 and normative cutoffs (non-parametric outer tolerance limit on the 5th
percentile of demographically-adjusted score distributions) were overly imbalanced in terms of Sensitivity (Se) and Specificity
(Sp). The optimal cutoff for Nasreddine’s adjustment showed adequate clinimetric properties (≤23.50, Se = 0.75, Sp = 0.70).
However, the optimal cutoff for Santangelo’s adjustment (≤22.85, Se = 0.65, Sp = 0.87) proved to be the most effective for
both screening and diagnostic purposes according to Larner’s metrics. The results of post-probability analyses revealed that
an individual testing positive using Santangelo’s adjustment combined with a cutoff of 22.85 would have 84% post-test
probability of receiving a diagnosis of MCI-AD (LR+ = 5.06).
Conclusions: We found a common (mal)practice of bypassing the applicability of normative cutoffs in diagnosis-oriented
clinical practice. In this study, we identified optimal cutoffs for MoCA to be allocated in secondary care settings for supporting
MCI-AD diagnosis. Methodological and psychometric issues are discussed.
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INTRODUCTION

Every 3 seconds, someone in the world develops
dementia. Every year, almost 10 million new cases
are recorded. Nowadays, over 55 million people are
living with dementia. Among older people, dementia
is one of the primary causes of disability and depen-
dency, and the seventh leading cause of death.1–3 This
scenario is further compounded by the dramatic con-
gestion of healthcare and socio-assistance services,
as well as by the significant financial impact of the
disease. The annual cost of dementia, including both
direct and indirect expenses, exceeds cumulatively 1
trillion dollars.2,3

Alzheimer’s disease (AD) is the most prevalent
cause of dementia, contributing to 60–80% of cases.1

Amyloidogenesis, namely, the process leading to
abnormal aggregation of amyloid proteins resulting
in the formation of insoluble fibrils, represents a
pivotal pathophysiological mechanism in AD. Con-
sequently, in the fervent pursuit of disease-modifying
therapies, most of AD-related drugs currently under-
going clinical trials aim to weaken amyloid protein
aggregates.4 With this in mind, the imperative for
early identification of individuals at risk of conversion
towards AD has never been more critical. Particularly,
those diagnosed with Mild Cognitive Impairment
(MCI) warrant special mention.

MCI is traditionally considered a boundary stage
between healthy aging and overt dementia. It is char-
acterized by a slight cognitive decline with minimal
or no functional impairment in daily activities.5 The
amnestic phenotype, which predominantly affects
memory domains, is a major risk factor for the
subsequent onset of AD dementia (ADD), with a con-
version rate ranging from 8% to 15% within 1 year,
reaching 80% at 6 years.6 However, MCI can stabi-
lize over time and demonstrates reversibility in 26%
of cases.5,7 Although the clinical phenotype is rel-
evant, conversion towards ADD is primarily related
to the etiopathogenic profile. Therefore, it is crucial
to detect MCI patients with a biological diagnosis of
AD (i.e., MCI due to AD).8

According to the National Institute on Aging-
Alzheimer’s Association (NIA-AA), an accurate
evaluation of patients with suspected MCI due to
AD (MCI-AD) should involve a comprehensive neu-
rocognitive assessment combined with gathering
evidence of AD-like pathophysiology.8 In particular,
based on the AT(N) paradigm (amyloid-� deposition,
pathologic tau, and neurodegeneration), a patient
with MCI is classified as being on the AD continuum

if they exhibit biomarker evidence of A� deposi-
tion (abnormal amyloid PET scan, low cerebrospinal
fluid A�42, or low A�42/A�40 ratio), with patho-
logic phosphorylated tau strengthening the diagnostic
likelihood.9 Interestingly, relying solely on biomark-
ers seems to reduce the predictive value of the
diagnosis.10

While acknowledging the importance of integrated
approaches that combine etiological and clinical
diagnosis, the management of patients with dementia
faces limitations in terms of time, costs, and avail-
ability of experienced staff. To give a few examples,
waiting times for undergoing instrumental exami-
nations can be quite long. Additionally, significant
logistical resources are required for administering
extensive neuropsychological batteries, which is par-
ticularly problematic in outpatient settings where
time constraints are rigid. Moreover, the costs associ-
ated with procedures like the amyloid PET scan can
be notably high, as can those of neuropsychological
assessments performed by private providers rather
than through the public healthcare system. Finally,
those actively practicing clinical neuropsychology
in Europe have a very heterogeneous educational
background and skill level, compounded by the
scarcity of academic training programs and/or clini-
cal training opportunities.11,12 In light of this, there
is a pressing need for brief, flexible tools with
high diagnostic power, particularly in secondary care
settings, where the objective is to skim patients
and, when necessary, direct them towards further
investigations.13

Among the tests used in memory clinics, the
Mini-Mental State Examination (MMSE) is widely
acknowledged as the gold standard neuropsycholog-
ical battery for assessing global cognitive functioning
in moderate/advanced stages of dementia.14 Instead,
the Montreal Cognitive Assessment (MoCA) has
been specifically designed to evaluate general cog-
nition in patients with MCI and mild ADD.15 As
compared to MMSE, MoCA covers a wider range
of cognitive domains, including sustained attention,
visuospatial, and visuoconstructive abilities. Further-
more, MoCA is less affected by patient’s linguistic
capabilities and has demonstrated utility in predicting
conversion from MCI towards dementia. In partic-
ular, some studies have shown that patients with
MCI exhibiting low MoCA scores at baseline were
more likely to convert to ADD within a timeframe
of 1.5 to 3.5 years.16,17 In addition to providing an
overview of general cognitive functioning, it is of
particular interest to inquire whether MoCA holds
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sufficient diagnostic value. To address this inquiry,
one should interrogate the architecture of diagnostic
research.

The architecture of diagnostic research: key
questions

Let us imagine that a young researcher has devised
a long-term visuospatial memory task requiring the
examinee to memorize, and then recall, the spa-
tial arrangement of tokens placed on a chessboard,
namely, the ‘Chessboard Test’ (CBT). In particular,
the researcher is interested in determining whether
CBT could be considered a reliable marker for AD.
To establish this, the researcher refers to one interest-
ing chapter within the seminal manual by Knottnerus
and Buntinx titled ‘The Evidence Base of Clini-
cal Diagnosis’,18 so as to identify the appropriate
research questions to pose.

• Phase 1 question: Do patients with AD achieve
significantly lower scores on CBT than healthy
individuals?

• Phase 2 question: Are individuals getting lower
CBT scores more likely to be diagnosed with AD
than individuals getting a higher CBT score?

• Phase 3 question: Among individuals for whom
there is a clinical suspicion of AD, can CBT
score effectively discriminate between those
with and without AD?

• Phase 4 question: Do patients tested with CBT
have better health outcomes, such as functional
autonomies, quality of life, or mortality rate,
compared to those who do not undergo the test?

Here we focus on Phase 1 and 2 questions. This
choice is prompted by the presence of several threats
to validity in Phase 3 studies and limitations in their
applicability to clinical research. As for the Phase
4 question, interventions for AD remain currently
confined to cognitive stimulation and palliative phar-
macological therapies.19

Consider once more our enterprising researcher.
Picture them now, eager to delve into a Phase 1
question. To determine whether CBT may be clin-
ically meaningful, the test should be administered to
demographically-matched samples of patients with
AD and healthy controls. If a significant difference
is detected in CBT score’s distribution between the
two groups, the researcher may conclude that CBT
is a useful diagnostic tool. Regrettably, this finding
does not really ensure that CBT can be confidently
translated into clinical practice for diagnostic pur-

poses. Indeed, if the Phase 1 question receives an
affirmative response, the next step is conducting a
clinimetric study to address a Phase 2 question.19

Here, clinimetrics refers to that branch of psychomet-
rics encompassing statistical algorithms for disease
classification and diagnosis.

To answer a Phase 2 question, the researcher
set up a supplementary study. This time, CBT is
administered under standardized (ideal) conditions.
Furthermore, to discern the presence of AD, the
researcher relies on established gold standard ref-
erences, e.g., cerebrospinal fluid (CSF) A� levels
and performance on the Rey Auditory Verbal Learn-
ing Test (RAVLT).20,21 Upon collecting CBT scores,
its discriminative capability is estimated, typically
using Receiver Operating Characteristic (ROC) curve
analysis. Still, indexes of diagnostic power, such as
sensitivity and specificity, are computed with respect
to a specified cutoff point.19 The study results suggest
that CBT exhibits adequate discriminatory power.
Moreover, the identified optimal cutoff appears to
strike a well-balanced equilibrium between sensitiv-
ity and specificity. Also, CBT demonstrates excellent
convergent validity, showing strong correlations with
CSF markers and RAVLT. The young researcher is
now satisfied: CBT can be employed in diagnostic-
oriented clinical practice.

Stopping at the first rung: the normative studies

Phase 1 studies are relatively simple, quick,
and cost-effective. These advantages have capti-
vated researchers in neuropsychology, leading to an
oversimplification of the aforementioned diagnostic
architecture: normative studies are born.

The diagnostic significance of a test relies on
its ability to discriminate between ‘normal’ and
‘abnormal’ conditions. Accordingly, the definition
of normality is pivotal. In normative studies, the
interpretation of an individual’s test score involves
comparing it with scores from a normative/healthy
sample, assumed to be representative of the popu-
lation from which the individual comes. There are
different methods to quantify the relative standing of
an individual’s score within a normative distribution.
For instance, one may use the percentile rank, but it
only indicates the score’s ordinal position within the
distribution, without assuming univariate normality.
Instead, if one posits that scores follow the nor-
mal/gaussian distribution, it is possible to proceed in
terms of equal intervals using measures of central ten-
dency and dispersion. Specifically, the individual’s
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raw score may be converted into z or t standardized
scores.22 An alternative approach, rooted in the Ital-
ian tradition, is the regression-based Equivalent Score
(ES) method.23–25

As sociodemographic variables, such as age and
education, can affect cognitive performance, the ES
method entails statistically weighing their contri-
butions to score variability using linear regression.
Subsequently, correction coefficients are derived.
Upon application of these correction factors, it
becomes possible to easily compare individuals with
different age and education levels. For instance,
the performance of a young university student
can be compared with that of a septuagenarian
with only primary education. Following this, the
demographically-adjusted normative distribution is
standardized using a 5-point ordinal scale, from
ES0 to ES4. Conventionally, ES0 corresponds to
an adjusted score that is equal to or lower than
the outer non-parametric tolerance limit on the 5th
percentile with 95% confidence. ES4, conversely,
corresponds to performance equal to or better than
the median value. ES1, ES2, and ES3 are obtained
by dividing the distribution between ES0 and ES4
into three parts.24,26 The outer non-parametric toler-
ance limit on the 5th percentile aligns with z=–1.88
deviations on a normal distribution curve, given,
for example, 300 sample units, and represents the
so-called nominal normative cutoff. Theoretically,
this cut-point should separate the 3% of individuals
getting a deficient performance from the 97% clas-
sified as ‘normal’.25 ESs provide a straightforward
interpretation and minimize individual differences.
Furthermore, such an ordinal scale might allow us to
compare an individual’s performance across differ-
ent neuropsychological tests. However, this method
presents some weaknesses.

On the one hand, it may represent a step backward
compared to standardized scores, resulting in a loss
of information. On the other hand, only the tolerance
region around the 5th percentile holds potentially
inferential value. Indeed, while it is reasonable to
use the median as a designated measure of cen-
tral tendency due to the self-styled non-parametric
nature of the method, the portion of the distribution
between ES0 and ES4 remains a black hole. Assum-
ing that the left tail of the adjusted score distribution
is comparable to that of the normal distribution, the
ES0-ES4 interval is divided into three sections using
the space between z = –1.88 and z = 0 (median) as a
reference (i.e., using z = –1.25 and z = –0.63 as anchor
points for N = 300).26,27 Alternatively, one might con-

sider using other pre-defined tolerance limits, such
as the 10th and 20th percentiles.24,25 In any case,
the setting of tolerance limits and ESs is governed
by ‘z’ logic and is solely contingent upon sample
size, which may appear counterintuitive. Adopting
a parametric approach to determine the intermedi-
ate ESs introduces a methodological inconsistency
with the non-parametric approach used to define
the fixed ES0 and ES4. In this regard, it has been
recently proposed that intermediate ESs should be
calculated independently from assumptions about the
distribution’s shape, and instead based on a non-
parametric rank subdivision of the adjusted scores
distribution.28 Similar algorithms, already silently
used in the literature,29–32 allow for partitioning the
region between ES0 and ES4 into three equal parts
with the same density, likely improving classification
accuracy.

From a diagnostic perspective, an additional flaw
of the ES method concerns the establishment of the
nominal cutoff. Now it is clear that using ESs to
compare an individual’s score to normative data is
traditionally grounded in the idea that normative dis-
tributions approximate a Gaussian distribution. In
healthy individuals, some psychological test scores fit
the normal distribution. Conversely, many neuropsy-
chological scores typically show negatively skewed
and leptokurtic distributions in normative datasets, as
a result of a significant ceiling effect. Consequently,
scores are condensed into a limited set of discrete val-
ues at the upper extreme of the score range, with only
a few observations at the left tail of the distribution.18

In such instances, setting nominal cutoffs at the 5th
percentile may be a procedure devoid of meaning.

Also, it is crucial to emphasize that even in the
presence of a normal distribution, using such a ‘low’
cutoff may be disadvantageous for several reasons. It
is customary to classify as not normal those scores
that fall within the lower 5% of the population,
accepting an error risk < 5%. This approach stems
from inferential statistics, where it is common prac-
tice to assume a nominal alpha level equal to 0.05 to
mitigate type 1 error inflation, namely, the rejection
of the null hypothesis when it is true. In diagnostic
terms, this implies maximizing the test specificity,
decreasing the risk of false positives, i.e., the risk
of mistakenly rejecting the null hypothesis that an
individual is free from cognitive impairment. Con-
currently, this entails a decrease in the test sensitivity,
which is a crucial diagnostic parameter.33 This is
especially true in the context of serious health con-
ditions that can be delayed (or treated) if correctly
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managed in the early stages.34 Ultimately, the test
may become primarily beneficial for general screen-
ing purposes.

To conclude, the crux of the matter lies in the
stark contrast between the statistical and diagnostic
definitions of normality. According to Bayes’ theo-
rem, the probability (P) that an individual suffering
from a disease (D) tests positive (T), i.e., the posi-
tive predictive value P(D|T), is equal to P(T |D)×P(D)

(P |T ) ,
where P(T|D) is the test sensitivity, P(D) the dis-
ease prevalence, and (P|T) the overall probability of
testing positive. To simplify, this means that P(D|T)
is conditioned by disease prevalence. Assigning the
nominal cutoff indiscriminately to any neuropsycho-
logical test at the 5th percentile implies assuming
that all neuropsychological deficits have the same
prevalence in any population, which is an assump-
tion devoid of neuroepidemiological basis. However,
in the end, this is a ‘dog biting its tail’, as the
prevalence of a specific condition or cognitive deficit
in a given population depends on where the limits
for the normal range of diagnostic test results have
been set.18

In the clinical neuropsychology literature, there
is the habit of omitting the investigation of nor-
mative thresholds’ diagnostic applicability to target
conditions. As previously outlined, the extent of
neuropsychological deficits may be differently cap-
tured by normative data, depending on how they
are handled psychometrically. Furthermore, their
diagnostic significance may be negligible. How-
ever, it is important to stress that a great deal
of work has been done recently within the Ital-
ian scenario to identify disease-specific cut-offs on
demographically-adjusted scores. This is particularly
the case for tests conceived originally for cognitive
screening purposes.33,35–39 As a general rule, fol-
lowing Phase 1 and/or normative studies, it should
be imperative to conduct robust clinimetric studies
answering the Phase 2 question. The best algorithm is
still to administer the test to be validated to a large nor-
mative sample, adjust the score distribution, and then
calculate optimal cutoffs for sensitivity and speci-
ficity based on a specific target clinical population.40

Aims

The MoCA is the designated character of this
paper. Several normative studies on the MoCA
exist, involving cognitively intact individuals
with different geographic backgrounds, e.g.,
Czechoslovakia,41 Italy,42 Japan,43 Norway,44

Portugal,45 and Sweden.46 As many clinimet-
ric studies on the MCI population have been
conducted.13,47–57 However, in these studies,
patients were selected based on different algorithms
for clinical diagnosis only, i.e., using Petersen’s
criteria, the Diagnostic and Statistical Manual
of Mental Disorders (DSM), or NIA-AA 2011
guidelines.8,58–61 This approach, on the one hand,
guarantees less conservative inclusion criteria, hence
allowing the enrollment of large patient cohorts in
line with the prevailing big data ‘culture’. On the
other hand, however, it exposes to risks of misdiag-
nosis, false positives, and limited generalizability to
individuals with a biologically confirmed diagnosis
of neurogenerative disease. This may represent
a significant methodological flaw. Surprisingly,
only one Czech study investigated the clinimetric
properties of MoCA in patients with MCI-AD, thus
addressing such a crucial issue.62

Recently, some of us devised a study that
highlighted how the historic overconfidence in
the effectiveness of normative data among Italian
neuropsychologists may constitute a significant chal-
lenge in diagnostic settings.33 Specifically, the study
included patients with MCI and early dementia of
mixed etiology (i.e., AD, mixed AD, cerebrovascu-
lar disease, frontotemporal degeneration, dementia
with Lewy bodies). This cohort was compared
with a control group consisting of healthy partici-
pants matched for sociodemographic characteristics.
Regardless of correction factors and geographic
extraction of normative datasets, we demonstrated
that the available Italian normative cutoffs exhibited
excellent specificity.42,63,64 However, these cutoffs
showed very poor sensitivity, ranging from 0.09 to
0.24, in distinguishing between individuals with mild
neurodegeneration and normal cognition.33 More-
over, we determined the optimal cutoffs for each
of the Italian normative adjustments, as well as for
the conventional Nasreddine’s 1-point adjustment
method.15 In this replication study, we aimed to
assess the clinimetric properties of MoCA in a sam-
ple of patients with MCI-AD. In particular, we (i)
tested the diagnostic properties of previously identi-
fied cutoffs, and (ii) computed new optimal cutoffs,
weighted for sensitivity and specificity.

METHODS

Retrospective data collection was performed for
a consecutive series of patients of either sex with



298 C.R. Ilardi et al. / Clinimetrics of the MoCA in MCI due to AD

suspected MCI who were referred to the Memory
Centre of Trieste University Hospital (Neurologi-
cal Unit, Azienda Sanitaria Universitaria Integrata
Giuliano Isontina, ASUGI, Trieste, Italy) and the
Dementia Clinic of C.T.O. Hospital (Neurological
Unit, AORN Ospedali ‘Dei Colli’, Naples, Italy).
All eligible patients underwent a comprehensive neu-
rological and neuropsychological examination by
experienced clinicians. Patients were included in
the study if received a clinical diagnosis of MCI
according to Petersen’s algorithm,60 and a concur-
rent biomarker-driven diagnosis of MCI-AD. The
latter was performed by harmonizing the NIA-AA
2011 criteria with the AT(N) framework.8,9 Specif-
ically, the diagnosis of MCI-AD was supported by
neurobiological evidence indicating ongoing AD-
like pathophysiological mechanisms. This evidence
encompasses markers of A� deposition (e.g., lower
CSF A�42 levels, lower CSF A�42/A�40 ratio, pos-
itive results at amyloid PET imaging). In addition,
pathologic tau biomarkers (i.e., elevated CSF phos-
phorylated tau levels) and markers of neuronal injury
(e.g., hippocampal and medial temporal lobe atrophy
detected in MRI, hypometabolic clusters affecting
the temporoparietal and/or the posteromedial pari-
etal cortex highlighted in FDG-PET, elevated CSF
total tau levels) were taken into account. Patients
were thus classified according to both diagnostic cat-
egories outlined in the NIA-AA 2011 guidelines (i.e.,
low, intermediate, and high diagnostic likelihood) and
AT(N) profiles. The minimum inclusion criterion was
set at intermediate likelihood in combination with an
A + T–N– profile, indicating that biomarker evidence
of A� deposition was deemed critical for diagnosis.

A group of participants with normal cognition
(normal controls, NCs) was assembled by recruiting,
on a voluntary basis, individuals from various dis-
tricts in Friuli-Venezia Giulia, Veneto, Trentino-Alto
Adige, and Campania regions, ensuring demographic
comparability with the patient group. None of the
control participants reported cognitive complaints.
Exclusion criteria for both patient and control groups
were age > 75 years, <5 years of formal education
according to the Italian schooling system, history
of learning disabilities, acquired brain injuries, psy-
chiatric disorders (e.g., major depression), other
major health conditions (e.g., cancer, severe obesity),
alcohol/drug abuse, and ongoing treatments with
psychoactive medications (e.g., antidepressants, neu-
roleptics, anxiolytics). Furthermore, while patients
showing chronic cerebrovascular lesions (Fazekas
grade ≤ 2) were retained, those with severe vascular

encephalopathy (Fazekas grade = 3) or multi-infarct
dementia, which may justify the clinical picture,
were excluded.65 Note that participants over 75
years of age were excluded in accordance with Ital-
ian consensus recommendations for biomarker-based
etiological diagnosis in patients with MCI,66 owning
to the high variability of the potential clinical impact
of amyloid biomarkers assessment in this popula-
tion (e.g., to minimize unnecessary investigations and
age-related false positives in amyloid biomarkers).
Participants with well-pharmacologically compen-
sated chronic medical illnesses (e.g., hypertension,
type II diabetes, gastrointestinal diseases) were
included to minimize the risk of a ‘hyper-normality’.
All participants had normal or corrected-to-normal
vision. All participants were Caucasian and native
Italian speakers.

Both patients and controls completed the Italian
version of the MoCA. This was not used within
the diagnostic process. In particular, the clinicians
involved in the diagnostic process were uninformed
about the individual’s MoCA score. Additionally,
the neuropsychologists administering the MoCA
were unaware of the presence of a clear diagnos-
tic suspicion. Finally, data analysis was performed
in a blinded fashion concerning group membership
(dummy: 0 = Group A, 1 = Group B). Raw MoCA
scores were adjusted according to (i) Nasreddine’s 1-
point correction, entailing the addition of 1 point for
individuals with ≤ 12 years of education15 and (ii)
age-and-education correction factors derived from
the three available Italian normative studies.42,63,64

Therefore, four distinct MoCA scores, each subjected
to independent adjustments, were achieved. Subse-
quently, we examined whether these adjusted scores
fell below or exceeded the reference threshold values.
Specifically, as concerns Nasreddine’s method, the
conventional cutoff of 26 was employed as the gold
standard,15 in combination with the cut-point of 23.50
proposed by Ilardi et al.33 Regarding Italian nor-
mative data, adjusted MoCA scores were compared
with the respective nominal cutoffs (Conti = 17.36,
Santangelo = 15.50, Aiello = 18.58), i.e., the upper
limits of ES0.23–25 In addition, for each of the three
Italian adjustment methods, the cutoffs proposed by
Ilardi et al. were reassessed (Conti = 20.97, Santan-
gelo = 22.85, Aiello = 22.29).33 Optimal cutoffs for
MCI-AD were finally calculated.

The current study was approved by the Comi-
tato Etico Unico Regionale of Friuli-Venezia Giulia
(CEUR-FVG; decree n. 438 of 8 June 2018; study
protocol n.95/2018) and performed in accordance
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with the ethical standards laid down in the 1964
Declaration of Helsinki and its later amendments.
Informed consent was obtained from all participants
included in this study. Based on the EQUATOR
(Enhancing the QUAlity and Transparency Of health
Research) network library, the STARD 2015 guide-
lines for reporting diagnostic accuracy studies were
followed.

Statistical analyses

For descriptive purposes, nominal variables were
presented as frequency while quantitative ones
as mean (M)±standard deviation. Between-group
comparisons were conducted using two-way chi-
squared test (χ2) and independent samples t-test
for nominal and quantitative variables, respec-
tively. Four conditional nonparametric models based
on ROC curve analysis were run to assess
the extent to which the adjusted MoCA scores
(test variables: MoCA-Nasreddine, MoCA-Conti,
MoCA-Santangelo, MoCA-Aiello) could discrim-
inate between patients with MCI-AD and NCs.
According to agreed conventions, an area under
the ROC curve (AUC) greater than 0.70 is sugges-
tive of adequate diagnostic accuracy.67 Concurrently,
the optimal cutoffs for MCI-AD were identified
based on a simultaneous assessment of sensitiv-
ity (Se) and specificity (Sp). Any optimal cutoff
was determined by integrating different metrics:
the Youden index (J),68 concordance probability
method (CZ),69 and Closest to (0, 1) Criteria (ER).70

Also, for each adjustment method, these metrics
were used to evaluate the adequacy of Se/Sp bal-
ance for both the conventional/normative cutoffs
and the decision thresholds proposed by Ilardi et
al.33 Finally, additional metrics of diagnostic accu-
racy were calculated, namely, positive and negative
predictive values (PPV, NPV), false positive and
false negative rates (FPR, FNR), diagnostic accu-
racy (ACC), positive and negative likelihood ratios
(LR+, LR–) and related post-test probability, Larner’s
number needed for screening utility (NNSU), and
Larner’s likelihood to be diagnosed or misdiagnosed
(LDM) 71. Table 1 presents an overview of each
clinimetric index employed in the current study. A p-
value < 0.05 was considered statistically significant.
Bonferroni’s correction for multiple comparisons was
performed, as appropriate. No missing data were
detected. Statistical analyses were performed by
means of IBM SPSS Statistics for Windows v. 27
(IBM, Armonk, 204 NY, USA) and Stata Statisti-

cal Software r. 15 (StataCorp LLC, College Station,
TX).

RESULTS

Power analysis

The results of a priori power analysis indicated that,
at a nominal alpha level of 0.05, statistical power set
to 0.80, minimum expected AUC of 0.70, and an allo-
cation ratio equal to 1, the required total sample size
was 48, i.e., 24 patients with MCI-AD and 24 NCs.72

Sample characteristics

Forty-eight patients with MCI-AD (23 females,
36 from northern Italy, M age = 71.25 ± 4.99 years,
M education = 11.96 ± 4.63 years) and 47 NCs (24
females, 26 from northern Italy, M age = 71.08 ± 4.59
years, M education = 11.43 ± 4.72 years) were
included in this study. All patients were classified
as having a high biomarker likelihood of MCI-
AD diagnosis according to NIA-AA 2011 criteria.
Furthermore, they fell within the AD continuum
according to the AT(N) framework (see Table 2). The
two groups were matched for sex (χ2 = 0.273, df = 1,
p > 0.05), age (t = –0.837, df = 93, p > 0.05), education
(t = –0.555, df = 93, p > 0.05), and geographical back-
ground (χ2 =3.236, df = 1, p > 0.05). As expected,
NCs outperformed patients with MCI-AD in
the MoCA score (NCs: M MoCA = 24.77 ± 3.53;
patients: M MoCA = 20.52 ± 3.58; t = 5.816, df = 93,
p < 0.001, Cohen’s d = 1.19).

ROC curve analysis

Regardless of the adjustment method, the MoCA
demonstrated an adequate discriminative capabil-
ity (MoCA-Nasreddine: AUC = 0.802, SE = 0.04,
p < 0.001; MoCA-Conti: AUC = 0.807, SE = 0.04,
p < 0.001; MoCA-Santangelo: AUC = 0.826, SE =
0.04, p < 0.001; MoCA-Aiello: AUC = 0.817, SE =
0.04, p < 0.001). No significant differences were
detected among the four AUCs, as indicated by the
overall equality test (DeLong test: p = 0.60). The four
ROC curves are depicted in Fig. 1.

Cutoff analysis

The results of cutoff analysis are summarized in
Table 3. According to J, CZ, and ER metrics, the three
optimal cutoffs for the Italian normative adjustments
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Table 1
Summary measures of diagnostic accuracy employed in this study

Measure Formula Description

Sensitivity (Se)
TP

(TP + FN)
The proportion of true positive results, indicating the test’s ability in correctly
identifying individuals with the target condition.

Specificity (Sp)
TN

(TN + FP)
The proportion of true negative results, indicating the test’s ability in correctly
identifying individuals without the target condition.

Positive predictive value
(PPV)

TP

(TP + FP)
The probability that a positive test result correctly indicates the presence of the
target condition. The more specific the test, the greater the PPV.

Negative predictive value
(NPV)

TN

(TN + FN)
The probability that a negative test result correctly indicates the absence of the
target condition. The more sensitive the test, the greater the NPV.

False positive rate (FPR)
FP

(FP + TN)
The proportion of individuals with a confirmed negative condition who receive
a positive test result (fall-out). The more specific the test, the lower the FPR.

False negative rate (FNR)
FN

(FN + TP)
The proportion of individuals with a confirmed positive condition who receive
a negative test result (miss rate). The more sensitive the test, the lower the FNR.

Accuracy (ACC)
(TP + TN)

(TP + TN + FP + FN)
The proportion of correctly classified individuals.

Positive likelihood ratio
(LR+)

Se

(1 − Sp)
The ratio of Se to FPR, indicating the probability of having a diagnosis in
individuals with a confirmed positive condition testing positive compared with
individuals with a confirmed negative condition testing positive. Values greater
than 1 suggest an increase in the probability of disease. The larger the LR+, the
more informative the test.

Negative likelihood ratio
(LR–)

(1 − Se)

Sp
The ratio of FNR to Sp, indicating the probability of having a diagnosis in
individuals with a confirmed positive condition testing negative compared with
individuals with a confirmed negative condition testing negative. Values lower
than 1 suggest a decrease in the probability of disease. The smaller the LR–,
the more informative the test.

Youden index (J) Se + Sp − 1 This method defines the optimal cutoff as the point maximizing the difference
between Se and FPR, corresponding to the vertical distance between the 45
degree line and the point on the ROC curve. Higher values of J are better than
lower values.

Concordance probability
method (CZ)

Se × Sp This method defines the optimal cutoff as the point maximizing the product of
Se and Sp. CZ can be expressed as the area beneath the ROC curve, represented
geometrically as a rectangle. Its height corresponds to Se and its width to Sp.
The cutoff maximizing CZ is the one that maximizes the area of the rectangle.
Higher values of CZ are better than lower values.

Closest to (0, 1) criteria
(ER)

√
(1 − Se)2 + (1 − Sp)2 This method defines the optimal cutoff as the point minimizing the Euclidean

distance between the ROC curve and the (0, 1) point/top-left corner. Lower
values of ER are better than higher values.

Number needed for
screening utility (NNSU)

1

(Se × PPV ) + (Sp × NPV )
The reciprocal of the so called ‘Summary utility index’. NNSU values lower
than 1.02 are desirable, suggesting that the test is suitable for ruling in and
ruling out diagnosis.

Likelihood to be
diagnosed or
misdiagnosed (LDM)

1
(1−ACC)

1
Se+Sp−1

This is the ratio between the reciprocal of the proportion of incorrectly
classified individuals and the reciprocal of the Youden index (J). Higher values
of LDM (>1) indicate a test more likely to diagnose than misdiagnose.

TP, true positive; TN, true negative; FP, false positive; FN, false negative.

offered the best balance between Se and Sp. How-
ever, Santangelo’s and Aiello’s cutoffs exhibited the
highest J and CZ values (MoCA-Contioptimal = 22.53,
Se = 0.75, Sp = 0.72, J = 0.47, CZ = 0.54, ER = 0.37;
MoCA-Santangelooptimal = 22.85, Se = 0.65, Sp =
0.87, J = 0.52, CZ = 0.56, ER = 0.38; MoCA-
Aiellooptimal = 23.35, Se = 0.77, Sp = 0.72, J = 0.49,

CZ = 56, ER = 0.36). The optimal cutoff for San-
tangelo’s adjustment––which corresponded to
the one previously identified by Ilardi et al.
in patients with MCI and early dementia of
mixed etiology––demonstrated higher specificity
than that of Aiello, along with higher PPV and
lower FPR. Conversely, the optimal cutoff for
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Table 2
Descriptive statistics in patient and control groups

Sociodemographic and clinical variables MCI-AD patients Healthy controls p Effect size
(n = 48) (n = 47)

Demographics and global cognitive status
Sex (f/m) 23/25 24/23 nsa

Location (northern Italy/southern Italy) 36/12 26/21 nsa

Age, years, M ± SD 71.25 ± 4.99 71.08 ± 4.59 nsb

Education, years, M ± SD 11.96 ± 4.63 11.43 ± 4.72 nsb

MoCA score, raw, M ± SD 20.52 ± 3.58 24.77 ± 3.53 <0.001b 1.19c

Diagnostic criteria incorporating biomarkers
NIA-AA 2011
High likelihood, n (%) 48 (100.00)
AT(N) framework

A+T+N+, n (%) 28 (58.33)
A+T–N+, n (%) 9 (18.75)
A+T∗N+, n (%) 11 (22.91)

MCI-AD, Mild cognitive impairment due to Alzheimer’s disease; MoCA, Montreal Cognitive Assessment; NIA-AA,
National Institute on Aging and Alzheimer’s Association; AT(N), ATN classification system (Amyloid, Tau, Neurodegen-
eration). Among the AT(N) profiles, the asterisk (∗) indicates that the biomarker group was untested. aChi-squared test.
bStudent’s t-test. cCohen’s d.

Fig. 1. Receiver Operating Characteristic (ROC) curves for
each adjustment method. ROC curves depicting the trade-off
between sensitivity and false positive rate (1 – specificity) across
different adjustment methods. Each curve visually represents the
MoCA’s ability to distinguish between patients with MCI-AD and
healthy controls. The curves are represented as follows: solid red
line for Nasreddine’s adjustment, solid blue line for Conti’s adjust-
ment, dashed red line for Santangelo’s adjustment, and dashed blue
line for Aiello’s Adjustment.

Aiello’s adjustment––which was higher com-
pared to the one previously proposed by Ilardi
et al. (MoCA-AielloIlardi = 22.29)––was more
sensitive, thus showing lower FNR than San-
tangelo’s (MoCA-Santangelooptimal, PPV = 0.84,
NPV = 0.71, FPR = 0.13, FNR = 0.35; MoCA-
Aiellooptimal, PPV = 0.74, NPV = 0.76, FPR = 0.28,

FNR = 0.23). Given a prior probability of disease
at 50%, Santangelo’s adjustment outperformed
Aiello’s in increasing the post-test probability of
disease in individuals testing positive (MoCA-
Santangelooptimal = ∼30%, MoCA-Aiellooptimal =
∼20%). Nevertheless, in terms of LR–, the
two cutoffs performed quite similarly (MoCA-
Santangelooptimal, LR+ = 5.06, post-test probability
of MCI-AD = +84%, LR– = 0.41, post-test proba-
bility of MCI-AD = –70%; MoCA-Aiellooptimal,
LR+ = 2.79, post-test probability of MCI-
AD = +74%, LR– = 0.32, post-test probability
of MCI-AD = –75%). For both adjustment meth-
ods, post-test probability is depicted as Fagan’s
nomograms in Fig. 2.

Although originally set on a more heterogeneous
clinical population, Ilardi’s cutoff for Aiello’s adjust-
ment maintained good diagnostic performance in
MCI-AD. In comparison to the optimal cutoff for
MCI-AD, Ilardi’s cutoff for Aiello’s adjustment
demonstrated increased Sp, higher PPV, lower FPR,
and higher LR+, while sustaining comparable ACC
(MoCA-AielloIlardi = 22.29, Sp = 0.85, PPV = 0.81,
FPR = 0.15, LR+ = 4.06, post-test probability of
MCI-AD = +81%, ACC = 0.73). Congruently with
Ilardi et al., the optimal cutoff for Nasreddine’s
adjustment was notably lower than the conven-
tional cut-point (MoCA-Nasreddineoptimal = 23.50).
Overall, Nasreddine’s optimal cutoff showed accept-
able clinimetric properties (Se = 0.75, Sp = 0.70,
PPV = 0.72, NPV = 0.73, FPR = 0.30, FNR = 0.25,
ACC = 0.73, LR–=0.36, post-test probability of MCI-
AD=–73%). The Italian nominal normative cutoffs
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Fig. 2. Fagan’s nomograms representing post-test probability for Santangelo’s (left) and Aiello’s (right) optimal cutoffs. The Fagan’s
nomogram is used to graphically illustrate how the likelihood ratio (LR) mediates the relationship between pre- and post-test probability of
disease. The pre-test probability is represented on the left vertical line, the LR on the middle vertical line, and the post-test probability on the
right vertical line. The resulting predicted increase or decrease in post-test probability is calculated by tracing a line connecting the values of
pre-test probability and LR (LR+, blue line; LR–, red line) until it reaches the right vertical line. On the left, the nomogram representing the
performance of the optimal cutoff according to Santangelo’s adjustment (LR+ = 5.06, CI 95% [2.33–11.00], post-test probability = 84%, CI
95% [70–92]; LR– = 0.41, CI 95% [0.27–0.60], post-test probability = 30%, CI 95% [22–38]); on the right that of the optimal cutoff according
to Aiello’s adjustment (LR+ = 2.79, CI 95% [1.71–4.54], post-test probability = 74%, CI 95% [64–82]; LR–=0.32, CI 95% [0.18–0.55], post-
test probability = 25%, CI 95% [16–36]). These graphs were generated using Diagnostic Test Calculator (version 2010042101) accessed at
http://araw.mede.uic.edu/cgi-bin/testcalc.pl (07 Jan 2024). This calculator is a free software available under the Clarified Artistic License.

and the original Nasreddine’s cutoff of 26 were exces-
sively skewed in Se and Sp.

Table 4 shows the NNSU and LDM values for
each examined cutoff. These newly-developed
metrics express the utility of MoCA for screening
and the rate of diagnosis versus misdiagnosis of
MCI-AD. In line with the canonical cutoff analysis
results, the presented optimal cutoffs demonstrated
acceptable performance in both screening and
diagnosis (NNSU values < 1.02, LDM values > 1),
with Santangelo’s and Aiello’s adjustments showing
a certain superiority over Conti’s. However, a disso-
ciation persisted between Santangelo’s and Aiello’s
adjustments. While they behaved similarly when
measuring MoCA’s screening utility, the former
surpassed the latter in terms of diagnoses over mis-

diagnoses (MoCA-Santangelooptimal, NNSU = 0.86,
LDM = 2.17; MoCA-Aiellooptimal, NNSU = 0.89,
LDM = 1.96). Ilardi’s cutoffs for Conti’s and Aiello’s
adjustments performed comparably to Nasreddine’s
cutoffs. The Italian nominal normative cutoffs were
found to be unsatisfactory for both screening and
diagnostic aims.

DISCUSSION

Clinical neuropsychology is a discipline marked
by considerable ‘volatility’. This likely stems from
the lack of universally agreed-upon standards in
diagnostic clinical practices. Neuropsychological
examinations may be strongly affected by the clin-
ician’s subjectivity, especially when their ‘style’ or

http://araw.mede.uic.edu/cgi-bin/testcalc.pl
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Table 4
‘Number needed for screening utility’ and ‘likelihood to be diag-

nosed or misdiagnosed’ for each cutoff

Adjustment methods Cutoffs NNSU LDM

Nasreddine et al.15 <26a 0.98∗ 1.37∗∗
≤23.50c,d 0.95∗ 1.67∗∗

Conti et al.64 ≤17.36b 1.43 0.40
≤20.97c 0.97∗ 1.48∗∗
≤22.53d 0.95∗ 1.81∗∗

Santangelo et al.42 ≤15.50b 1.75 0.12
≤22.85c,d 0.86∗ 2.17∗∗

Aiello et al.63 ≤18.58b 1.38 0.46
≤22.29c 0.94∗ 1.67∗∗
≤23.35d 0.89∗ 1.96∗∗

NNSU, Number Needed for Screening Utility; LDM, Likelihood
to be Diagnosed or Misdiagnosed. ∗Screening utility for ruling
in and ruling out diagnosis. ∗∗Diagnosis prevails over misdiagno-
sis. aConventional MoCA’s cutoff. bNominal normative cutoffs.
cCutoffs from Ilardi et al. (2023). dOptimal cutoffs for MCI due
to AD.

professional experience collides with a standard-
ized approach. Neuropsychologists may introduce
biases in the selection of appropriate psychometric
tools because of time constraints and overwork-
ing. In addition, differences in demographic profile,
sociocultural and financial backgrounds, educational
quality, language/communication style, cognitive
reserve, emotional and personality factors may signif-
icantly moderate patients’ performance at cognitive
testing.73,74 However, even considering these limita-
tions, the utility of clinical neuropsychology should
not be questioned, and this is certainly true in the
framework of AD.

In 2018, the AT(N) paradigm attempted to exclude
clinical expertise from AD diagnosis.9 Nevertheless,
it has been demonstrated that a mere biological def-
inition of AD has poor predictive accuracy. Likely,
AD does not align with an at-risk model, such as that
of prostate cancer, where screening and treating an
asymptomatic patient can ensure a better prognosis.10

Here, neuropsychology comes into play. It can out-
perform neuroradiology in predictive power for MCI
and AD diagnoses.75 Also, it covers methods and
techniques to quantify the therapeutic outcomes in
terms of cognitive and functional performance. The
contribution of neuropsychology is highly relevant in
the context of MCI due to AD (MCI-AD), especially
in view of future disease-modifying treatments.

MoCA is a brief pencil-and-paper neuropsycho-
logical battery originally devised to identify patients
with MCI and early-stage dementia.15 Over time,
its application has extended to exploring cognitive
deficits and monitoring rehabilitation/treatment out-
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comes across different clinical populations, ranging
from Parkinson’s disease to chronic obstructive pul-
monary disease.16 MoCA has been translated into
over 50 languages, and normative data are avail-
able for many countries.44,46 Regrettably, a common
(mal)practice in the interpretation of neuropsycho-
logical test scores involves primarily relying on
normative data, without delving into whether the des-
ignated normative ‘pathological’ ranges truly hold
diagnostic significance. In fact, the conventional
psychometric approaches to extract normative cut-
offs render neuropsychological tools highly specific
but inadequately sensitive for MCI. This applies
to both short cognitive batteries like MoCA and
more elaborate, domain-specific tests. Paradoxically,
it may be hypothesized that irrespective of the
length or comprehensiveness of cognitive assess-
ment, neuropsychological clinical practice leans
heavily towards screening rather than diagnosis. This
would be appropriate if, for instance, neuropsy-
chological tools were used by general practitioners
in their clinics for a preliminary neurocognitive
evaluation.76 However, if the assessment is intended
for diagnostic framing and orientation within neuro-
logical outpatient or secondary care settings, this is
to be considered unacceptable.

In this study, we examined the diagnostic proper-
ties of MoCA in patients with MCI-AD. Particularly,
we aimed at identifying optimal cutoffs, balanced
for sensitivity and specificity, when four demo-
graphic adjustments were applied: the conventional
1-point correction by Nasreddine et al.15 and cor-
rection factors derived from three Italian normative
studies.42,63,64 To our best knowledge, only one pre-
vious study shared a similar goal,62 wherein a cutoff
of 24 was found to be the optimal threshold for
differentiating patients with MCI-AD from healthy
controls sampled from the Czech population.62 Con-
sistently, our optimal cutoffs ranged from 22.53 to
23.50. The slight discrepancy between the Czech
study’s results and ours might be attributed to
differences in sampling procedures or geographic
extraction of participants.

In accordance with previous research,33,77 we
highlighted that the original Nasreddine cutoff of 26
led to an increased false positive rate due to high
sensitivity but poor specificity. Instead, the optimal
Nasreddine’s cutoff we proposed, at 23.50, is close
to that recommended in a recent meta-analysis on
the matter,77 and demonstrated adequate clinimetric
outcomes.

As concerns normative adjustments, among the
optimal cutoffs we identified, those related to
Santangelo’s42 and Aiello’s63 demographic adjust-
ments demonstrated the highest diagnostic perfor-
mance. Aiello’s cutoff of 23.35 was more sensitive
while Santangelo’s of 22.85 was more specific. Fur-
thermore, according to the ‘Number Needed for
Screening Utility’ (NNSU) and ‘Likelihood to be
Diagnosed or Misdiagnosed’ (LDM) metrics, Santan-
gelo’s adjustment, combined with our optimal cutoff,
restores robust performance to MoCA when used as
a screener and even more so as a diagnostic-oriented
tool. Still, it is crucial to emphasize that, based on our
estimates of the likelihood ratio, an individual testing
positive on MoCA with Santangelo’s adjustment and
a cutoff of 22.85 will have, in the presence of a diag-
nostic suspicion, 84% post-test probability of being
diagnosed with MCI-AD.

In a recent clinimetric study by Ilardi et al.,
MoCA’s discriminatory power was assessed in
patients with MCI and early dementia of mixed eti-
ology compared to individuals with normal cognitive
functioning. Sensitivity- and specificity-weighted
cutoffs were also computed.33 Here, we tested the
generalizability of these cutoffs in the MCI-AD
population. Interestingly, the optimal cutoffs for
Nasreddine’s and Santangelo’s adjustments coin-
cided between the two studies. This evidence
suggests a certain degree of MoCA’s clinimetric
flexibility along the continuum of dementia, indepen-
dently of the underlying pathology. In comparison
to the earlier study, here all cutoffs suffered from a
loss of diagnostic sensitivity (including those related
to Nasreddine’s and Santangelo’s methods), likely
stemming from the inclusion of patients with mild
dementia, who scored ∼1.5 points lower on MoCA
than patients with MCI. However, it is worth not-
ing that the diagnostic performance of Santangelo’s
cutoff remained largely unchanged.33

In light of the above considerations, we advo-
cate for the preferential adoption of Santangelo’s
demographic adjustment alongside an optimal cutoff
of 22.85 for a comprehensive evaluation of cogni-
tive functioning in patients with suspected amnestic
MCI-AD. However, despite its limitation in control-
ling the covariance of sociodemographic variables,77

one should ponder the idea of using the rapid
Nasreddine’s procedure to correct MoCA scores, and
interpreting them with a cutoff of 23.50. This may
represent a valuable resource in memory clinics with
high attendance in the earlier steps.33
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As previously shown,33 we found that cutoffs
extracted from normative datasets exhibited very
low sensitivity, despite excellent specificity, reveal-
ing their limited utility in diagnosis-oriented clinical
settings for dementia. This finding is further corrob-
orated by poor LDM values. Given the equally poor
NNSU values, normative cutoffs demonstrate limited
relevance, even for screening purposes. If clinical
decisions must rely on normative data, it would be
akin to flipping a coin. To sum up, we confirm the
constraints of solely depending on normative data
when correcting and interpreting neuropsychological
test scores for clinical purposes. Their usefulness in
gauging the degree of possible cognitive impairments
along the dementia continuum is a different matter,
though a lot relies on how reliable the psychometric
extraction technique is.

The present study has some limits. Even consid-
ering the favorable a priori power analysis results,
the sample size was relatively small, potentially
undermining the external validity of the study. Addi-
tionally, the demographic attributes of the clinical
and control samples (e.g., income, employment sta-
tus, occupation, parental status) were not sufficiently
specified. Lastly, although this paper exclusively cen-
ters on the MoCA, the latter serves merely as a
pretext. The theoretical and methodological aspects
expounded upon herein can be extended to all
neuropsychological tests grounded in a quantita-
tive framework. Clearly, tests relying on qualitative
assessment, such as cancellation tasks, where a sin-
gle error is deemed symptomatic, are exempt from
our considerations.

Conclusions

Italy is leading the debate on the need for
extra efforts to define disease-specific cutoffs for
routinely used tools in clinical neuropsychology
practice. These endeavors should prioritize the
accurate classification of patients with a variety
of clinical conditions. One major challenge is
the significant fluctuation of cutoffs across dif-
ferent diseases (e.g., MoCA cutoff of 22.82 for
patients with stroke or 19.94 for patients with
extra-pyramidal disorders).35,36 This highlights the
importance of conducting methodologically sound
clinimetric research that carefully considers inter-
group homogeneity from as many perspectives as
possible, including age, education, and number of
comorbidities, and that ideally involves different clin-
ical cohorts in addition to healthy controls.

In this study, we started by identifying optimal
MoCA cutoffs for the early detection of patients
with MCI-AD. The imperative of enhancing the diag-
nostic properties of neuropsychological tests should
remain a focus in future research, as neuroimaging
techniques are unlikely to ever completely replace
a comprehensive and sensitive neuropsychological
assessment performed by an expert clinician.
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