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Abstract.
Background: Blood biomarkers are crucial for the diagnosis and therapy of Alzheimer’s disease (AD). Energy metabolism
disturbances are closely related to AD. However, research on blood biomarkers related to energy metabolism is still insufficient.
Objective: This study aims to explore the diagnostic and therapeutic significance of energy metabolism-related genes in AD.
Methods: AD cohorts were obtained from GEO database and single center. Machine learning algorithms were used to identify
key genes. GSEA was used for functional analysis. Six algorithms were utilized to establish and evaluate diagnostic models.
Key gene-related drugs were screened through network pharmacology.
Results: We identified 4 energy metabolism genes, NDUFA1, MECOM, RPL26, and RPS27. These genes have been confirmed
to be closely related to multiple energy metabolic pathways and different types of T cell immune infiltration. Additionally,
the transcription factors INSM2 and 4 lncRNAs were involved in regulating 4 genes. Further analysis showed that all
biomarkers were downregulated in the AD cohorts and not affected by aging and gender. More importantly, we constructed a
diagnostic prediction model of 4 biomarkers, which has been validated by various algorithms for its diagnostic performance.
Furthermore, we found that valproic acid mainly interacted with these biomarkers through hydrogen bonding, salt bonding,
and hydrophobic interaction.
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Conclusions: We constructed a predictive model based on 4 energy metabolism genes, which may be helpful for the diagnosis
of AD. The 4 validated genes could serve as promising blood biomarkers for AD. Their interaction with valproic acid may
play a crucial role in the therapy of AD.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neu-
rodegenerative disorder characterized by cognitive
decline.1 Aging, female, and apolipoprotein E
(APOE) � 4 allele are widely considered as major risk
factors for AD. Early diagnosis of AD is clinically
challenging due to its high prevalence and insidi-
ous onset.2 Currently, positron emission tomography
(PET) and cerebrospinal fluid (CSF) biomarkers
are widely used in clinical practice.3,4 Extensive
researches have demonstrated that blood biomarkers
certainly have some clinical diagnostic value, such as
amyloid-� (A�)42, A�40, A�40/42 ratio according to
the A� deposition pathology;5 phospho-tau 181 (p-
tau 181), p-tau 217, p-tau 231 for the neurofibrillary
tangling mechanism;6–8 glial fibrillary acidic protein
(GFAP) and neurofilament based on neuroinflamma-
tory mechanism.9,10 However, due to the complexity
of AD pathogenesis, solely focusing on these main-
stream neuropathological features is insufficient for
clinical diagnosis and interventional therapy.

In recent years, numerous studies have pro-
vided evidence that the pathological features
of AD are accompanied by energy metabolism
disturbances.11,12 The glucose metabolic home-
ostasis is particularly crucial for brain energy
metabolism.13 Neurons rely heavily on glucose and
ATP for physiological activities, such as learning,
memory and cognition.14 Meanwhile, astrocytes sup-
ply neurons with glycolytic products like lactate
to fulfill the high energy metabolic demands of
neurons.14 Study has reported a reduction expres-
sion of glucose transporter 1 (GLUT1) in AD.15

Furthermore, impaired energy metabolism in AD dis-
rupts the efficient neuronal A� clearance, leading
to cognitive decline.16 Increased astrocyte reactiv-
ity and multiple metabolic disorders are also early
AD pathological features, resulting from abnor-
mal accumulation of A� in the brain,17,18 which
in turn affect neuronal function and cognitive
ability.17,19 These findings highlight the close rela-
tionship between energy metabolic impairments and
AD progression.20 Recent study has even identified
patients with glucose metabolism and mitochondrial

dysfunction prior to clinical AD symptom onsets.21

Of note, it is crucial to identify energy metabolism-
related genes with potential diagnostic value and to
construct diagnostic models and search for potential
drugs for treatment. These efforts are essential for
slowing down the AD progression, improving prog-
nosis, and enabling early prevention in populations
at risk of cognitive impairment.

Machine learning, a form of artificial intelli-
gence, such as random forests (RF) and generalized
linear regression models, has been employed and
widely utilized in the study of AD pathogene-
sis and the search for biomarkers that can serve
as diagnostic or prognostic purposes. Examples
of biomarkers include autophagy-related genes,22

mitochondria-related genes,23,24 ferroptosis-related
genes,25 and oxidative stress biomarkers26 have been
explored as potential AD biomarkers. Additionally,
researchers have increasingly used machine learning
to develop AD diagnostic or prognostic prediction
models, which have demonstrated high objectivity,
predictability, and stability.27–29 For instance, Qiang
et al.29 utilized machine learning algorithms to quan-
titatively assess and stratify the significance of plasma
metabolites in AD, revealing their important contri-
bution to diagnosis. Similarly, Tao et al.30 identified
18 serum proteins and 21 CSF protein biomarkers that
could differentiate AD stage through screening their
discovery cohort. Wang et al.27 discovered character-
istic urinary proteins that could differentiate AD and
mild cognitive impairment (MCI), while Ferreiro et
al.31 identified intestinal markers for preclinical AD.
In addition, Lian et al.28 identified and built a diag-
nostic model by 8 genes bridged metabolic status and
AD subtypes pathogenesis, but merely used the brain
tissue samples and verified in the mouse model. How-
ever, studies utilizing machine learning to identify
blood biomarkers from AD patients at the level of
a more specific energy metabolism mechanisms for
diagnosis, have not yet been reported.

In the field of AD treatment research, cur-
rently FDA-approved drugs, such as memantine and
galantamine, are used to improve symptoms.1 Addi-
tionally, anti-A� monoclonal antibodies are used
to alleviate the dementia progression.32,33 How-
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ever, these drugs are limited to prevent or reverse
the underlying causes of AD.34 To address this,
researchers have been combining machine learn-
ing and molecular docking in recent years for new
drug development and drug repurposing in AD.35

The approach aims to expedite the drug develop-
ment process, reduce experimental costs, and shorten
the research and development cycle. Moreover, com-
putational drug repurposing has been proved to
be a promising method for identifying candidate
therapeutic medications and developing treatments
for neurodegenerative diseases36 and other newly
emerging infectious diseases.37 In a high-throughput
target-trial study of drug repurposing in AD, real-
world data were used to identify indications for 5
medications (pantoprazole, gabapentin, atorvastatin,
fluticasone, and omeprazole) that could potentially
benefit AD patients.38 Oliveros et al.39 repurposed
ibudilast as a potential drug in AD. Azmi et al.40 uti-
lized virtual screening and molecular docking, along
with machine learning, to identify hesperidin as a
promising flavonoid for future AD treatment. He et al.
identified 5 traditional medicines that could be used
for AD treatment in combination with conventional
drugs by using an artificial intelligence algorithm
consisting of deep learning models.41 Therefore, the
integration of machine learning methods and molec-
ular docking techniques hold promise in identifying
and screening AD blood biomarkers related to energy
metabolism, as well as potential drugs or compounds.
This approach may offer new strategies for the future
diagnosis, intervention, and treatment of AD.42

In this study, we utilized 2 independent AD
cohorts from the GEO database, consisting of Euro-
pean individuals, as training and validation cohorts.
Additionally, we included an AD clinical cohort
of Asians as a local validation cohort. Limma,
WGCNA, and machine learning algorithms (e.g.,
LASSO and RF) were employed to identify key genes
related to energy metabolism. Subsequently, func-
tional analyses of the identified biomarkers revealed
their existing functions on energy metabolism-related
pathways and immune feature correlation with GSEA
enrichment. TF-mRNA interactions and ceRNA net-
work suggested the possible regulatory mechanism
of 4 biomarkers. Diagnostic models for the train-
ing and validation cohorts were constructed using
ROC and multivariate Cox regression analysis, and
the performance of the models was evaluated using
calibration curves, DCA analysis tools and vari-
ous machine learning algorithms. Further research
evaluated the effects of aging and gender risk fac-

tors on differential gene expression. Furthermore,
computational protein-drug molecular docking and
molecular dynamics simulation analyses were con-
ducted to screen potentially active drugs based on the
energy metabolism-related biomarkers and molec-
ular docking. In conclusion, this study aimed to
identify diagnostic candidate markers and potential
drugs for AD based on the pathogenesis of energy
metabolism. Additionally, an optimal AD diagnostic
prediction model was constructed to provide valuable
insights for clinical decision.

METHODS

Data extraction

The microarray RNA sequencing data set
GSE6306043 was downloaded from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/), com-
prising 145 AD peripheral blood samples and 104
control samples from European ancestors, as the
training cohort for later model construction (Table 1,
Supplementary Table 1). GSE6306143 included 139
AD and 134 control peripheral blood samples
from another European ancestors, and was treated
as the validation cohort (Table 1, Supplementary
Table 1). A total of 5,256 energy metabolism-related
genes (EMRGs) were obtained from the GeneCards
database (http://www.genecards.org/) with a score
threshold >10.44

Differentially expressed genes analysis

In the training cohort (GSE63060), limma (v
3.56.2) package was used to identify the differentially
expressed genes (DEGs) between AD and control
samples (adjusted p < 0.05 and | log2 (fold change) |
> 0.5). R packages ggplot2 (v 3.4.4) and pheatmap (v
1.0.12) were used to draw volcano plot and heatmap
of all DEGs, respectively.

Key genes identification with weighted gene
co-expression network analysis (WGCNA)

WGCNA (v 1.72-5)45 was employed to determine
the most significant module genes associated with
AD. Initially, we conducted gene clustering by match-
ing clinical phenotypes with sample data. Next, we
defined the parameters of the topological network,
including the soft threshold (�), and computed the
scale-free distribution topology matrix. Once the �
was determined, we built a weighted co-expression
network and identified various gene modules. Ulti-

https://www.ncbi.nlm.nih.gov/geo/
http://www.genecards.org/
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Table 1
Information of GEO datasets

Dataset Platform Control (n) AD (n) Type

GSE63060 GPL6947 Illumina
HumanHT-12 V3.0
expression beadchip

104 145 peripheral blood

GSE63061 GPL10558 Illumina
HumanHT-12 V4.0
expression beadchip

134 139 peripheral blood

N, number; AD, Alzheimer’s disease.

mately, we established a link between gene modules
and AD phenotypes, revealing that the red gene mod-
ules were most significantly associated with AD. The
correlation between gene modules and phenotype
was appraised through Spearman’s method. Subse-
quently, the Venn diagram illustrated the 15 key
genes, through overlapping the DEGs, EMRGs and
the red module genes. Thereafter, the circos track plot
was employed to map the location of key genes on
chromosomes with circlize (v 0.4.15).

Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrich-
ment analysis of 4 AD biomarkers were carried
out by using clusterProfiler (v 4.8.3) to explore
the possible associated energy metabolism path-
ways. GO enriched results were then performed to
show the following aspects of biological processes
(BP), molecular functions (MF), and cellular com-
ponents (CC). The summary of 4 AD biomarker
genes and family homologous genes involved in
AD and other diseases were collected in Supple-
mentary Table 2. Single-gene gene set enrichment
analysis (GSEA) was performed on biomarkers with
gene set variation analysis (GSVA), and the reference
gene set was C2: KEGG gene sets from Molecular
Signatures Database (MSigDB, https://www.gsea-
msigdb.org/gsea/msigdb).46,47 And the p value <0.05
was set as the standard, regarding to be signifi-
cant. Additionally, the results of energy metabolism
functional enrichment analysis were displayed with
bubble, Sankey, lollipop charts and GSEAplots by
igraph (v 1.4.1), ggraph (v 2.1.0), ggalluvial (v
0.12.3), ggplot2 (v 3.4.4) and enrichplot (v 1.24.0).

Machine learning in screening biomarkers

To narrow down and identify the biomarkers and
prepare to construct a diagnostic model of AD, least
absolute shrinkage and selection operator (LASSO)

regression analysis was initially employed to refine
the candidate biomarkers from the aforementioned 15
key genes with the glmnet (v 4.1-8) package. Then,
the RF algorithm was employed to narrow down the
candidate biomarkers with the randomForest (v 4.7-
1.1), integrating multiple trees through the idea of
ensemble learning to gain better accuracy. The over-
lapping genes of LASSO model and RF model were
defined as biomarker genes for developing a diagnos-
tic model of AD ultimately. Then, circlize (v 0.4.15)
was used to display the location of biomarkers on
chromosomes.

Construction and validation of nomogram

The nomogram was constructed based on the 4
biomarker genes by using the rms (v 6.3-0) pack-
age. The area under curve (AUC) was drawn to
evaluate the performance of each biomarker and the
nomogram in the diagnosis of AD. Furthermore,
ROC curve was performed to determine whether
the nomogram-based decision was conducive to AD
diagnosis. Finally, the calibration curves and deci-
sion curve analysis (DCA) curves were carried out
to assess the nomogram predictive efficiency in AD.
Thereafter, to verify the accuracy of our AD diag-
nosis model, which is based on 4 biomarkers, we
employed 6 different machine learning algorithms:
K-Nearest Neighbor (KNN), RF, Support Vector
Machine (SVM), Gaussian Navie Bayes, Logistic
Regression, and Decision Tree.28 These algorithms
were employed to evaluate the accuracy of our nomo-
gram. We compared the classification performance
of the 6 models by utilizing evaluation indicators
such as ROC curve, sensitivity, and specificity, while
indicating better performance of our diagnostic AD
nomogram. Utilizing the glmnet (v 4.1-8), survival
(v 3.3.1), rmda (v 1.6), regplot (v 1.1), nomogram-
Formula (v 1.2.0.0), randomForest (v 4.7-1.1), e1071
(v 1.7-14), kernlab (v 0.9-32), naivebyes (v 0.9.7),
caTools (v 1.18.2), and caret (v 6.0-94) R packages,
we constructed and validated the nomogram model

https://www.gsea-msigdb.org/gsea/msigdb
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Table 2
Potential drugs and molecules

Term PubChem CID p Adjusted p Combined score Genes Structure

Valproic acid 3121 2.98E-02 2.03E-01 164219.01 RPS27
MECOM
NDUFA1
RPL26

Hydralazine 3637 2.26E-04 1.33E-02 626.29 RPS27
NDUFA1
RPL26

Metformin hydrochloride 14219 9.96E-03 2.03E-01 625.39 NDUFA1

Hydroxyurea 3657 1.91E-02 2.03E-01 276.51 MECOM

Chlorpyrifos oxon 21804 2.12E-02 2.03E-01 240.95 NDUFA1

Solanine 262500 2.52E-02 2.03E-01 193.57 MECOM

1-Methyl-3-nitro-1-nitrosoguanidine 135436526 2.61E-02 2.03E-01 184.20 MECOM

Temozolomide 5394 4.02E-02 2.03E-01 104.46 MECOM

8-azaguanine 135403646 4.08E-02 2.03E-01 102.47 MECOM

Vinblastine 13342 4.46E-02 2.03E-01 90.66 NDUFA1



1266 H. Wang et al. / Biomarkers of Energy Metabolism in AD

based on biomarkers. The ROC curves, nomograms
and calibration curves of each biomarker were visual-
ized on GSE63060 and GSE63061, respectively. The
AUC values and corresponding 95% confidence inter-
vals were calculated to distinguish AD and control
groups.

Immune characteristics and correlation analysis

GSVA (v 1.50.0)47 was used to conduct single
sample gene set enrichment analysis (ssGSEA) of 28
immune gene set samples to evaluate the immunolog-
ical properties of AD patients. A correlation matrix
was constructed for all 28 immune cell subtypes,
as well as biomarkers and correlation coefficients
between immune cells with significantly different
expressions. The abundance score for each immune
cell type was calculated in both AD and control sam-
ples, and visualized using box plots generated with
the Wilcoxon rank-sum test. The correlation between
biomarkers and differential immune cells was calcu-
lated by Spearman’s method (p < 0.05, |cor| > 0.5).

TF-biomarkers regulatory network

The TFs and biomarkers regulation relationships
were performed and extracted from the NetworkAn-
alyst database (https://www.networkanalyst.ca/).48

All predicted TF targets were derived from the JAS-
PAR TF binding site profile database.49 Cytoscape
(v.3.8.2) was employed for visualizing the network.50

LncRNA-miRNA-biomarker ceRNA network
construction

The microRNAs (miRNAs) interacting
with biomarkers was predicted by using
ENCORI/starBase (https://rnasysu.com/encori/).51

Then the long noncoding RNAs (lncRNAs) of the
predicted miRNA was predicted following the same
way. Finally, the predicted lncRNA-miRNA pairs
and miRNA–biomarker pairs were extracted and
combined to construct lncRNA-miRNA-biomarker
regulatory networks based on competitive endoge-
nous RNA (ceRNA) regulatory mechanisms. The
overall ceRNA network was constructed and
visualized by Cytoscape.

Correlation analysis

Correlation analysis was conducted between
the expression levels of biomarkers (NDUFA1,
MECOM, RPL26, and RPS27) and risk factors in all

participants from the GSE63060 and GSE63061. The
coefficient for correlation was performed using Pear-
son’s correlation analysis. Then, the expression levels
of biomarkers and aging factors (TP53, CDKN1A,
CDKN2A) were conducted the correlation in two
cohorts from GSE63060 and GSE6061, respectively.
The correlation was analyzed by Spearman’s correla-
tion coefficient. And the p value for significance of the
correlation was calculated. The correlation analysis
was performed using cowplot (v 1.1.3) R package.

Human subjects

The blood samples, including 13 AD patients diag-
nosed with magnetic resonance imaging (MRI) and
computed tomography (CT), and 12 healthy subjects
(Supplementary Table 1), were acquired from the
Aerospace Center Hospital in China, Peking Uni-
versity School of Clinical Aerospace Medicine. This
study was conducted in accordance with Good Clini-
cal Practice Guidelines and the Helsinki Declaration.
All patients were provided with informed consent
forms for blood sampling. The ethical declaration and
ethical approval have been approved by the Ethics
Review Committee of Aerospace Center Hospital
(2022008).

Real-time quantitative polymerase chain reaction
(RT-qPCR)

Total RNA was extracted from 25 whole blood
samples by TRIzol™ reagent (15596026, Invitro-
gen, Thermo Fisher Scientific Co., Ltd) according
to the manufacturer’s instructions, using a 1:3 ratio
of sample: TRIzol™ reagent. After applying the
reverse transcription, RT-qPCR was performed using
Fast SYBR Green Master mix (4385610, Applied
Biosystems™, Thermo Fisher Scientific Co., Ltd)
or Taqman Fast Advanced Master Mix (4444556,
Applied Biosystems™, Thermo Fisher Scientific Co.,
Ltd), and data was normalized to the house-keeping
gene GAPDH. The primer sequences used in this
study are provided in Supplementary Table 3. After
completing the reaction, the quantitative method used
2−��CT to represent the gene expression level.

Enzyme linked immunosorbent assay (ELISA)

Serum was collected from 25 fresh whole blood
samples. And pipettes were used to separate serum
after centrifugation for 20 mins at 5000× g, then
stored at –80◦C for later usage. Serum GFAP

https://www.networkanalyst.ca/
https://rnasysu.com/encori/
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Table 3
The PDB ID of the protein

Number Core target PDB ID
protein

1 NDUFA1 5XTC (PMID:10.2210/pdb5XTC/pdb)
2 MECOM 6BW3 (PMID:10.2210/pdb6BW3/pdb)
3 RPL26 6SXO (PMID:10.2210/pdb6SXO/pdb)
4 RPS27 6ZOK (PMID:10.2210/pdb6ZOK/pdb)

levels were assessed using the commercially avail-
able GFAP ELISA kit (F0825-A, Fankew, Shanghai
FANKEL Industrial Co., Ltd) following the manu-
facturer’s instructions.

Drug prediction analysis

All potential therapeutic drugs inter-
acting with biomarkers were obtained
from disease signature database (DSigDB,
https://dsigdb.tanlab.org/DSigDBv1.0/).52 Then,
a drug-biomarker interaction network was con-
structed and displayed with Cytoscape. Thereafter,
the three-dimensional (3D) or two-dimensional (2D)
structure of drugs was downloaded from PubChem
(https://pubchem.ncbi.nlm.nih.gov/) (Table 2), as
well as the homologous structure of biomarkers were
downloaded from RCSB Protein Data Bank (PDB,
https://www.rcsb.org/pdb)53 and the corresponding
PDB ID (Table 3). After removing water molecule,
hydrogenate, adding charges, setting the grid
parameters, and determining the central grid frame,
the initial drug-biomarker combination test was
conducted. Docking center parameters were deter-
mined with respect to the binding site of the protein
receptor and the original ligand. The AutoDock Vina
(v 1.2.0, https://autodock.scripps.edu/)54 software
was employed for semi-flexible molecular docking.
The affinity (kcal/mol) between all biomarkers and
potential drugs was calculated. A lower affinity
value indicates a more stable interaction between the
biomarker and the drug. Finally, all drugs that have
the potential to modify AD by increasing biomarkers
expression can be screened based on the affinity
values, arranged from high to low. Then the most
potential drug (valproic acid) was selected for global
molecular docking to screen the optimal binding site.
The binding process was visualized using 3D images
to further ascertain the binding method and interac-
tion mode between valproic acid and biomarkers.
Visualization of docking results were employed by
PyMol software (v 2.5, https://pymol.org/2/). The
docking results were sorted and the docking score

≤–5 kcal/mol was considered to have good binding
affinity for compound-target pairs.55

Statistical analysis

Descriptive statistics were utilized to summa-
rize the baseline information of the cohorts in this
study. Continuous variable (age) was presented as
the mean ± standard deviation (SD), and compared
using the t-test. Categorical variable (gender) was
presented as frequencies and percentages in the
population, and compared using Chi-Square test or
Fisher’s exact test. Pearson’s and Spearman’s cor-
relations were employed to examine relationships
between variables. All analyses were conducted
using R software (v 4.3.1) and GraphPad Prism (v
10.1.0) software. Statistical comparisons were car-
ried out with Wilcoxon rank-sum test, Chi-Square
test, Fisher exact test, t-test, and one-way ANOVA.
Statistical significance was defined as p < 0.05.
Details for each analysis can be found in the figure
legends.

RESULTS

Identification of AD key genes

The design and analysis of this study are sys-
tematically displayed in the flowchart (Fig. 1). To
identify AD key genes, a total of 82 DEGs were
identified between AD and control samples in the
training cohort GSE63060, containing 2 upregu-
lated and 80 downregulated genes (Fig. 2A, B).
Meanwhile, a total of 5,256 EMRGs were selected
with a score threshold >1044 from the GeneCards
database. Furthermore, to identify AD-related gene
modules, we used WGCNA algorithm to construct
gene-trait co-expression modules. After determin-
ing the fitting index and the average connectivity
of the soft threshold (Fig. 3A, B), 26 co-expression
modules were constructed and displayed in differ-
ent colors (Fig. 3C). Heatmaps were used to display
the module connections between genes and pheno-
types (Fig. 3D), as well as gene clustering modules
and their correlations (Fig. 3E). The heatmap results
showed the red module was significantly correlated
with the AD-phenotype (coefficient = –0.44, p = 4.1e-
13) among all modules (Fig. 3D). These results were
further validated in the scatter plot, where the red
module with 313 genes was indeed significantly cor-
related with the AD-phenotype (r = 0.59, p = 3.2e-88)
(Fig. 3F). Then, we identified 15 key genes through

https://dsigdb.tanlab.org/DSigDBv1.0/
https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/pdb
https://autodock.scripps.edu/
https://pymol.org/2/
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Fig. 1. Overview of the study design and framework analysis.

overlapping DEGs, EMRGs and red-module genes
from WGCNA (Fig. 3G). The chromosomal location
of a gene can provide information about its evolu-
tionary history, including gene duplication patterns
and gene duplication events.56 Herein, we used the
circos plot to perform chromosomal localization anal-

ysis on key genes involved in energy metabolism,
aiming to provide new insights into the evolution of
these genes. The results showed that the 15 key genes
were relatively stable distributed on 13 chromosomes
to maintain energy metabolism homeostasis (Supple-
mentary Figure 1).
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Fig. 2. Identification of DEGs between AD and control samples. A) Volcanic map of DEGs determined in the training cohort GSE63060.
B) Heatmap of DEGs in the training cohort GSE63060. Red for upregulation, blue for downregulation.

Screening of AD biomarkers using machine
learning algorithms

To identify characteristic biomarkers in 15 key
genes mentioned above, we utilized two differ-
ent machine learning algorithms to conduct feature
screening in the training cohort (GSE63060). Firstly,
we employed the LASSO regression algorithm to
identify 5 potential biomarkers from the 15 key genes
(Fig. 4A). Subsequently, 10-fold cross-validation
logistic regression was further used to validate the
objectivity and reliability of the biomarkers screened
by the LASSO regression (Fig. 4B). Secondly,
the RF algorithm was used to assess the impor-
tance and predictive performance of the top 10 key
genes (Fig. 4C). The 15 key genes were ranked
with the MeanDecreaseGini coefficients, and the
top 10 out of the 15 key genes were eventually
retained and extracted as another set of potential
biomarkers (Fig. 4C, D). Finally, we identified 4 over-
lapped genes through Venn diagram analysis, NADH:
ubiquinone oxidoreductase subunit A1(NDUFA1),
MDS1 and EVI1 complex locus (MECOM), ribo-
somal protein L26 (RPL26), and ribosomal protein
S27 (RPS27), which might be served as character-
istic biomarkers for AD screening and therapeutic

targets (Fig. 4E). In addition, a circus plot was also
used to visualize the location of these characteris-
tic biomarkers on the chromosomes, distribution on
chromosome 1 (RPS27), 3 (MECOM), 17 (RPL26),
and X (NDUFA1) (Supplementary Figure 2).

Exploring pathway enrichment of AD biomarkers
related to energy metabolism function

To investigate the biological functions and poten-
tial association with energy metabolism of the
aforementioned biomarkers, we conducted GO and
KEGG enrichment analysis (Fig. 5A-E). On the GO
aspect, the Sankey bubble plot was used to present
the GO enrichment results of individual biomarker
separately (Fig. 5A). Subsequently, the enrichment
of 4 biomarkers was presented in detail (Fig. 5B-
D). The enrichment of biological processes (BP) of
the 4 biomarkers mainly occurs in ribonucleoprotein
complex biogenesis, ribosome biogenesis, riboso-
mal RNA (rRNA) metabolic process, non-coding
RNA (ncRNA) processing, rRNA processing and
cytoplasmic transcription (Fig. 5B). Cellular com-
ponents (CC) are mainly distributed in different
ribosomes and subunits, oxidoreductase complexes,
mitochondrial respiratory bodies and respiratory
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Fig. 3. (Continued)
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chain complexes (Fig. 5C). Regarding molecular
function (MF), the 4 biomarkers are centered on
structural constituent of ribosome, primary active
transmembrane transport activity, electron trans-
fer activity, s-adenosylmethionine methyltransferase
activity, oxidoreductase activity acting on NAD(P)H
(Fig. 5D). KEGG analysis emphasized the close asso-
ciation of the 4 biomarkers with AD and other neu-
rodegenerative diseases, oxidative phosphorylation,
and ribosomal pathways (Fig. 5E). Several studies
have shown that NDUFA1, MECOM, and ribosomal
gene/protein homologs (e.g., RPL26 and RPS27) reg-
ulated multiple metabolic pathways in AD and other
diseases (Supplementary Table 2).57–63 Therefore, to
further explore their relationship with metabolic path-
ways, we conducted functional enrichment analysis
of the 4 AD biomarkers in metabolism and energy
metabolism-related pathways using the single-gene
GSVA algorithm on the GSE63060 dataset (Fig. 6).
The results from the single gene enrichment analy-
sis revealed that NDUFA1 was significantly enriched
in 28 pathways, with 4 upregulated and 9 down-
regulated pathways (Fig. 6A-C). MECOM showed
significant enrichment in 8 pathways, with 3 upreg-
ulated and 4 downregulated (Fig. 6D-F). RPL26
was associated with 23 pathways, while RPS27 in
23 pathways, with each owning 5 upregulated and
9 downregulated pathways (Fig. 6G-L). Further-
more, fatty acid elongation, fatty acid metabolism,
and the PPAR signaling pathway were enriched
upregulated in MECOM alone, while downregu-
lating pathways of MECOM included glutathione
metabolism, phenylalanine metabolism, porphyrin
metabolism and tyrosine metabolism (Fig. 6D-F).
Among them, NDUFA1, RPL26, and RPS27 shared
4 upregulated pathways including biosynthesis of
cofactor, folate biosynthesis, oxidative phosphoryla-
tion, pyruvate metabolism, and terpenoid backbone
biosynthesis (Fig. 6B, H, K). RPL26 and RPS27
shared 7 downregulated pathways, which were
glycolysis/gluconeogenesis, pentose phosphate path-
way, glycosaminoglycan degradation, fructose and
mannose metabolism, galactose metabolism, inositol
phosphate metabolism, and sphingolipid metabolism

(Fig. 6I, L). In addition, NDUFA1 shared the
last 4 downregulated pathways as described above
(Fig. 6C, I, L). These changes in similar pathways
also observed in the validation cohort, although
not entirely consistent with the results of the train-
ing cohort (Supplementary Figure 3). In conclusion,
the results suggested that these 4 biomarkers were
involved in multiple energy metabolic pathways in
AD.

Immune characteristics of AD biomarkers

Previous study has already demonstrated that
metabolic dysfunction was also recognized as a
cause of neuroinflammation.28 Glial reactivity and
CD4/CD8 T cell infiltration were found to be asso-
ciated with frontotemporal lobar degeneration with
tau pathology.64 Therefore, we explored the immune
microenvironment changes in AD and the relation-
ship between biomarkers and immune regulation.
Initially, the infiltration of immune cells was analyzed
by the ssGSEA algorithm, and the scores for 28 dif-
ferent types of immune cells were obtained from both
control and AD patients. Immune infiltration analysis
demonstrated that a total of 10 types of immune cells
(10/28) showed differences between groups. Com-
pared with healthy controls, 6 immune cells (myeloid
derived suppressor cell, natural killer T cell, central
memory CD8 T cell, macrophage, T follicular helper
cell, and regulatory T cell) showed high expression
in AD group (p < 0.05), indicating signs of systemic
immune activation in AD patients. On the contrary,
4 types of immune cells (activated CD4/CD8 T
cell, effector memory CD4 T cell, and activated B
cell) showed relatively lower expression in the AD
group, indicating that these cells were systematically
immune suppressed in AD patients (Supplementary
Figure 4A). Additionally, we investigated the asso-
ciation between our aforementioned biomarkers and
immune cells. The correlation heatmap showed that
4 biomarkers were significantly positively correlated
with 5 types of immune cells (5/28), including acti-
vated CD8 T cell, activated CD4 T cell, effector
memory CD4 T cell, gamma delta T cell, and acti-

Fig. 3. Identifying and screening key genes using the WGCNA algorithm. A) The scale-free fitting index of the soft threshold in the weighted
gene co-expression network. B) The mean connectivity of soft threshold power in the weighted gene co-expression network. C) Tree diagram
of gene-model clustering with all samples in the training cohort GSE63060. D) Correlation heatmap between different modules in the control
and AD. Red: positive correlation; light green: negative correlation. E) Clustered heatmap of different color modules. Red: further distance;
blue: nearer distance. F) Scatter plot of characteristic genes in the red module. G) Identification of key genes in a Venn diagram, overlapping
with DEGs, EMRGs, and genes in red model. Correlations were carried out with Spearman’s correlation method.
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vated B cell (Supplementary Figure 4B). In contrast,
the 4 energy metabolism biomarkers showed a signif-
icantly negative correlation with the other 8 immune
cells (8/28), including central memory CD8 T cell,
myeloid derived suppressor cell, monocytes, T fol-
licular helper cell, macrophages, regulatory T cell,
natural killer T cell, and activated dendritic cell (Sup-
plementary Figure 4B). In short, the expression of 4
energy metabolism biomarkers is significantly corre-
lated with 8 types of T cell immune infiltration.

Identification of TF and ceRNA regulatory
network of AD biomarkers

Furthermore, 131 TFs targeting AD biomarkers
were extracted from the JASPAR database, ana-
lyzed by NetworkAnalyst, and further formed into
a network diagram. Among these TFs, insulinoma-
associated 2 (INSM2) was associated with all 4 AD
biomarkers, while transcription factor Dp-1 (TFDP1)
interacting with NDUFA1, RPL26, and RPS27 in the
network (Supplementary Figure 5A). Among the AD
biomarkers, RPS27 and RPL26 shared 23 TFs, fol-
lowed closely by RPS27 and NDUFA1 sharing 11
TFs. Additionally, RPS27 was exclusively targeted by
the highest numbers of TFs (n = 84), corresponding
to RPL26 (n = 49), NDUFA1 (n = 22), and MECOM
(n = 19) (Supplementary Figure 5A).

Due to the observation of different RNA types
enrichment changes in functional enrichment anal-
ysis (Fig. 5), ceRNA network has gained significant
attention due to its pivotal role in gene expression reg-
ulation in recent years.65 The ceRNA network could
be established by utilizing miRNAs as bridges. Thus,
we generated a lncRNA-miRNA-mRNA network to
identify a potential ceRNA regulation network. The
results showed that a total of 50 lncRNAs and 44
miRNAs regulating target biomarkers were identi-
fied (Supplementary Figure 5B). Intriguingly, our
findings showed that lncRNAs, NEAT1, OIP5-AS1,
MALAT1, and XIST, acted as mediators for crosstalk
among multiple miRNAs, and revealed that these
lncRNAs might play crucial roles in onset of AD by
modulating the AD biomarkers expression (Supple-
mentary Figure 5B).

Validation of AD biomarkers expression in
European cohorts

Subsequently, we attempted to explore the sig-
nificance of identified 4 energy biomarkers in AD
diagnosis. Therefore, the expression profiles of 4
biomarkers were comprehensively analyzed. Our
results indicated the expression levels of the 4
AD biomarkers were significantly and similarly
decreased in the training cohort (GSE63060, Fig. 7A-
D) and the validation cohort (GSE63061, Fig. 7I-L),
comparing to control groups. Subsequently, in order
to evaluate the diagnostic performance of each AD
biomarker in two cohorts, the ROC curve was applied
to evaluate the AUC values of each AD biomarker
and to determine their sensitivity and specificity for
the diagnostic value for AD (Fig. 7E-H, M-P). As
expected, all 4 AD biomarkers showed AUC values
≥ 0.7 in the training cohort, NDUFA1 (AUC = 0.86),
MECOM (AUC = 0.83), RPL26 (AUC = 0.75) and
RPS27 (AUC = 0.70), respectively (Fig. 7E-H).
Meanwhile, in the validation cohort, the correspond-
ing AUC values for NDUFA1, MECOM, RPS27, and
RPL26 were 0.76, 0.75, 0.68, and 0.66, respectively
(Fig. 7M-P). These findings also indicated that the 4
biomarkers had the potential to serve as AD charac-
teristic diagnosis biomarkers.

Exploration of AD biomarkers association with
risk factors in European cohorts

Considering that gender and age are important risk
factors for AD, we are curious whether the 4 AD
biomarkers are influenced by gender and age factors
in European cohorts. So, we first compared baseline
data for gender and age. The AD group exhibited a
higher proportion of women and a higher average
age compared to the control group (Supplemen-
tary Table 1). Further analysis showed no significant
changes in the expression levels of the 4 biomark-
ers of different genders and ages in the AD group
(Supplementary Figure 6–8). Besides age factor, the
cellular senescence markers (TP53, CDKN1A and
CDKN2A) are also used to evaluate potential aging
effects. We further found the correlation between

Fig. 5. Enrichment analysis of biomarkers. A) All GO enrichment of biomarkers. B) GO-BP enrichment analysis of biomarkers. C) GO-CC
enrichment analysis of biomarkers. D) GO-MF enrichment analysis of biomarkers. The horizontal axis represents the rich factor; the circle
size represents the gene counts in each GO term; the color indicates the p value. E) KEGG enrichment pathways of biomarkers via GSVA
analysis. GSVA score was presented as t value in the horizontal axis. GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes;
BP, biological processes; MF, molecular functions; CC, cellular components; GSVA, gene set variation analysis.
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AD blood biomarkers and the cellular senescence
markers. Notably, among them, CDKN1A (encod-
ing p21) has a higher negative correlation with 4
AD biomarkers in AD group, comparing to control
group (Supplementary Figure 9), which may sug-
gest that the altered expression of the 4 biomarkers
have a potential impact on the expression level of
senescence biomarkers in AD. MCI patients who
were over 65 years old exhibited a 14.9% incidence
of dementia after a two-year monitoring period.66

In this study, we found that the expression levels
of 4 biomarkers were also downregulated in MCI
(pre-clinical stage of AD) group, which is consistent
with AD (Supplementary Figure 10). In summary,
these findings suggested the expression levels of
4 blood biomarkers are not affected by aging and
gender factors.

Construction and validation of AD diagnostic
nomogram

After confirming the expression of these 4
biomarkers, we proceeded to incorporate them into
a predictive and diagnostic model for AD. To further
evaluate the diagnostic and discriminative capabili-
ties of nomogram for 4 biomarkers, we validated it in
2 independent cohorts of the control and AD groups
(Fig. 8A-D). These prediction levels of the nomo-
gram for control individuals in the training cohort
and validation cohort were 0.111 and 0.109, respec-
tively (Fig. 8A, B). For AD patients, the prediction
levels were 0.998 and 0.933, respectively (Fig. 8C,
D). These findings indicated that our AD biomark-
ers demonstrated strong classification accuracy in
distinguishing individuals with AD from controls
(Fig. 8A-D). Thereafter, calibration cures were uti-
lized to verify the diagnostic signature of the AD
biomarker nomogram, and the results showed that
the basic prediction probability was close to the ideal
model (Fig. 8E, F). Usually, the wider threshold and
the superior DCA results represent relatively better
applicability of the nomogram model. In our study,
different types of DCA curves were plotted in two
cohorts, including single biomarker curve, complex
curve of 4 biomarkers, none-intervention curve, and
intervention curve. The results showed that compared

to the other curves, the complex curve composed
of the 4 biomarkers was higher and wider, further
indicating that the nomogram model might provide
potential benefits for AD diagnosis (Fig. 8G, H). In
addition, the ROC curve results also confirmed that
the complex nomogram composed of the 4 biomark-
ers showed a higher AUC value (AUC = 0.887 in
GSE63060; AUC = 0.789 in the GSE63061, Fig. 8I,
J), which has also been validated through six other
machine learning algorithms (Supplementary Fig-
ure 11). In brief, our results confirmed that the
complex nomogram constructed based on the 4 AD
biomarkers had relatively good performance and
diagnostic accuracy.

Validation of AD biomarkers expression in a
local Asian cohort

Previously, we observed that all 4 AD biomarkers
showed significant differences in the samples of the
European cohorts. To verify the reliability and wide
applicability of 4 AD biomarkers, we tested small
cohort samples from Asia. The RT-qPCR results of
peripheral blood showed that the expression levels of
NDUFA1, MECOM, RPL26, and RPS27 in AD group
were lower than those in the control group (Fig. 9A-
D), which were consistent with the results of the 2
European cohorts mentioned above (Fig. 7A-D, I-L),
indicating that these 4 genes, as biomarkers for AD
diagnosis and prediction, possessing better accuracy
and wider applicability.

Exploration of PINK1 and GFAP expression in a
local Asian cohort

In recent years, studies have reported that signifi-
cant differences in PTEN induced kinase 1 (PINK1)
expression between the AD group and the control
group have been observed in both in vivo and in vitro
models,67,68 and the expression level of PINK1 in
the brain is somewhat consistent with its expression
in peripheral blood. In addition, overwhelming
evidence suggests that GFAP crosses the leaky blood
brain barrier and also has been demonstrated its
potential utility as a biomarker in AD and dementia
progressing prediction.69 Therefore, we explored

Fig. 6. Metabolism and energy metabolism pathways of 4 biomarkers in the GSE63060 cohort. A-L) Single gene GSVA analysis based on
KEGG pathway enrichment of NDUFA1, MECOM, RPL26, and RPS27. Lollipop plots of 4 biomarkers KEGG pathway enrichment results
in the left of each panel. The horizontal and the color indicate the p value. GSEA plots in the right of each panel show the metabolism and
energy metabolism related pathways with different colors for 4 biomarkers. All presented pathways were significantly enriched. Statistical
significance was p < 0.05.
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Fig. 7. Validation and exploration the diagnostic value of AD biomarkers in European cohorts. A-D) Differential expression boxplots of
NDUFA1, MECOM, RPL26, and RPS27 in the training cohort GSE63060. E-H) The ROC curves of NDUFA1, MECOM, RPL26, and RPS27
in the training cohort GSE63060 for diagnostic value exploration. I-L) Differential expression boxplots of NDUFA1, MECOM, RPL26,
and RPS27 in the validation cohort GSE63061. M-P) The ROC curves of NDUFA1, MECOM, RPL26, and RPS27 in the validation cohort
GSE63061 for diagnostic value exploration. Box plots represent the median, 25th and 75th percentiles and whiskers represent the 5th and
95th percentiles. Statistical comparisons were carried out with t test (A-D, n = 104 in the control group, n = 145 in the AD group; I-L, n = 134
in the control group, n = 139 in the AD group; ∗∗∗∗p < 0.0001 vs. the control group). CTL, control; AD, Alzheimer’s disease.

the mRNA expression of PINK1 in peripheral blood
and plasma GFAP protein expression levels in a
local Asian cohort (Fig. 9E, F). Low expression
of PINK1 and high expression of GFAP were
observed in AD patients, which is consistent with

aforementioned literature results. In summary, these
results once again indicated that the 4 biomarkers
had potential diagnostic and predictive value, as
other reported biomarkers, PINK1 and GFAP, had
also been validated in this study.
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Potential drug prediction of AD biomarkers

After observing the predictive power and testing
efficiency of the nomogram, we attempted to explore
potential drugs targeting these biomarkers in order to
provide insights for the treatment of AD patients. The
analysis results showed that a total of 71 drug-gene
interaction pairs were identified from the DSigDB
database, involving 59 drugs and 4 genes. Among
them, MECOM exhibited the highest number of inter-
acting drugs (n = 40), followed by NDUFA1 (n = 18),
RPS27 (n = 9), and RPL26 (n = 4) (Supplementary
Figure 12). Notably, further analysis results showed
that only valproic acid interacted with all 4 biomark-
ers, and it distinguished itself from the other 9 drugs
due to its highest combined score (164219.01) and
the most significant p value (p = 2.98E-02) (Table 2).

Subsequently, we performed molecular docking
analysis of valproic acid based on its extensive
interaction ability and high binding score. The pro-
tein information used for docking can be obtained
from PDB database with their ID (Table 3). The
detailed molecular structure of 4 AD biomarkers and
valproic acid were illustrated in stick form and car-
toon 3D representations, respectively (Fig. 10A-D).
Usually, docking binding energy (kcal/mol) rep-
resents docking ability, with lower energy values
indicating the stronger affinities. The docking anal-
ysis showed that valproic acid displayed relatively
stable combination with all biomarkers, NDUFA1
(–7.24), MECOM (–7.76), RPL26 (–7.56), and
RPS27 (–7.02), respectively. The hydrogen-bond
interactions were indicated by blue solid lines, while
light yellow and grey dotted lines represented alkyl
interactions and hydrophobic interactions, respec-
tively. It is obvious that there is a hydrogen bond
between valproic acid and the GLU238 site of
NDUFA1, as well as a salt bridge at the LYS300
site (Fig. 10A). The interactions between valproic
acid and MECOM contained two types, which were
hydrogen bonds at GLU20, TYR21 and GLY371
site of MECOM, and hydrophobic interaction at
GLU20 and ARG340 site of MECOM (Fig. 10B).
The docking results of RPL26 showed the cre-
ation of hydrogen bonds between valproic acid and

GLY184 and LEU186 of RPL26, the salt bridge
between HIS188, and the hydrophobic interaction
with ASP227 (Fig. 10C). In addition, the docking
results of RPS27 showed that valproic acid can form
hydrophobic interactions with the residue TYR39 of
RPS27 (Fig. 10D). These results demonstrated that
valproic acid, an FDA approved drug, exhibited low
binding energy and high affinity for the 4 biomark-
ers, suggesting that valproic acid might be a candidate
drug for AD.

DISCUSSION

Recent research suggests that impaired energy
metabolism is linked to the onset of AD.70 Pur-
poseful regulation of energy metabolism homeostasis
in AD can help to reduce oxidative stress, attenu-
ate inflammatory responses, and remove pathological
protein deposition, ultimately ameliorating cogni-
tive decline.71,72 Peripheral blood biomarkers have
played an increasingly crucial role in the clinical diag-
nosis and prediction of AD due to good safety and
low-cost advantages.42 Utilizing genomic data from
AD samples and employing machine learning tools
has helped to identify potential biomarkers for AD
prediction and diagnosis.73,74

In this study, DEGs were identified from the
GSE63060 initially. At the same time, the WGCNA
algorithm was applied to analyze the co-expression
of genes associated with AD in the GSE63060 train-
ing cohort. The EMRGs were collected from the
GeneCards database, and as a result, 15 key genes
were identified for subsequent biomarker screening.
To identify biomarker genes with common features,
we used 2 different machine learning algorithms,
LASSO regression and RF, to further screen the key
genes. Finally, we obtained 4 potential biomarkers by
Venn diagram analysis. In conclusion, after applying
bioinformatics methods to obtain preliminary genes,
we bridged two different machine learning tools to
further narrow down and extract the most objec-
tive and characterized energy metabolism-related
biomarker genes, NDUFA1, MECOM, RPL26, and
RPS27.

Fig. 8. Construction and verification of the AD biomarker nomogram. A, B) The nomogram was constructed based on the AD biomarkers
to predict normal controls in the training cohort GSE63060 and validation cohort GSE63061. C, D) The nomogram was constructed based
on the AD biomarkers to predict and diagnose AD in the training cohort GSE63060 and validation cohort GSE63061. E, F) The calibration
curve of the nomogram prediction in AD patients in the training cohort GSE63060 and validation cohort GSE63061. G, H) DCA curves for
the nomogram and 4 biomarkers in the training cohort GSE63060 and validation cohort GSE63061. I, J) The ROC curves for the predictive
performance of the nomogram in the training cohort GSE63060 and validation cohort GSE63061.
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Fig. 9. Validation of potential AD biomarkers in a local Asian cohort. A-E) Relative mRNA expression of NDUFA1, MECOM, RPL26,
RPS27, and PINK1 in AD patients and normal controls. F) Difference in the plasma GFAP expression in AD patients and normal controls.
CTL, control; AD, Alzheimer’s disease. NS represents no statistical significance. Statistical comparisons were carried out with t-test (A-
D, n = 8 per group; E, n = 9 per group; F, n = 5 per group, ∗p < 0.05, ∗∗p < 0.01 vs. the control group). The results are presented as the
mean ± standard error of the mean (SEM).

NDUFA1, a subunit of the mitochondrial respira-
tory chain belonging to the NADH dehydrogenase
I alpha subcomplex (NDUFA) family, is located
on chromosome X and encodes a highly conserved
protein.75 In AD mouse models, A� plaque deposi-
tion has been found to lead to increased oxidative
stress in neurons, accompanied by mitochondrial
damage.76 The damaged mitochondria produce more
ROS, exacerbating neuronal damage and impairing
energy metabolism.77 Calvo-Rodriguez et al. discov-
ered that NDUFA1 knockdown resulted in higher
enzyme activity and ATP levels, leading to elevated
ROS levels.76 The NDUFA1 p.Gly32Arg variant has
been suggested to be associated with neurodegenera-
tive dementia,78 highlighting its importance as a key
gene in AD. NDUFA1 is involved in regulating oxida-
tive phosphorylation, NADH homeostasis regulation,
and mitochondrial dysfunction pathways, and is also
considered a potential biomarker gene for AD.23,79 In
this work, our research indicates that NDUFA1 is not
only involved in the processes of mitochondrial res-
piratory bodies and respiratory chain complexes, as
well as oxidoreductase complexes, but also regulates
pathways of oxidative phosphorylation, pyruvate
metabolism, cofactor biosynthesis, carbohydrate and

lipid metabolism. However, current research on the
role of NDUFA1 in AD is still limited. Therefore,
future studies could focus on exploring the regulation
of energy metabolism disorders and the inhibition of
excessive oxidative stress in AD.

MECOM, also known as ecotropic virus integra-
tion site 1 protein homolog (PRDM3/Evi-1), belongs
to the positive regulatory domain zinc finger protein
(PRDM) protein family.80 It plays a crucial role in
cell proliferation, differentiation, and development.81

Several studies have proposed that MECOM reg-
ulates cell fate determination in neurons and stem
cells by interacting with C-terminal-binding protein
(CtBP) and Nucleosome Remodeling Deacetylase
(NuRD) complexes.82 Furthermore, investigations
have demonstrated that MECOM-deficient mouse
embryos displayed notable abnormalities in neu-
rological development.83 The overexpression of
MECOM perturbs cellular metabolism, while fos-
tering the expression of CKMT1 (mitochondrial
creatine kinase), thereby reconfiguring the arginine-
creatine pathway.59 In our single gene KEGG
enrichment analysis, MECOM was found to be intri-
cately linked to multiple energy metabolism-related
pathways, including oxidative phosphorylation,
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amino acid, fatty acid, cofactor, and xenobiotic
metabolism in the peripheral blood transcriptome
of AD patients. Interestingly, Gilbert et al. dis-
covered that A� induced histone deacetylase 1
(HDAC1) to dissociate from the miR-124 transcrip-
tion factor PRDM3, stimulated miR-124 expression
and AMPAR biogenesis, and affected an exagger-
ated response to steady-state synaptic plasticity.84

Thus, the MECOM-HDAC1 complex may be part
of a larger specific chromatin remodeling complex
involved in fine-tuning synaptic plasticity. Our study
not only identified multiple key miRNAs involved in
regulating MECOM, but also discovered key lncR-
NAs that interacted with it. Therefore, these findings
contribute to the existing research on the regula-
tory mechanisms of MECOM and offer insights
for further exploration of MECOM’s role in AD
pathophysiology.

In previous studies, 29 differentially expressed
ribosomal proteins were identified through quanti-
tative proteomics.85 Among them, RPL26 served as
a valuable biomarker for the progression of AD,
with value in distinguishing AD from MCI.57,58

RPS27 exhibited abundance and stability across dif-
ferent tissues and cell types.86 Besides, Feldheim
et al. observed RPS27 was expressed in the AD
neurons and affected by changes in macrophage
morphology.87 It is worth noting that our studies
not only found that key energy metabolism related
biomarkers were associated with macrophages in
AD, but also with various types of T cells. Increas-
ing research has illustrated the close relationship
between ribosomal proteins and metabolic process,
either in AD or other diseases. Among them, RPL26
was significantly enriched in oxidative phosphoryla-
tion in AD.57 RPL26 and RPS27 were also enriched
in oxidative phosphorylation in laryngeal squamous
cell carcinoma cells.62 Moreover, RPL26 and RPS10
were found their correlation with mTORC1 signal
regulating protein synthesis, mitochondrial function,
and lipid metabolism in primary human trophoblast
(PHT) cells.63 Other ribosomal proteins have also
demonstrated the novel evidence of their role in regu-
lating metabolism, like mRPL10 affecting glycolysis
and mitochondrial function,60 RPL22 affecting on

recruiting glucose uptake and lactate release via
recruiting and regulating HIF1α in melanoma.61

In this study, RPL26 and RPS27 affect oxida-
tive phosphorylation, various carbohydrate and lipid
metabolism, and other metabolism pathways, which
is consistent with previous studies. These results sug-
gest that ribosome related genes play a crucial role in
energy metabolism disorders in AD.

After narrowing key genes into 4 EMRG biomark-
ers (NDUFA1, MECOM, RPL26, and RPS27), we
first developed diagnostic prediction model in the
training cohort (GSE63060) and validation cohort
(GSE63061) using multivariate Cox regression anal-
ysis. Subsequently, we used calibration curves, DCA,
and ROC curves to objectively evaluate the clini-
cal efficacy of the constructed model. Our research
results indicated that the complexed prediction model
based on 4 biomarkers exhibited high predictive
power and clinical validity in both training and valida-
tion cohorts (AUC of 0.887 and 0.789, respectively),
indicating potential diagnostic and predictive value
of our constructed model in identifying individuals
at risk of AD.

Blood biomarkers (e.g., A�40/42, p-tau 181, p-tau
217, p-tau 231) have emerged as critical tools for the
diagnosis of AD.5–8 An increasing amount of clini-
cal studies have found that GFAP was significantly
elevated as early as the asymptomatic stage when
A� pathology appeared, and gradually increased with
disease progression, reaching its highest level in the
dementia stage of AD.88,89 GFAP levels have the
potential to serve as an important indicator for the
early diagnosis and prediction of AD.88 Mitochon-
dria are the central hub of energy metabolism in
neurons. PINK1 plays an important role in mitochon-
drial quality control and prevention of dysfunction,67

and the mRNA and protein levels of PINK1 are sig-
nificantly reduced in AD patients.67,68 In this study,
the GSE63060 and GSE63061 datasets were from
the European population, while the local dataset
was from the Asian population. We investigated the
expression levels of 4 energy metabolism related
genes in peripheral blood from these three indepen-
dent cohorts to evaluate their regional and population
differences. The results showed that the expression

Fig. 10. Molecular docking results of the valproic acid with each target biomarker proteins. A) Valproic acid and NDUFA1. B) Valproic acid
and MECOM. C) Valproic acid and RPL26. D) Valproic acid and RPS27. All left panels are displaying the 3D structures of the combined
valproic acid-biomarker complexes. Detailed and enlarged binding sites for the valproic acid-biomarker proteins are listed in the right panels,
with interactions between amino acid residues and functional groups. Blue solid lines represent the hydrogen-bond interactions, while light
yellow and grey dotted lines represent alkyl interactions and hydrophobic interactions, respectively.
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levels of 4 energy metabolism genes were downregu-
lated in AD patients and even preclinical patients.
Intriguingly, further research has shown that the
downregulation of the 4 energy-related metabolism
genes is not affected by gender and age factors,
although some studies have recognized that gender,
age, and APOE � 4 allele are risk factors for AD.71,90

These results not only indicated that these genes had
potential applicable value as clinical blood biomark-
ers, but also relatively wide applicability in certain
regions and populations of different genders and ages.
Moreover, we also detected and confirmed that GFAP
and PINK1 were upregulated and downregulated in
peripheral blood of AD, respectively, which is con-
sistent with existing studies. These results assist in
demonstrating that the energy metabolism related
biomarkers we screened, like the reported GFAP, have
good potential predictive value.

Considering the potential biomarkers as drug tar-
gets, we further explored the relationship between
drugs or molecules and 4 energy metabolism related
genes. Our research indicates that valproic acid inter-
acts with 4 biomarkers related to energy metabolism
with the highest binding score. Valproic acid plays
a role in regulating oxidative processes, lipid
metabolism, and mitochondrial function.91,92 These
studies also support our findings to some extent. Val-
proic acid, a fatty acid derivative, is an FDA-approved
therapeutic agent used for the treatment of epilepsy,
migraine, and various neuropsychiatric disorders,93

whose neuropsychiatric signs and symptoms are also
common in AD. Valproic acid exhibited a poten-
tial neuroprotective role in both in vitro and vivo
models of AD by increasing mitochondrial mem-
brane potential, inhibiting cytochrome C release,
promoting mitochondrial ATP synthesis against A�
toxicity,94 and restoring the physiological regulation
of synapsin I.95 Unlike preclinical research results,
valproic acid has shown contradictory effects in exist-
ing anti-AD clinical trials. An early clinical trial
conducted in patients with dementia and behavioral
agitation showed that valproate might be an effec-
tive, well tolerated, and safe treatment for agitation
in patients with dementia.96 Conversely, another clin-
ical trial conducted in AD patients who had not yet
experienced agitation or psychosis (NCT00071721)
found that chronic valproate treatment could not
delay agitation or psychosis or cognitive decline in
AD patients.97 A previous study reviewed that the
differences in efficacy outcomes of valproic acid
were likely affected by factors such as clinical study
design type, subjects, primary outcome indicators

observed, administration strategy (monotherapy or
combination therapy), and dosage.98 Although our
study suggests that valproic acid, which is associated
with 4 biomarkers, may have potential therapeutic
value for AD, further clinical trials are needed as these
results combines public clinical cohorts and network
pharmacology analysis.

However, our study has certain limitations. Firstly,
the cohorts utilized in our study lacked genetic risk
factor information for the APOE � 4 allele and more
detailed baseline information related to metabolism,
such as biochemical indicators. In order to enhance
the comprehensiveness and predictive performance
of the AD prediction model constructed with energy
metabolism related biomarkers, it is necessary to
include the APOE � 4 allele as well as plasma
metabolites such as glucose, lipids, amino acids, and
plasma proteins. Secondly, the cohorts used in our
study were limited to European and Asian popu-
lations. To ensure the extrapolation of the model,
further validation using external data from diverse
regions and larger population samples is required.
Therefore, future studies should focus on optimizing
the interpretability and generalizability of the pre-
diction model by incorporating more comprehensive
clinical parameters, as well as increasing the sample
size. This will realize accurate and dynamic predic-
tion of AD patients.

Conclusion

In this study, we identified 4 energy metabolism
related genes, NDUFA1, MECOM, RPL26, and
RPS27, as blood biomarkers for AD through compre-
hensive bioinformatics analysis. Further research has
shown that they are closely related to the ribosomal
pathway, oxidative phosphorylation, multiple energy
metabolic pathways and T cell immune infiltration
in AD, and regulated by TFs and ceRNA. Then,
we constructed an AD diagnostic model based on 4
biomarkers, which was proven to have good diag-
nostic performance by different machine learning
algorithms. We further confirmed that the 4 biomark-
ers downregulated in expression were not affected by
gender and age factors. In addition, valproic acid, as
one of the candidate drugs associated with 4 biomark-
ers, may have potential therapeutic value for AD in
this study. In summary, our study demonstrated the
crucial role of 4 energy metabolism related genes in
the diagnosis and therapy of AD, providing a predic-
tive model for AD diagnosis and a potential candidate
drug. However, combining genetic risk factors, clin-
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ical laboratory parameters and incorporating wider
population into future research will further fill the
limitations of this study.
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