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Abstract. Amyloid protein-� (A�) concentrations are increased in the brain in both early onset and late onset Alzheimer’s
disease (AD). In early onset AD, cerebral A� production is increased and its clearance is decreased, while increased A�
burden in late onset AD is due to impaired clearance. A� has been the focus of AD therapeutics since development of the
amyloid hypothesis, but efforts to slow AD progression by lowering brain A� failed until phase 3 trials with the monoclonal
antibodies lecanemab and donanemab. In addition to promoting phagocytic clearance of A�, antibodies lower cerebral A�
by efflux of A�-antibody complexes across the capillary endothelia, dissolving A� aggregates, and a “peripheral sink”
mechanism. Although the blood-brain barrier is the main route by which soluble A� leaves the brain (facilitated by low-
density lipoprotein receptor-related protein-1 and ATP-binding cassette sub-family B member 1), A� can also be removed
via the blood-cerebrospinal fluid barrier, glymphatic drainage, and intramural periarterial drainage. This review discusses
experimental approaches to increase cerebral A� efflux via these mechanisms, clinical applications of these approaches, and
findings in clinical trials with these approaches in patients with AD or mild cognitive impairment. Based on negative findings
in clinical trials with previous approaches targeting monomeric A�, increasing the cerebral efflux of soluble A� is unlikely
to slow AD progression if used as monotherapy. But if used as an adjunct to treatment with lecanemab or donanemab, this
approach might allow greater slowing of AD progression than treatment with either antibody alone.

Keywords: Alzheimer’s disease, amyloid-�, blood-brain barrier, blood-cerebrospinal fluid barrier, experimental approaches,
glymphatic drainage, perivascular drainage)

The hallmark neuropathological findings in
Alzheimer’s disease (AD) are amyloid-� protein
(A�), containing senile plaques (SPs), and tau pro-
tein, containing neurofibrillary tangles. The amyloid
hypothesis [1, 2] suggested that deposition of insolu-
ble A� as SPs initiated AD-type neurodegeneration,
with tau pathology and neuronal loss developing
downstream. Following reports of weak associations
between SP counts and cognitive impairment in AD
patients [3–5] and the finding that A� oligomers
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rather than fibrillar A� may be the most neuro-
toxic A� conformation [6, 7], the hypothesis was
revised to suggest that A� oligomers may initiate
AD pathology [8]. The amyloid hypothesis led to
multiple approaches which attempted to slow AD’s
clinical progression by lowering brain A� levels [9–
13], most recently via administration of monoclonal
anti-A� antibodies [14–16]. These approaches failed
until clinical trials with the monoclonal anti-A� anti-
bodies lecanemab [17, 18] and donanemab [19, 20].
A third monoclonal antibody, aducanumab, reduced
brain levels of insoluble (PET-detectable) A� in a
phase 1b trial [21] but its two phase 3 trials produced
conflicting results regarding its ability to slow AD
progression [22].
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In phase 3 trials, lecanemab slowed AD’s clin-
ical progression by 27% [18], while donanemab
slowed disease progression by 35% for subjects with
low/medium cerebral tau levels and by 22% when
subjects with high tau levels were included in the
analysis [20]. Although these effects were statisti-
cally significant (p < 0.001), questions were raised as
to whether they were clinically meaningful [23–26].
The findings in the lecanemab and donanemab tri-
als are encouraging, but additional approaches may
be needed to further slow disease progression. More
effective targeting of A� oligomers may be required;
the effects of the antibodies on brain A� oligomer lev-
els in AD subjects in the clinical trials are unknown
because the PET radioligands currently used to detect
cerebral A� bind only to insoluble A� [27]. Another
option would be targeting of downstream neuropatho-
logical processes in addition to A� [28–30]. A third
approach would be to combine the administration
of anti-A� monoclonal antibodies with interventions
to increase the efflux of soluble A� from the brain.
In late-onset AD (LOAD), which accounts for 90–

95% of AD cases [31], the increase in cerebral A�
has been attributed to impaired removal of A� [32].
A� is cleared from the brain by enzymatic degrada-
tion, including the endosomal-lysosomal system, the
ubiquitin-proteasome system, and autophagy [33],
and soluble A� can leave the brain via the blood-
brain barrier (BBB) [34], the blood-cerebrospinal
fluid (CSF) barrier (BCSFB) [35], glymphatic (par-
avascular) drainage [36], and intramural periarterial
(IPAD) drainage, also referred to as perivascular
drainage [37–41]) (Table 1). This review discusses
experimental approaches for increasing cerebral A�
efflux, clinical applications of these approaches, and
the effects of these approaches in clinical trials in
which they have been evaluated with subjects with
AD or mild cognitive impairment (MCI). Although
most studies of cerebral A� efflux have used either
monomeric A� or A� species whose levels of aggre-
gation were unclear [42], a study in C57BL/6 mice
comparing clearance of monomeric and low molec-
ular weight oligomeric A�40 from brain interstitial
fluid (ISF) to CSF suggested that efflux of these A�

Table 1
Mechanisms of clearance of soluble A� from the brain

Clearance mechanism Structure/location Alteration in AD Comments

Blood-brain barrier Capillary endothelial cells A� clearance LRP1 and ABCB1
(BBB) separated by tight decreased by are key transcytosis-

junctions, adherens 30% related transporters
junctions, and gap of A� across BBB;
junctions paracellular transport of

A� also occurs
Blood-cerebro- Choroid epithelial cells, Impaired A� Choroid plexus
spinal fluid barrier separated by tight clearance may epithelial cells
(BCSFB) junctions, adherens precede A� enclose stroma

junctions, and desmo- deposition in containing
somes; also arachnoid LOAD peripheral blood
membrane and capillaries; LRP1
circumventricular organs and ABCB1 are

BCSFB efflux
transporters

Glymphatic Paravascular space Reduced in Unclear if
(paravascular) surrounding cerebral transgenic mouse impaired glymphatic
drainage arteries and veins models of AD; drainage contributes

decreased AQP4 to increased A�
adjacent to burden in AD
AD cerebral vessels
suggests
decreased
glymphatic drainage

Intramural Perivascular space Frequent presence Pattern of A�
periarterial within basement of CAA in AD deposition in CAA
drainage (IPAD) membrane of suggests reduced is similar to pattern

cerebral artery IPAD clearance of of A� drainage in
smooth muscle cells A� IPAD

ABCB1, ATP-binding cassette sub-family B member 1; AD, Alzheimer’s disease; AQP4, aquaporin-4; BBB, blood-brain barrier; BCSFB,
blood-cerebrospinal fluid barrier; CAA, cerebral amyloid angiopathy; IPAD, intramural periarterial drainage; LOAD, late onset Alzheimer’s
disease; LRP1, low density lipoprotein receptor-related protein 1.
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conformations from the brain may be via similar
routes [42].

BBB CLEARANCE OF A�

The BBB (Fig. 1) consists of capillary endothelial
cells separated by tight junctions, adherens junc-
tions, and gap junctions [43]. Because of its tight
junctions the BBB is less permeable than peripheral
blood vessels to solutes [44–46]. Adherens junc-
tions are organized similarly to tight junctions and
influence paracellular permeability to solutes [43,
47]. The BBB is supported by astrocytes, pericytes,
and extracellular matrix components [48–50]. Cel-
lular elements of the BBB are in contact with the
basement membrane (produced by endothelial cells
and pericytes), which encloses the pericytes and
attaches astrocytic endfeet processes [51]. The base-

ment membrane undergoes age-related alterations
[52] including microvascular fibrosis [53], changes
in proportions of collagen IV, agrin, and laminin [54],
and lipid accumulation [51]. The percentage of A�
cleared by the BBB was estimated by Qosa et al.
to be 62% [55] and by Goulay et al. to be 85%
[56], although Roberts et al. suggested that direct
transport of A� across the human BBB may account
for only 25% of its clearance from the brain [57].
Distinguishing between A�’s clearance via the BBB
and its clearance by other pathways may be difficult
because of technical limitations [58]. In AD, BBB
clearance of A� is decreased by approximately 30%
[59]. Impaired BBB clearance of A� is thought to
play a role in the pathogenesis of cerebral amyloid
angiopathy (CAA) as well as AD [60].

In addition to transcytosis (membrane-bound
carrier-mediated transport) of A� across the BBB,

Fig. 1. The blood-brain barrier (BBB). The BBB consists of capillary endothelial cells surrounded by extracellular matrices formed by cellular
basement membrane (shared with pericytes) and astrocytic endfeet. Tight junctions, adherens junctions, and gap junctions are present between
the endothelial cells. The tight junctions limit passage of solutes between the cerebral microvasculature and brain parenchyma. Junctional
proteins in tight junctions and adherens junctions are shown in the black box. A� can cross the BBB via transcytosis (membrane-bound
carrier-mediated transport, facilitated by LRP1 and ABCB1) as well as via paracellular transport. (From: Engelhardt S, Patkar S, Ogunshola
OO. Cell-specific blood-brain barrier regulation in health and disease: a focus on hypoxia. Br J Pharmacol. 2014 Mar;171(5):1210-30 [British
Pharmacological Society; publisher: Wiley-Blackwell, Hoboken, NJ, USA]). Permission to use obtained via RightsLink.
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paracellular transport of monomeric A� across the
BBB through the BBB’s tight junctions has been
described. Interestingly, A� was found to transiently
downregulate the tight junction-associated proteins
claudin-5 and occludin in the Tg2576 transgenic
mouse model of AD, thus increasing its clearance
across the BBB via this mechanism [61].

The length and conformation of A� influence its
BBB clearance. A�42 is cleared via the BBB more
slowly than A�40 [62] and BBB clearance of aggre-
gated A� has been suggested to be less effective
than clearance of monomeric A� [63]. (In the study
by McIntee et al. discussed above [42] in which
clearance of monomeric and low molecular weight
oligomeric A�40 from ISF to CSF was examined,
efflux was faster for monomers than for oligomers).
The effects of oligomeric and fibrillar A� on cerebral
microvascular endothelial cells may differ, because
A� oligomers induce apoptosis of these cells while
exposure of these cells to fibrillar A� increases BBB
permeability but does not induce apoptosis [64]. Nor-
mal BBB functioning in the hippocampus may be
required to maintain normal cognition, based on a
study which found that hippocampal BBB damage
was associated with early cognitive decline in human
subjects irrespective of the presence or absence of
AD-type pathology [65].

Low-density lipoprotein receptor-related protein
1 (LRP1) and ATP-binding cassette sub-family B
member 1 (ABCB1, also known as P-glycoprotein
1) have been suggested to be key transporters in
BBB clearance of cerebral A� [66, 67]. (However,
Ito et al. [68] concluded that LRP1 was not impor-
tant for clearance of A�40 across the mouse BBB).
LRP1 is expressed on the abluminal surface of the
BBB while ABCB1 is expressed on its luminal sur-
face. The expression of these transporters on the BBB
decreases during normal aging [69–71] and AD [72–
75]. LRP1 and ABCB1 have been suggested to be
functionally related via phosphatidylinositol-binding
clathrin assembly protein (PICALM) [66], therefore
in AD, PICALM downregulation by A� may con-
tribute to the decreased BBB clearance of A� [76,
77]. Oxidation of LRP1 may also play a role in this
decrease [78]. Because LRP1 binds other ligands
including apolipoprotein E (apoE) and amyloid-�
protein precursor (A�PP) [79] in addition to A�, ther-
apeutic interventions to increase LRP1’s expression
in AD could have unintended (and possibly deleteri-
ous) consequences [80] unless this upregulation is
specific for LRP1’s binding to A�, as in the site-
mutagenesis approach suggested by Sagare et al. [81].

ApoE also plays a role, possibly a negative one,
in clearing A� across the BBB. This may be true
to a greater extent for apoE4 than for apoE2 and
apoE3 [82–85]. ApoE competes with A� for binding
to LRP1 and for LRP1-mediated transport across the
BBB [58], and apoE-A� complexes are cleared from
the brain more slowly than unbound A� [86]. Of rel-
evance is that increasing apoE’s lipidation increases
its efficiency of binding to A�, and this decreases
the ability of A� to aggregate [87]. The ABC trans-
porter ABCA1 regulates lipidation of cerebral apoE
[87, 88]. Another apolipoprotein, apolipoprotein J
(apoJ, also known as clusterin), also influences A�’s
BBB clearance by binding to it [89] and mediating its
clearance via low-density lipoprotein-related protein
2 (LRP2) [62, 90]. LRP2 does not bind to A� but
it does bind to A�-apoJ complexes [91]. A�’s bind-
ing to apoJ increases its BBB clearance [62, 92], and
viral vector-mediated increased expression of apoJ in
astrocytes led to decreased cortical and hippocampal
A� levels in the APP/PS1 transgenic mouse model
of AD [93]. ApoJ’s role in the pathogenesis of AD
is unclear; although it increases BBB clearance of
A� and limits A� aggregation and neurotoxicity [91,
94, 95], genome-wide association studies have found
some single nucleotide polymorphisms of the CLU
(clusterin) gene (which encodes for apoJ) to be asso-
ciated with increased risk for AD [96, 97]. ApoJ
concentrations are increased in AD hippocampus [98]
possibly as a compensatory response to the increased
levels of A�.

Approaches which have been used to improve
BBB clearance of A� in experimental systems are
shown in Table 2. Therapeutic increasing of Wnt/�-
catenin signaling, which plays a role in maintaining
BBB function [99, 100], has also been suggested
as an approach [101, 102] but no specific activa-
tors of this mechanism are known to cross the BBB
[102]. Wnt/�-catenin signaling is reduced in AD
brain [103].

BCSFB CLEARANCE OF A�

The term BCSFB refers to the barrier posed by
the tight junctions between choroid epithelial cells
to passage of solutes between CSF and blood [126].
Although the choroid plexus (Fig. 2) is a major com-
ponent of the BCSFB, the BCSFB also includes the
arachnoid membrane and circumventricular organs
[127]. The choroid plexus lines the lateral ventri-
cles, third ventricle, and fourth ventricle, and is the
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Table 2
Experimental approaches for increasing BBB clearance of A�

ADAM10 inhibitiona [104]
Amylin expression reductionb [105]
Annexin A1c [106, 107]
Astaxanthin (antioxidant)d [108]
Catalpole [109]
Copper diacetyl bis(4-methyl-3-thiosemicarbazone)f [110]
Dihydropyridine L-type calcium channel blockersg [111]
1�, 25-dihydroxyvitamin D3 h [112]
Endothelial progenitor cellsi [113]
Exercisej [114]
Kallikrein-8 inhibitionk [115]
LDLRl [116]
Mesenchymal stem cellsm [117]
MMP-9 inhibitionn [118]
Muscarinic acetylcholine receptor inhibition◦ [119]
Nedd4 knockdownp [120]
Olive leaf extractq [121]
PICALMr [77, 122]
PCSK9 inhibitions [123]
Somatostatint [124]
�-tocopherolu [125]

ADAM10, A disintegrin And Metalloproteinase Domain containing protein 10; LDLR, Low-density lipoprotein receptor; MMP-9, matrix
metalloproteinase-9; Nedd4, Neuronal precursor cell-expressed developmentally downregulated 4; PICALM, phosphatidylinositol binding
clathrin assembly protein); PCSK9, proprotein convertase subtilisin/kexin type 9). aADAM10 inhibition improved BBB-mediated clearance
of A� in an in vitro BBB model by reducing proteolytic shedding of LRP1 at the endothelial cell surface [104]. bLowering of systemic amylin
concentration by treatment with amylin-specific antisense microRNAs reversed amylin-induced lowering of LRP1 expression in an in vitro
model of the BBB [105]. cAdministration of Annexin A1 restored normal BBB functioning in mice lacking Annexin A1 [106], and also in
5xFAD and Tau-P301 L mice [107]. dThe antioxidant astaxanthin was suggested as a possible therapy for increasing BBB clearance of A�

because it increased in vitro expression of ABCA1, ABCG1, and LRP1 [108]. eIn an in vitro BBB model exposed to fibrillar A�42, catalpol
increased the expression of LRP1, ABCB1, and tight junction proteins, decreased the expression of MMP-2, MMP-9, and the receptor
for advanced glycation end products (RAGE), and enhanced the efflux of soluble A� [109]. f Treatment of mice with the PET imaging
agent copper diacetyl bis(4-methyl-3-thiosemicarbazone) increased the expression of P-gp (ABCB1) in brain microvasculature [110]. gThe
dihydropyridine L-type calcium channel blockers nilvadipine and nitrendipine lowered brain A� in Tg PS1/APPsw mice and increased
A� clearance in an in vitro BBB model [111]. hIntraperitoneal administration of 1�,25-dihydroxyvitamin D3 increased 24-h clearance of
125I-labeled human A�40 from mouse brain [112]. iTransplantation of endothelial progenitor cells into the hippocampus of APP/PS1 mice
upregulated tight junction proteins and promoted A� clearance [113]. jIn TgCRND8 mice, late running (five months of wheel running, started
four months after disease onset) increased BBB clearance of A� [114]. kInhibiting the serine protease kallikrein-8 in a mouse transgenic
model of AD increased BBB clearance of A� [115]. lIncreasing the expression of the apoE receptor LDLR (by developing LDLR transgenic
mice) increased BBB-mediated clearance of 125I-A�. This was suggested to be mediated in part by LRP1 [116]. mInfusion of mesenchymal
stem cells to spontaneously hypertensive rats resulted in remodeling of microvasculature, in part by activation of transforming growth
factor-� and angiopoietin 1 signaling pathways [117]. nThe matrix metalloproteinase 9 (MMP9) inhibitor SB-3CT prevented lipoprotein
receptor shedding in A�42-treated human brain microvascular endothelial cells, and increased A� clearance via the BBB in C57BL/6 mice
expressing human apoE4 [118]. oPirenzepine, a selective muscarinic acetylcholine receptor inhibitor, increased BBB clearance of A� in
A�PPPS1, hA�PPSL, and A�PP/PS1 mice [119]. pNEDD4-1 is a ubiquitin E3 ligase that ubiquitinates P-gp (ABCB1); siRNA-mediated
knockdown of Nedd4 expression in CHO-APP cells increased their P-gp expression and their secretion of A� [120]. qAdministration of olive
leaf extract to 5xFAD mice for three months improved BBB integrity and increased cerebral A� clearance [121]. rPICALM was found to
regulate BBB transcytosis and clearance of A� by regulating, in endothelial cells, PICALM/clathrin-dependent internalization of A� bound
to LRP1 and guiding of A� to the endosomal regulators Rab5 and Rab11. Increasing of PICALM expression in AD brain endothelial cells
(by adenoviral-mediated transfer of PICALM) increased transcytosis of A� [77]. Treatment of PICALM-deficient 5XFAD mice with the
anti-malaria drug artesunate increased cerebral capillary PICALM expression and prevented brain A� accumulation [122]. sPCSK9 binds
to low-density lipoprotein receptor proteins, promoting their lysosomal degradation. Treatment of 5xFAD mice with anti-PCSK9 antibodies
reduced cerebral A� [123]. tSomatostatin prevented A�-induced BBB permeability in human CMEC/D3 (human temporal lobe microvessel)
cells through its effects (upregulation) on LRP1 and tight junction proteins [124]. u�-tocopherol upregulated LRP1 and ABCB1 in an in
vitro model of the BBB and in 5XFAD mice, reducing cortical and hippocampal A� by 75% and 59% respectively [125].

main source of CSF [128, 129], secreting about
80% of CSF [130]. Its functions include transport of
glucose and other nutrients from blood to CSF, reab-
sorption and elimination of brain metabolic waste

products from CSF, synthesis of proteins includ-
ing transthyretin (TTR), cytokines, growth factors,
and neurotrophic factors, regulation of trafficking
of immune cells into the brain, and maintenance of
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Fig. 2. The choroid plexus in the lateral ventricle. Epithelial cells of the choroid plexus rest on a basement membrane and contain microvilli
projecting into the lumen of the lateral ventricle. Tight junctions are present between cells near their apical surfaces. (From: Kaur C,
Rathnasamy G, Ling EA. The Choroid Plexus in Healthy and Diseased Brain. J Neuropathol Exp Neurol 2016;75(3):198–213; copyright
Oxford University Press. Reproduced with permission of Oxford University Press).

CNS homeostasis by modulation of solute exchange
between CSF and brain parenchyma [129, 131–134].
Choroid plexus blood flow has been estimated to
be 5-fold [135] or 10-fold [136] higher than in the
cerebral vasculature. The choroid plexus includes an
epithelial cell monolayer whose microvilli extend
into the ventricles and whose basolateral side rests
on basal lamina. These cells surround and enclose
stroma containing peripheral blood capillaries [137,
138]. Dendritic cells, fibroblasts, macrophages, and
lymphocytes are also present in the stroma [139, 140].
The surface area of the choroid plexus epithelial cell
microvilli is approximately half of the surface area
of the BBB [141]. Stromal capillaries in the BCSFB
are fenestrated, unlike BBB capillaries, allowing free
movement of molecules up to 800 kDa between
stroma and peripheral blood [135]. However, tight
junctions, adherens junctions, and desmosomes are
present between the apical borders of the epithelial
cells [127, 133]. The A� in CSF is thought to orig-
inate primarily from ISF draining into the ventricles
[142]. Active transfer of solutes between CSF and
peripheral blood occurs in both directions across the
choroid plexus [143–145] although for A�, move-
ment from CSF to peripheral blood predominates
[145]. Permeability of A� at the choroid plexus is
approximately 10-fold greater than its permeability
in either direction of the BBB [146].

The BCSFB undergoes age-related structural and
functional changes. Structural changes including
loosening of tight junctions, thickening and flatten-

ing of epithelial cell basal membrane, deposition of
fibrillar inclusions (Biondi bodies) and lipofuscin,
and stromal thickening and calcification [139, 147,
148]. Functional changes include decreases in pro-
tein synthesis, ion transport, and clearance of CSF
proteins [129, 130, 149–152]. BCSFB capillary per-
meability also decreases during normal aging [153,
154]. Conflicting results have been published as to
whether CSF production is reduced with normal
aging [150, 155].

The choroid plexus has an extensive capacity for
taking up A� from CSF [145, 156]. A� transporters
LRP1, ABCB1, LRP2, and RAGE are expressed
on BCSFB epithelium [35, 138, 157]. A study of
age-related changes in the expression of A� trans-
porters on the rat choroid plexus found that LRP1
and ABCB1 increased, while LRP2 decreased and
RAGE was unchanged [35]. LRP1 and ABCB1 are
thought to function at the BCSFB as A� efflux trans-
porters, while LRP2 mediates movement of A� in
a bi-directional manner from both CSF and blood
into the choroid plexus [35]. The role of RAGE with
regard to A� transport at the BCSFB is unclear [35];
the authors of an in vitro study of A� uptake from arti-
ficial CSF by the rat choroid plexus concluded that
RAGE did not appear to be involved in A� uptake
into the choroid plexus [145]. The choroid plexus can
also produce A� and can degrade it due to the pres-
ence of insulin degrading enzyme, neprilysin, and
endothelin-converting enzyme-1 in choroidal epithe-
lial cells [146, 156].
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The age-related structural changes in the BCSFB
described above are exacerbated in AD [158, 159].
Binding of immunoglobulins and C1q, the first
component of the classical complement activation
pathway, to choroid epithelial basement membrane
has also been reported in AD brain [160]. Functional
changes in the BCSFB which occur in AD include
increases in pro-inflammatory gene expression
[161] and in the expression of genes encoding
for interferons, mammalian target of rapamycin
(mTOR) signaling, peroxisome proliferator-activated
receptors (PPARs), and acute phase proteins [162],
decreased expression of genes encoding for ion
transporters, tight junction proteins, and proteins
involved in mitochondrial ATP synthesis, and
reduced mitochondrial enzyme activity [163, 164].
Decreased BCSFB expression of vascular endothelial
growth factor (VEGF) was reported in the APP/PS1
transgenic mouse model of AD [165]. Impaired
functioning of the choroid plexus was suggested to
be an early pathogenic event in LOAD, possibly
preceding deposition of cerebral A� [132]. The
relationship between BCSFB dysfunction and AD
progression is unclear, with some studies concluding
that changes in permeability of the BCSFB barrier
did not correlate with AD severity [166, 167]. A� is
deposited in the AD choroid plexus, perhaps due in
part to its decreased degradation by choroid epithelial
cells [141]. The presence of A� in the AD choroid
plexus is associated with increased local levels of
reactive oxygen species [164] which may induce
apoptotic cell death [164, 168]. A�42 oligomers
increase BCSFB permeability by activating
MMPs [169].

CSF production decreases in AD [170, 171]. CSF
turnover is also reduced by about 50% [172], which
may contribute to the development of AD due to
slower clearance of cerebral waste products [127].
The expression of A� transporters on the choroid
plexus may be altered in AD although not necessarily
decreased. A transcriptomic study found increased
expression of LRP1, perhaps in compensation for
reduced clearance of A� from cerebral capillaries
[162], and a similar finding was reported in 3xTg-AD
mice [142]. However, no differences were found for
CSF LRP1 concentrations between AD patients and
age-matched control subjects [173] although LRP2
concentrations were reported to be reduced in AD
choroid plexus [174] and CSF [175]. No reports were
found of changes in ABCB1 or RAGE levels on the
BCSFB or in CSF in AD, although in 3xTg-AD mice
immunoreactivity for RAGE on the choroid plexus

was increased while TTR expression was decreased
[142].

TTR requires further mention with regard to its
expression and function on the AD choroid plexus.
It is produced in the CNS primarily by the choroid
plexus [176] while in the periphery it is produced
mainly by the liver. In peripheral blood it binds to
thyroxine and vitamin A [177, 178]. TTR expression
is regulated by 17-beta-estradiol [179]. The level of
TTR production by the choroid plexus reflects the
health status of the BCSFB [143]. TTR was reported
to be the major A�-binding protein in CSF [180]. Its
possible neuroprotective role in AD was reviewed by
Saponaro et al. [176] and Gião et al. [181]; TTR’s
binding to A� prevents A� aggregation and inhibits
A�-mediated neurotoxicity [182–186] and it may
facilitate A� efflux from the brain via the BBB by
interacting with LRP1 [180]. TTR may also partici-
pate in neuronal regeneration [187] and angiogenesis
[188]. One study reported decreased TTR levels in
AD CSF [189] but a later study found no evidence
for altered choroid plexus production of TTR in AD
[190]. TTR tetramers have been suggested to be
unstable in AD, which could reduce their ability to
bind A� [181].

The choroid plexus detects both peripheral and
CNS inflammatory signals [133] and serves as a
gateway for trafficking of immune cells into the
CSF [191]. Tumor necrosis factor (TNF) has been
suggested to be the main upstream inflammatory
mediator in the AD choroid plexus, via its sig-
naling through TNF receptor 1 (TNFR1) [126].
Systemic inflammation, a possible risk factor for
AD [192–194], may increase BCSFB permeabil-
ity. In the AppNL−G−F (APP knock-in) mouse
model of AD, low-grade inflammation induced
by intraperitoneal injections of lipopolysaccharide
(LPS) reduced the immunoreactivity of tight junction
proteins in choroid plexus epithelial cells [195]. An
earlier study found that sepsis, induced by injection
of a lethal dose of LPS, extensively damaged BCSFB
permeability [196]. In vitro measurements in the
study cited above involving low-grade LPS-induced
peripheral inflammation [195] found that interleukin-
1�, whose hippocampal concentration was increased
in the APP knock-in mice after LPS administration,
reduced the transport of A� across choroid plexus
epithelial cells.

Multiple approaches have been suggested or
explored in experimental systems for increasing
BCSFB functioning in AD. These approaches are
shown in Table 3.
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Table 3
Experimental approaches for increasing BCSFB functioning

Choroid plexus epithelial cellsa [197, 198]
CSF production enhancementb [159, 199, 200]
Environmental enrichmentc [201]
Foxp3(+) regulatory T cell depletiond [202]
Growth factor supplementatione [159]
Gut microbiotaf [203]
Ligustilide (upregulator of Klotho)g [204]
LRP2 h [174, 175]
Lycopenei [205, 206]
MMP inhibitionj [169]
Stem cell-derived thymic epithelial cellsk [207]
TNF signaling inhibitionl [126]
TTR tetramer stabilizationm [208]

CSF, cerebrospinal fluid; LRP2, low density lipoprotein-related protein 2; MMP, Matrix metalloproteinase; TNF, tumor necrosis factor;
TTR, transthyretin. aCerebral implantation of choroid plexus epithelial cells in APP/PS1 mice resulted in decreases in A� deposition, tau
hyperphosphorylation, and astrocyte immunoreactivity [197]; implantation of microencapsuled choroid plexus epithelial cells into A�-treated
rat brain decreased apoptosis and gliosis while increasing neurogenesis [198]. bJohanson et al. [159] and Wostyn et al. [200] suggested that
therapeutic strategies stimulating increased CSF secretion by the choroid plexus should be tested; for example, chronic administration of
caffeine to rats increased CSF production [199]. cThe choroid plexus secretes an anti-inflammatory microRNA, miR-146a, into CSF. 5XFAD
mice provided with environmental enrichment increased hippocampal expression of miR-146a, and this was associated with downregulation
of nuclear factor-kappa B [201]. dRegulatory T-cells (Treg) have been suggested to cause systemic immunosuppression in AD, inhibiting the
entry of immune cells (monocyte-macrophages and T cells) into the CNS. Transient depletion of Foxp3 + Tregs in 5XFAD mice increased the
expression of leukocyte trafficking molecules in choroid plexus and reduced SP counts in hippocampus (dentate gyrus) and cerebral cortex
[202]. eThe choroid plexus synthesizes and secretes growth factors including FGF2 and TGF�. Pharmacological manipulation of the choroid
plexus (to modify the expression of choroid epithelial cell proteins) and/or supplementation with growth factors was suggested as a therapeutic
approach for AD [159]. f Mice lacking gut microbiota were found to have increased BCSFB permeability, which could be reversed with gut
microbiota recolonization or short-chain fatty acid (SCFA) supplementation. Treatment of AppNL−G−F mice with SCFAs lowered their brain
A� levels [203]. gKlotho is a multifunctional protein with membrane-bound, secreted, and intracellular forms. Its functions include regulation
of oxidative stress, growth factor signaling, and ion homeostasis [209]. Treatment of 10-month-old senescence-accelerated mouse prone-8
(SAMP8) mice with the herbal compound ligustilide upregulated choroid plexus expression of Klotho and decreased memory deficits, A�42

accumulation, and tau phosphorylation [204]. hIncreasing of LRP2 expression on choroid plexus has been suggested as an approach for
increasing BCSFB clearance of cerebral A� [174, 175]. iIn A�42-treated rats, the anti-oxidant lycopene blocked activation of NF-κB p65
and toll-like receptor 4 (TLR4) on the choroid plexus, inhibiting production of pro-inflammatory cytokines [205]. Similar results were found
when administration of lycopene was combined with transplantation of human amniotic epithelial cells [206]. jOligomeric A�42, injected
into C57BL/6 mouse cerebral ventricles, increased inflammatory gene expression and reduced BCSFB integrity. The BCSFB damage was
prevented by co-administration into the cerebral ventricles of a broad-spectrum MMP inhibitor, GM6001 [169]. kMouse embryonic stem
cells were induced in vitro to differentiate into thymic epithelial cell precursors, then transplanted into 3XTg-AD mice. This increased the
expression of leukocyte homing and trafficking molecules in the choroid plexus [207]. lTNF was found by microarray analysis to be the
main inflammatory mediator upstream of the choroid plexus in AD choroid plexus specimens. TNF signaling via TNFR1 was blocked in
APP/PS1 mice by crossing the mice with TNFR1-deficient mice. This lack of TNF signaling decreased the expression of the inflammatory
mediators IL6 and CXCL9 in the choroid plexus. [126]. mTTR is synthesized by the choroid plexus [210]. Increasing the expression of TTR
in APP23 mice by crossing them with mice overexpressing human TTR resulted in normalization of the “APP23 behavioral phenotype” (as
measured with Barnes maze testing) and lower hemi-brain levels of SDS-soluble and formic acid-soluble A� [208].

GLYMPHATIC (PARAVASCULAR)
CLEARANCE OF A�

In 2012, Iliff et al. described a pathway for cerebral
clearance of A� and other solutes via the paravascular
space. They referred to this pathway as “glymphatic”
in reference to glial-associated lymphatic drainage
[211]. In the present review the glymphatic system
is considered to be separate from intramural periar-
terial drainage, also known as perivascular drainage
(discussed in the following section), although some
investigators have suggested that the two systems
may be the same pathway studied under different

conditions [212, 213]. (See discussion of both sys-
tems by Bacyinski et al. [214]). The paravascular
space, also known as the Virchow-Robin space, sur-
rounds the cerebral vasculature (both arteries and
veins), while the perivascular space is present within
the middle layers of the basement membrane of arte-
rial smooth muscle cells. A schematic drawing of the
two systems is shown in Fig. 3. The use of the terms
“paravascular” and “perivascular” is confusing, and
glymphatic drainage is referred to as “perivascular”
in some reviews [215–219]. The glymphatic system
has been the subject of other recent reviews in addi-
tion to the one by Bacyinski et al.; see, for example,
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Fig. 3. The glymphatic and intramural periarterial (IPAD) systems. In the glymphatic (paravascular) system, indicated by the blue arrow, A�
and other solutes in interstitial fluid are cleared from the brain via the paravascular (Virchow-Robin) space, which surrounds both cerebral
arteries and veins. This is facilitated by the water channel protein aquaporin-4 which is present in the astrocytic endfoot processes lining
the cerebral microvasculature. CSF in the glymphatic system enters the brain through para-arterial spaces, mixes with interstitial fluid, then
leaves the brain via paravenous spaces. In the IPAD system, indicated by the green arrow, solutes (including A�) and interstitial fluid exit the
brain via basement membranes of capillaries and arteries. Drainage of solutes via IPAD is in the opposite direction to that of cerebral blood
flow. The pattern of drainage of solutes via IPAD is similar to the pattern of deposition of A� found in CAA, i.e., along cerebral arteries and
capillaries. (From: Saito S, Yamamoto Y, Ihara M. Development of a Multicomponent Intervention to Prevent Alzheimer’s Disease. Front
Neurol. 2019;10 : 490 [publisher: Frontiers Media S.A].) This figure is copyrighted by Drs. Saito, Yamamoto, and Ihara, who permitted its
reproduction.

Jessen et al. [220], Bakker et al. [213], Benveniste et
al. [221], Plog and Nedergaard [217], and Abbott et
al. [222].

The finding in the initial study of the glymphatic
pathway by Iliff et al. [211] that cerebral clearance
of radiolabeled A�40, after its intrastrial injection,
was decreased by 55% in mice lacking the water
channel protein aquaporin-4 (AQP4) compared to its
clearance in wildtype mice suggested that drainage
via the paravascular space may play an important
role in A� clearance from the brain. A more recent
study in C57BL/6 mice found that inhibiting AQP4
function resulted in increased accumulation of A�40
around cerebral vessels [223]. AQP4 is present in
the astrocytic endfoot processes lining the cerebral
microvasculature [224] and is thought to facilitate
movement of fluid through the glymphatic system
[211, 225, 226]. Decreased AQP4 localization adja-
cent to cerebral vessels has been reported in AD
[227]. In the glymphatic system, CSF enters the brain
through para-arterial spaces [228] and after mixing
with ISF [220] it leaves the brain through paravenous
spaces [211, 217]. Drainage of CSF and its solutes
occurs by multiple routes including cervical lym-
phatics, arachnoid granulations, the choroid plexus,

peripheral blood, and possibly dural lymphatics [36,
171, 214, 217, 229–231]. Movement of CSF from
the subarachnoid space into the brain, as well as
efflux of ISF from the brain, has been suggested to
be driven by bulk flow rather than diffusion [217,
228, 232–234] although this has been challenged by
some investigators [218, 235–237]. The rate of fluid
flow through the glymphatic system is thought to
be regulated in part by pulsing of cerebral arteries,
with reductions in arterial pulsatility due to cere-
brovascular pathology possibly contributing to the
decreased A� cerebral clearance in AD [36]. Vaso-
motion (low-frequency contractions and dilations of
smooth muscle cells) has also been suggested to
influence glymphatic flow [238]. Interestingly, sleep
increases fluid flow through the glymphatic system
by expanding the interstitial space (due to reduced
noradrenergic tone), thereby reducing resistance to
fluid movement [239].

In a study of elderly cognitively normal subjects,
some genetic variants of AQP4 were found to mod-
ify the effects of sleep-related parameters on brain
levels of A� [240], further supporting a role for the
glymphatic system in clearance of brain A�. Glym-
phatic clearance of A� was decreased by 40% in
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old mice, with age-related lowering of perivascular
AQP4 polarization and cerebral arterial pulsatility
suggested to be contributing factors [241]. Reduc-
tions in glymphatic inflow (2-fold) and glymphatic
clearance (1.2-fold) of intracisternally injected A�
were found in the APP/PS1 mouse model of AD
[242]. These decreases were attributed in part to dis-
ruption of glymphatic transport by A� oligomers,
which co-localized with AQP4-expressing astrocytes
and may have contributed to depolarization of AQP4
from astrocytic endfeet. Glymphatic transport of
A�42 was less efficient than for A�40, possibly
because of the greater propensity of A�42 to aggre-
gate. Notably, reduction in glymphatic drainage of
A� in APP/PS1 mice was detected in 3-4-month-
old mice, prior to the development of extensive A�
pathology. In another study in APP/PS1 mice, AQP4
knockout resulted in increased numbers of cortical
and hippocampal plaques, as well as deposition of
A� in cortical and leptomeningeal vessels [243]. In
the tg-ArcSwe mouse model of AD, which devel-
ops perivascular as well as neuropil SPs, loss of
astrocyte depolarization was found at sites of perivas-
cular amyloid deposition [244]. Similar findings were
reported in APP/PS1 mice [243]. Further, experimen-
tally induced impairment of glymphatic drainage was
found to increase A� deposition in APP/PS1 mice
[245] and in 5xFAD and J20 mice [246]. These find-
ings suggest that reduced glymphatic clearance of
A� may contribute to the increased cerebral A� bur-
den in AD. However, the feasibility of slowing the
development of A� pathology by therapeutic increas-
ing of glymphatic functioning has been questioned.
Bakker et al. [213] noted poor correlation between
the preferential deposition of A� along arteries and
its clearance along veins, and Saito et al. [247] argued
that A� rarely accumulates in the venous system,
and that arterial A� accumulation is most prominent
within the tunica media, not the paravascular space.
van Veluw et al. [248], citing literature from studies
in patients with CAA and animal models of CAA,
noted that A� clearance is more likely to occur along
arteries than veins.

Glymphatic drainage is decreased in experimen-
tal models of other CNS disorders in addition to AD
including stroke [249], traumatic brain injury [250],
and microinfarcts [251]. However, a review published
in 2018 [217] noted that there had been no therapeu-
tic efforts to improve glymphatic functioning in these
disorders. The possibility has been suggested, with
regard to idiopathic normal pressure hydrocephalus
(in which glymphatic drainage is also compromised

[252]), that improving sleep quality might reduce the
development of this condition by improving glym-
phatic function [219].

Approaches to increase glymphatic drainage of A�
have been investigated in experimental models. These
approaches are shown in Table 4.

Melatonin is used to improve the onset, dura-
tion, and quality of sleep [266]. The possibility that
it may increase glymphatic drainage deserves fur-
ther mention. Sleep disturbances are common in AD
patients [267] so glymphatic clearance of A� might
be increased in these individuals if their quality of
sleep could be improved [215]. Melatonin concen-
trations in CSF are decreased in AD patients and
decrease further during progression of the disease
[268]. Melatonin was suggested as a therapeutic
approach for AD (discussed below) based on its
effects in the APP/PS1 transgenic mouse model of
AD [269].

INTRAMURAL PERIARTERIAL
DRAINAGE (IPAD) CLEARANCE OF A�

In 1974 Cserr and Ostrach examined clearance
of Blue Dextran from mouse brain after injecting
the dye into the caudate nucleus [233]. They found
that the dye was “transported away from the injec-
tion site by bulk flow of cerebral ISF, possibly along
the course of cerebral blood vessels.” Weller, Carare,
and colleagues explored this pathway further [270–
272] and found that drainage of solutes from brain
parenchyma occurred along basement membranes of
capillaries and arteries, but no intracerebrally injected
dye was detected in the walls of veins. In contrast to
glymphatic drainage, the drainage pattern observed
in these studies was in the opposite direction to that
of cerebral blood flow. Studies in experimental ani-
mals suggested that solutes draining from the brain
along blood vessel walls emptied into cervical lymph
nodes [234] via dural lymphatic vessels [273]. An
age-related impairment in this mechanism in mice
was suggested to be due to decreased amplitude of
arterial pulsations and/or changes in the composi-
tion of basement membranes [274, 275]. Clearance
of A�40 from the brain via IPAD is approximately 6-
fold slower than its LRP1-mediated clearance across
the BBB [62]. IPAD was initially suggested to be
driven by arterial pulsation, specifically the refrac-
tory or “reflection” wave that follows each main pulse
wave [276], but this was challenged by later studies
suggesting that the driving force behind IPAD may
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Table 4
Experimental approaches for increasing glymphatic drainage of cerebral A�. Although the number of experimental approaches for increasing
glymphatic drainage of cerebral A� is less than for BBB and BCSFB clearance of cerebral A�, two of the approaches, melatonin and omega-3

polyunsaturated fatty acids, have been evaluated in AD clinical trials and are used to treat many other conditions

AT1 receptor deficiencya [253]
5-Caffeoylquinic acidb [254]
Electroacupuncturec [255]
Exercised [256, 257]
Melatonine [258]
NBPf [259, 260]
Omega-3 polyunsaturated fatty acidsg [261]
Photobiomodulationh [262]
Theta-burst stimulationi [263]
VEGF-Cj [246]

AT1, angiotensin II type 1; NBP, L-3-n-butylphthalide; VEGF-C, vascular endothelial growth factor C. aTraumatic brain injury to mice was
reported to decrease the polarized localization of AQP4 at endfoot processes of reactive astrocytes [264]. Deficiency in angiotensin II type
1 (AT1) receptors (induced by knockout of AT1 in C57BL/6 mice) inhibited AQP4 depolarization after traumatic brain injury, improving
glymphatic drainage of A� [253]. bTreatment of APP/PS2 mice with 5-caffeoylquinic acid, also known as chlorogenic acid, resulted in
upregulation of LRP1 and normalization of perivascular AQP4 polarization in the hippocampus, together with decreased hippocampal
A� deposition [254]. cA study in SAMP8 mice subjected to electroacupuncture for 8 weeks suggested that this treatment might improve
AQP4 polarity and glymphatic drainage [255]. dWheel running improved glymphatic clearance, including astrocytic AQP4 expression and
polarization, in aged mice [256]. Similar findings were reported in 3-month-old but not 7-month-old APP/PS1 mice [257]. eAdministration
of melatonin to Tg2576 mice increased drainage of cerebral A� into cervical and axillary lymph nodes. This was associated with decreased
brain levels of oligomeric A�40 [258]. The melatonin-induced increase in lymphatic drainage of A� was suggested to be due to enhanced
glymphatic clearance [265]. f NBP (L-3-n-Butylphthalide), an extract from Chinese celery, improved glymphatic clearance of cerebral A�

in wild-type mice by increasing cerebral pulsation. Administration of NBP to APP/PS1 mice reduced A� deposition and parenchymal A�

levels [260]. An earlier study with 3xTg-AD mice found that treatment with NBP decreased diffuse but not fibrillar plaques [259]. gCerebral
clearance of A� in fat-1 transgenic mice was increased by treatment with omega-3 polyunsaturated fatty acids. This effect was abolished in
AQP4-knockout mice. Omega-3 polyunsaturated fatty acids were found to inhibit astrocyte activation and to maintain AQP4 polarization
after A� injection [261]. hA review of photobiomodulation therapy indicated that it promoted increased glymphatic clearance of cerebral
A� via meningeal lymphatic vessels [262]. iContinuous theta-burst stimulation increased glymphatic fluid transport in APP/PS1 mice. This
effect was attributed to improved AQP4 polarization [263]. jTreatment of old C57BL/6J mice with VEGF-C, delivered by adenoviral vector
or transcranial injection, resulted in increased lymphatic vessel diameter and improved meningeal lymphatic drainage of a tracer into deep
cervical lymph nodes. This effect could not be replicated in J20 or 5XFAD mice [246].

be vasomotion produced by spontaneous contraction
and relaxation of smooth muscle cells [38, 41, 277].
Analysis of a computational model of IPAD led to the
conclusion that drainage of solutes by both diffusion
and bulk flow occurred in IPAD [278].

Studies in mice with intracerebrally injected A�
have shown that its drainage follows the same pattern
as tracer dyes [279]. A similar pattern of deposi-
tion of A� along cerebral arteries and capillaries
is found in CAA, reflecting failure of A� to be
cleared from these vessels [279–282]. Clinical seque-
lae of CAA include lobar intracerebral hemorrhages,
cerebral microbleeds, hemorrhagic and ischemic
stroke, cognitive impairment, and gait impairment
[283–286]. CAA is present in up to 90% of AD
patients [287–290] and is associated with more
rapid progression of AD [291]. ApoE, particularly
apoE4, may impair IPAD-mediated clearance of A�
[292]. ApoE4-expressing astrocytes secrete more
fibrinectin and less laminin than apoE3-expressing
astrocytes, promoting aggregation of A� on cere-

brovascular basement membranes [293]. In CAA,
apoE co-localizes with A� [294–296].

Several approaches have been suggested or inves-
tigated in experimental systems for increasing IPAD
clearance of A�. These are shown in Table 5.

Enhancing the efflux mechanisms discussed in
this review offers potential therapeutic options for
lowering the concentrations of soluble A� confor-
mations in the brain. Whether this approach would
slow AD progression is unknown. Previous attempts
to slow AD progression by lowering brain lev-
els of soluble A� failed (with the exception of
lecanemab, which preferentially binds to soluble
aggregates (protofibrils) as discussed below); these
include the monoclonal antibodies solanezumab
[15] and ponezumab [314], both of which targeted
monomeric A�, as well as BACE1 inhibitors [315]
and �-secretase inhibitors [316]. The failure of these
approaches suggests that increasing cerebral efflux
of A� is unlikely to slow disease progression if
used as monotherapy. But if used as an adjunct to
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Table 5
Experimental approaches for increasing IPAD clearance of A�

Anticoagulantsa [297]
APOA-I knockoutb [298]
Chitinc [299]
Cilostazold [300]
Correction of ApoE4/A�/laminin interactionse [301]
Ergothioneinef [302]
Fasudil hydrochlorideg [303]
Ghrelinh [50, 304–306]
Lysyl oxidase inhibitioni [307]
Ponezumabj [308]
Taxifolink [309, 310]

APOA-I, apolipoprotein A-I; ApoE4, apolipoprotein E4. aThe possibility was suggested that direct oral anticoagulants (DOAC) might mitigate
hypoperfusion-enhanced neurodegenerative processes including reduced perivascular clearance of A� [311]. The DOAC dabigatran etexilate
lowered cerebral A� in TgCRND8 mice [297]. bKnockout of the APOA-I gene, which encodes for apolipoprotein A-I (apoA-I), increased
IPAD-mediated clearance of cerebral A� in Tg2576 mice, and decreased cerebrovascular and parenchymal levels of insoluble A� [298].
ApoA-I is the main structural protein of high-density lipoprotein and is present in CSF [312]. cIntracerebroventricular injection of chitin
in TgCRND8 mice stimulated perivascular macrophages and reduced A�42-labeled cortical blood vessels [299]. dThe selective type 3
phosphodiesterase inhibitor cilostazol increased perivascular drainage (i.e., IPAD-mediated clearance) of A�1-40 in Tg-SwDI mice [300].
eApoE was found to co-localize with A� in basement membrane drainage pathways in arterial walls. The attachment of apoE/A� complexes to
laminin in the basement membrane was weaker for apoE4/A� complexes than for apoE3/A� complexes, suggesting that perivascular clearance
of apoE4/A� complexes may be less efficient than for other isoforms of apoE. Therapeutic correction for apoE4/A�/laminin interactions was
suggested as a possible approach to increase the efficiency of A� clearance [301]. f Treatment with the antioxidant ergothioneine reduced the
concentration of A� in neuroretinas of 5XFAD mice. Ergothioneine was suggested to increase A� clearance by blood-derived phagocytic
macrophages and via perivascular drainage [302]. gFasudil hydrochloride is a selective Rho- associated, coiled-coil containing protein kinase
(ROCK) inhibitor which stimulates the PI3K/Akt/eNOS pathway [313]. Similar to the effect of acetylcholine, stimulation of this pathway
induces vasodilation by activating endothelial nitric oxide synthase, promoting synthesis of nitric oxide. Treatment with fasudil hydrochloride
increased IPAD in the hippocampus of both control mice (C57BL/6) and mice previously treated with mu-saporin, an immunotoxin which
targets cholinergic neurons [303]. hTreatment of 3xTg-AD mice with the gastrointestinal hormone ghrelin upregulated capillary microRNAs
miR126 and 145 in hippocampus and cerebral cortex, and lowered cerebral A� oligomer concentrations. This reduction was suggested to
be due to increased perivascular clearance of A�, possibly due to activated endothelium and increased pericyte coverage of capillaries.
Decreased expression of RAGE may also have been a contributing factor [50]. Treatment of 5XFAD mice with the ghrelin agonist MK-0677
reduced A� deposition in the frontal cortex [305] but in another study no decrease in cerebral A� was found when ghrelin was administered
to this transgenic mouse model of AD [306]. (See also: Moon et al., 2014 [304]). iLysyl oxidase participates in remodeling of extracellular
matrix (ECM) by catalyzing crosslinking of ECM components including collagen IV, laminin, and fibronectin. Inhibition of lysyl oxidase
was suggested to improve IPAD clearance of A� [307]. jChronic administration of the anti-A� monoclonal antibody Ponezumab, which
binds a C-terminal epitope of A�40 (A�33-40) and is thought to promote “peripheral sink” A� clearance [314], to PSAPP mice reduced
CAA-type pathology [308]. kTaxifolin is a plant flavonoid with anti-oxidant and anti-inflammatory effects [310]. Taxifolin treatment of
a mouse model of CAA, Tg-SwDI mice, inhibited formation of oligomeric A� and reduced cerebrovascular A� immunoreactivity [309].
Taxifolin was suggested in that study to have increased A� clearance via IPAD and the BBB.

lecanemab or donanemab, this might allow greater
slowing of AD progression than can be achieved by
treatment with either antibody alone. Antibody bind-
ing to A� can promote its clearance from the brain by
several mechanisms: (a) activation of microglia via
binding of antibody Fc fragments to the microglial
Fc receptor (FcR), thereby increasing phagocytic
uptake (and subsequent proteolytic degradation) of
A� [317] (although this is true for fibrillar A�,
microglial uptake of soluble A� may be via fluid-
phase macropinocytosis [318], although whether it
occurs by phagocytosis or fluid-phase macropinocy-
tosis is unclear [319]), (b) activation of the classical
complement pathway by crosslinking C1q between
adjacent Fc fragments of IgG molecules (bound, in
this case, to A�) [320] (complement activation results

in cleavage of C3 to generate C3b; when bound by
microglial complement receptor CR1, C3b is cleaved
to iC3b, which functions as an opsonin, promoting
phagocytosis when bound to the microglial comple-
ment receptor CR3 [321], (c) binding of antibody-A�
immune complexes to the BBB’s neonatal FcR,
which facilitates their crossing the BBB [34], (d)
antibody-mediated dissolving of fibrillar A� [322],
and (e) a “peripheral sink” mechanism in which
antibody binding to A� in peripheral blood alters
the equilibrium between systemic and brain A� lev-
els, inducing increased BBB-mediated efflux of A�
from the brain [323]. (Some investigators have chal-
lenged the validity of the peripheral sink hypothesis
[324, 325). Donanemab binds to a fibril-specific
N-terminal epitope on pyroglutamate-modified A�
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Table 6
Clinical applications of experimental approaches for improving BBB clearance of cerebral A�. Clinical trials are identified by their

ClinicalTrials.gov Identifier

Approach Clinical trials and/or clinical use

ADAM10 inhibition Pediatric glioma [343]
Annexin A1 None found
Catalpol Colon cancer [344]
Dihydropyridine L-type Mood stabilization [345], hypertension [calcium channel blockers [346, 347], bipolar disorder

[348], transfusion-dependent thalassemia [349], schizophrenia [350]
1�,25-dihydroxyvitamin D3 Ischemic stroke [351], chronic renal disease/secondary hyperparathyroidism [352], acute

myelogenous leukemia [353], prostate, breast, and colorectal cancer, melanoma, myelodysplasia
[354], osteoporosis [355, 356], bone disease in patients with hepatic cirrhosis [357]

Endothelial progenitor cells Ischemic heart disease, pulmonary arterial hypertension, decompensated liver cirrhosis [358],
bone repair [359], diabetic patients with nonhealing ulcers [360], limb ischemia [361]

Exercise Effects on cancer patients during and after treatment [362], effects on biomarkers in older adults
after hospital discharge [363]

Extra-virgin olive oila MCI [364]
Kallikrein-8 inhibition Hereditary angioedema [365, 366]
LDLR Familial hypercholesterolemia (NCT02651675)
Mesenchymal stem cells Hematological disease, graft-versus-host disease, organ transplantation, diabetes, inflammatory

diseases; hepatic, renal, pulmonary, cardiovascular, bone/cartilage, neurological, and autoimmune
diseases [367]

MMP-9 inhibition Ulcerative colitis [368], rheumatoid arthritis [369], gastric and gastroesophageal junction
adenocarcinoma [370], macular degeneration (NCT04504123)

Muscarinic acetylcholine receptor Depression [371], diabetic neuropathy (NCT03050827),
inhibition myopia [372]
PICALM upregulationb Malaria [373]
Somatostatinc Polycystic kidney and liver disease [374], neuroendocrine tumors (NCT05701241),

somatotropinomas, thyrotropinomas, gastroenteropancreatic neuroendocrine tumors;
corticotropinomas, gonadotropinomas, prolactinomas; other endocrine diseases (congenital
hyperinsulinism, Graves’ orbitopathy, diabetic retinopathy, diabetic macular edema),
non-endocrine tumors (breast, colon, prostate, lung, and hepatocellular); digestive diseases
(chronic refractory diarrhea, hepatorenal polycystosis, gastrointestinal hemorrhage, intestinal
fistula) [375]

�-tocopherol ADd [376, 377], nonalcoholic fatty liver
(NCT04801849); prevention studies: cancer, atherosclerosis, cataracts, age-related macular
degeneration, oral squamous cell carcinoma, lung cancer [378]

AD, Alzheimer’s disease; ADAM10, A disintegrin-like and metalloproteases 10; LDLR, Low-density lipoprotein receptor; MCI, mild
cognitive impairment; MMP-9, matrix metalloproteinase-9; PICALM, phosphatidylinositol binding clathrin assembly protein). aSix-month
treatment of MCI patients with extra-virgin olive oil (NCT03824197) reduced BBB permeability and improved clinical dementia rating
(CDR) and behavioral scores [364]. bThe antimalarial drug artesunate increases PICALM expression at the BBB [122]. cSomatostatin is not
used clinically because of its short half-life. Somatostatin analogs, which have longer half-lives, are used [375]. dIn clinical trials, Sano et
al. [376] concluded that treatment with �-tocopherol slowed AD progression, and a similar conclusion was reached by Dysken et al. [377].

[326], promoting microglial phagocytosis of A�
[327]. Lecanemab binds large soluble A� aggre-
gates (protofibrils) and has lower selectivity for fibrils
[328]; the mechanism(s) by which it increases clear-
ance of cerebral A� is less clear, although BBB
clearance (via binding of lecanemab-A� complexes
to the BBB’s neonatal FcR) might be involved.

A related question is whether therapeutic increas-
ing of cerebral A� efflux would lower the risk
of developing amyloid-related imaging abnormal-
ities (ARIA) in subjects treated with lecanemab
or donanemab. ARIA is indicated by detection,
on MRI, of either edema and effusion (ARIA-
E; vasogenic edema in the parenchyma or sulcal

effusions in leptomeninges [329]) or bleeding, as
indicated by microhemorrhages and/ hemosiderin
deposition (ARIA-H). ARIA-E reflects extravasation
of proteinaceous fluid while ARIA-H reflects extrava-
sation of erythrocytes [330]. The incidence of ARIA
increases when subjects are treated with monoclonal
antibodies targeting A�’s N-terminal amino acids,
and apoE4-positive subjects have an increased risk for
developing ARIA when treated with these antibodies
[331]. In lecanemab’s phase 3 trial, the incidence of
ARIA-E was 12.6% for lecanemab-treated subjects
and 1.7% for placebo-treated subjects [17] while in
donanemab’s phase 3 trial ARIA-E was detected in
24.0% of donanemab-treated and 2.1% of placebo-
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Table 7
Clinical applications of experimental approaches for improving BCSFB clearance of cerebral A�. Clinical trials are identified by their

ClinicalTrials.gov Identifier

Approach Clinical trials and/or clinical use

Choroid plexus epithelial cells None founda

CSF production enhancement None foundb

Environmental enrichment Stroke [379–381]
Foxp3(+) regulatory T cell
depletion

Carcinoembryonic antigen-expressing malignancies [382], melanoma [383], T cell
leukemia-lymphoma [384], esophageal cancer [385], T-cell lymphoma [386, 387]

Growth factor
supplementation

Temporomandibular joint osteoarthritis (NCT00646763, NCT04731233), lower limb ischemia [388],
tibial osteotomy [389], femoral head osteonecrosis [390], tibial shaft fractures [391], lower limb
ischemia [388], periodontal regeneration [392], glucocorticoid-resistant acute hearing loss [393]

Ligustilidec Menopause [394, 395]
LRP2 None found.
Lycopene Prostate cancer [396], cardiovascular disease [397], gum disease (NCT02263352), subarachnoid

hemorrhage (NCT00905931), carotid atheroma (NCT01102504)
MMP inhibition Refractory metastatic cancer (NCT00001683), wet age-related macular degeneration

(NCT04504123), breast cancer [398], gastric cancer, diabetic foot ulcers, multiple sclerosis [399]
Stem cell-derived thymic
epithelial cells

None found.

TNF signaling inhibition Lung adenocarcinoma [400], melanoma (NCT03293784), ankylosing spondylitis [401], rheumatoid
arthritis [402 (NCT00837434)], many other immune-mediated inflammatory diseases [403, 404]

TTR tetramer stabilization Cardiac amyloidosis [405, 406], Parkinson’s disease [407], familial amyloid polyneuropathy [408]

CSF, cerebrospinal fluid; Foxp3, forkhead box P3; LRP2, low-density lipoprotein receptor-related protein 2; MMP, matrix metalloproteinase;
TNF, tumor necrosis factor; TTR, transthyretin. aNo clinical trials or human applications involving transplant of choroid plexus epithelial
cells were found, although this approach continues to be investigated in experimental systems (see reviews by Jang and Lehtinen, 2022
[409], and Liu et al., 2022 [410]). bNo clinical trials or human applications were found in which the intent was to increase CSF production;
however, the effects of caffeine, whose chronical consumption increased CSF production in rats [199], have been well studied (reviewed by
Cappelletti et al., 2015 [411]). cLigustilide is the main active ingredient in the root of the herb Dong quai. Pure ligustilide has not been tested
in humans due to its poor stability and bioavailability [412].

treated subjects, and ARIA-H was found in 31.4%
of donanemab-treated and 13.6% of placebo-treated
subjects [20]. The mechanisms underlying ARIA are
incompletely understood; it has been suggested to be
related to a temporary increase in cerebrovascular
A� due to antibody mobilization of A� from SPs,
causing increased vascular fragility and permeabil-
ity [332, 333]. Increased production of inflammatory
cytokines as a consequence of antibody activation
of microglia was also suggested to contribute to
development of ARIA [334, 335]. Treatment-induced
ARIA-E is generally asymptomatic and resolves
without treatment [336], although it has been associ-
ated with confusion, visual disturbances, headache,
and gait abnormalities [333]. Whether the cere-
bral microhemorrhages indicated by ARIA-H can
influence cognitive performance is not clear [337].
Barakos et al. [338], discussing the development of
ARIA in patients treated with anti-A� monoclonal
antibodies, noted that “there may be a recovery of
vessel wall integrity and an increase in effective
perivascular drainage with continued treatment, and,
therefore, some clinical trials have observed that the
risk of ARIA is highest early in treatment and subse-
quently decreases in patients who continue dosing.”

Therefore, approaches that increase IPAD (perivascu-
lar) - mediated efflux of A� (Table 5) might reduce the
incidence of ARIA in patients treated with lecanemab
or donanemab. As stated above, CAA is often present
in AD [287–290]. MRI findings of ARIA-H are
similar to those of CAA [330], so increasing IPAD-
mediated clearance of cerebral A� might also reduce
CAA-associated pathology in AD patients.

Some of the experimental approaches discussed
above would be problematic in AD patients. For
example, the use of viral vectors in human gene
therapy trials poses substantial risks [339, 340],
intracerebroventricular administration of therapeutic
agents would be less desirable than systemically-
administered agents, and the use of some anticoag-
ulants has been associated with increased risk for
intracerebral hemorrhage [341]. Of note with regard
to the possibility of treating AD patients with anti-
coagulants, cerebral microbleeding was reported in
29% of AD patients [337] so it would be a concern
with this approach [342]. Nevertheless, most of the
experimental approaches listed in Tables 2–5 have
been used in clinical settings. Clinical applications
found for the experimental approaches discussed
above are shown in Tables 6–9.
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Table 8
Clinical applications of experimental approaches for improving glymphatic/paravascular clearance of cerebral A�. Note the large number of
clinical applications of melatonin and omega-3 polyunsaturated fatty acids. Clinical trials are identified by their ClinicalTrials.gov Identifier

5-Caffeoylquinic acid Menopause-induced dyslipidemia (NCT03019263), impaired glucose tolerance (NCT02621060),
vascular function [413], non-alcoholic fatty liver in type 2 diabetes (NCT02929901), recurrent
high-grade glioma [414]

L-3-n-Butylphthalide ADa [415], subcortical vascular cognitive impairmentb [416], acute ischemic stroke [417, 418],
amyotrophic lateral sclerosis [419], ParkinsonÕs disease-related dementia [420]

Melatonin ADc [421], sleep disturbances [422], metabolic syndrome (NCT01038921), neuropathic pain [423],
lung cancer [424], multiple sclerosis (NCT03498131), solid tumors [425, 426], migraine prevention
[427], septic shock [428], ocular, hematological, gastrointestinal, and cardiovascular diseases,
diabetes, rheumatoid arthritis, fibromyalgia, chronic fatigue syndrome, infectious diseases,
neurological diseases, aging, depression, anesthesia, hemodialysis, in vitro fertilization, neonatal care
[429]

Omega-3 polyunsaturated
fatty acids (PUFA)

ADd [430–433], cardiovascular disease [434], prevention of coronary heart disease [435], COVID-19
[436], periodontitis (NCT04477395), Parkinson’s disease [437], attention deficit hyperactivity
disorder [438], cancere [439], schizophrenia [440], chronic fatigue in relapsing-remitting multiple
sclerosis [441], non-alcoholic fatty liver [442]

VEGF-C Neovascular age-related macular degeneration [443, 444]

AD, Alzheimer’s disease; ADAS-cog, Alzheimer’s Disease Assessment Scale; ADCS-ADL, Alzheimer’s Disease Cooperative Study –
Activities of Daily Living; CDR-SB, Clinical Dementia Rating sum of boxes; CIBIC-Plus, Clinician’s Interview-Based Impression of
Change Plus caregiver input; COVID-19, Coronavirus Disease of 2019; PUFA, polyunsaturated fatty acids; VEGF-C, vascular endothelial
growth factor C. aWang et al. [415] treated patients with mild-to-moderate AD with dl-3-n-butylphthalide plus donepezil (n = 49) or donepezil
alone (n = 43) for 48 weeks (ClinicalTrials.gov Identifier: NCT02711683). Changes in scores for Alzheimer’s Disease Assessment Scale
(ADAS-cog) and Alzheimer’s Disease Cooperative Study - Activities of Daily Living (ADCS-ADL) were significantly different between
the two treatment groups. Wang et al. concluded that the patients treated with dl-3-n-butylphthalide plus donepezil had slower cognitive
decline and better performance of activities of daily living than the patients treated with donepezil alone. bJia et al. [416] conducted
a randomized, double-blind, placebo-controlled trial in which patients with subcortical vascular cognitive impairment without dementia
(n = 281) were treated for six months with dl-3-n-butylphthalide or placebo. Statistically significant differences (improved functioning)
vs. placebo were found for ADAS-cog and Clinician’s Interview-Based Impression of Change Plus caregiver input (CIBIC-Plus) scores.
cA meta-analysis of seven randomized controlled clinical trials in which AD patients were treated with melatonin found no improvement
in measures of cognitive functioning [421]. dFreund-Levi et al. [430] conducted a randomized, double-blind, placebo-controlled clinical
trial involving omega-3 supplementation of patients with mild-to-moderate AD. Statistically significant treatment effects were found for
depressive symptoms in non-apoE4 carriers, and for symptoms of agitation in apoE4 carriers. Chiu et al. [431] performed a similar study in
which subjects with mild-to-moderate AD or MCI were treated with omega-3 PUFA or placebo. Statistically significant improvement for
treatment vs. placebo groups was found in ADAS-cog scores for the MCI patients. In contrast, a clinical trial by Quinn et al. [432] involving
supplementation of mild-to-moderate AD patients with the omega-3 fatty acid docosahexaenoic acid found no statistically significant effects
on ADAS-cog or Clinical Dementia Rating sum of boxes (CDR-SB) scores. Burckhardt et al. [433], in a systematic review, concluded that
there was “no convincing evidence for the efficacy of omega-3 PUFA supplements in the treatment of mild to moderate AD.” eNabavi et al.
[439] reviewed the effects of omega-3 therapy on breast cancer, colorectal cancer, leukemia, gastric cancer, pancreatic cancer, esophageal
cancer, prostate cancer, lung cancer, head and neck cancer, and cancer-related cachexia.

A few approaches for increasing cerebral A� efflux
have been investigated for their effects on slowing of
cognitive decline in AD and/or MCI patients. Clini-
cal trials have suggested that �-tocopherol (Table 6)
may slow AD progression [376, 377]. Treatment of
AD patients with L-3-n-butylphthalide (Table 8) as
an adjunct to donepezil was found to slow cognitive
decline and loss of the ability to perform activities
of daily living to a greater extent than treatment
with donepezil alone [415]. A meta-analysis of find-
ings in clinical trials of melatonin (Table 8) in AD
patients found no evidence for slowing of cognitive
decline [421] and a similar conclusion was reached
for omega-3 PUFA (Table 8) in a systematic review
[433]. Cilostazol (Table 9) was reported to slow AD-

related cognitive decline in prospective studies [460–
462] but another study found no effects of cilostazol
on cognition or global functioning in AD patients
[463]. A phase 2 trial with cilostazol in patients
with MCI (NCT02491268) started in 2015 with an
expected completion date of December 1, 2020 but
results have not been posted on ClinicalTrials.gov. In
a retrospective study, treatment with cilostazol was
associated with slowing of cognitive decline in MCI
patients but not AD patients [449] while in another
retrospective study cilostazol slowed the decrease in
MMSE scores in patients with mild dementia but not
moderate-to-severe dementia (type of dementia not
specified) [450]. No slowing of AD clinical progres-
sion was found in clinical trials involving the ghrelin
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Table 9
Clinical applications of experimental approaches for improving IPAD clearance of cerebral A�. Note the large number of clinical applications

of cilostazol. Clinical trials are identified by their ClinicalTrials.gov Identifier

Anticoagulants Prevention of stroke in nonvalvular atrial fibrillation, prevention and treatment of venous
thromboembolism [445], prevention of deep vein thrombosis after knee or hip replacement
surgery [446]

Chitin Tissue engineering, wound dressing, drug delivery, cancer diagnosis [447], cancer treatment (used
as vehicle for drug delivery [448]

Cilostazol MCIa [449], ADb [450], prevention of restenosis and repeat revascularization after percutaneous
coronary intervention [451], prevention of vascular mortality and cardiovascular events in
patients with stable intermittent claudication [452], ischemic leg ulcers, chronic arterial
occlusion, prevention of recurrence of cerebral infarction, chronic atrial fibrillation with episodes
of bradycardia [453], prevention of stroke recurrence (NCT00202020), fatty liver disease
(NCT04761848), prevention of peripheral neuropathy (NCT05298696), lower extremity
revascularization (NCT02374957), Reynaud’s syndrome (NCT00048776), recurrent stroke with
intracranial artery stenosis (NCT00333164)

Correction of apoE4/A�/laminin
interactions

Nothing found

MicroRNA targeting of cerebral
vessels (with ghrelin agonists)

ADc [454], cachexia [455], obesity, gastrectomy, esophagectomy [456], sarcopenia [457],
concussion (NCT04558346), malnutrition [458], alcoholism (NCT01779024)

Ponezumab ADd [314], CAA [459]

A�, amyloid �-protein; AD, Alzheimer’s disease; apoE4, apolipoprotein E4; CAA, cerebral amyloid angiopathy; MCI, mild cognitive
impairment. aTaguchi et al. [449] performed a retrospective analysis to examine the effects of cilostazol on cognitive functioning. The
analysis included all patients treated at their hospital with cilostazol. Changes in Mini-Mental State Examination (MMSE) scores over > 6
months were compared between subjects who continued to receive cilostazol and subjects who stopped cilostazol treatment. Patients taking
acetylcholinesterase inhibitors were excluded. Slowing in the decrease in MMSE scores was found for MCI patients but not for non-
cognitively impaired individuals or AD patients. bIhara et al. [450] also performed a retrospective study, comparing changes in MMSE
scores over 28–30 months in patients with dementia (MMSE < 27; type of dementia not specified) between subjects treated with donepezil
and cilostazol vs. those receiving donepezil alone. Subjects were subdivided into mild dementia (MMSE 22–26) and moderate-to-severe
dementia (MMSE < 21). Slowing of the decrease in MMSE scores was found for the patients with mild dementia. Tai et al. [460] performed
a small prospective study, comparing 12-month changes in MMSE scores in patients with “stable AD” between subjects taking cilostazol
and acetylcholinesterase inhibitors and subjects not receiving cilostazol. The “cilostazol add-on” group was found to have less decrease in
MMSE scores than the subjects not taking cilostazol, although no effect of cilostazol was found on CDR-SB scores. Cilostazol-associated
slowing of cognitive decline was also reported in small pilot studies for patients with moderate AD [461] and patients with both AD and
cerebrovascular disease [462]. In contrast, a 24-week prospective study by Lee et al. [463] found no significant differences in measures of
cognition or global functioning between AD patients treated with cilostazol plus donepezil vs. those treated with donepezil alone, although
cilostazol was suggested to slow the decrease in regional cerebral metabolism in the AD patients. cA double-blind clinical trial investigating
the effects of the ghrelin agonist MK677 in patients with mild-to-moderate AD found no slowing of disease progression [454]. dA one-year
clinical trial with Ponezumab in patients with mild-to-moderate AD found no effects on disease progression [314].

agonist MK-677 [454] or the anti-A� monoclonal
antibody Ponezumab (Table 9) [314].

CONCLUSIONS

Many approaches have been used in experimental
systems to increase the efflux of A� from the brain.
Most of these approaches are used to treat other con-
ditions but few of them have been investigated for
possible benefits in AD patients. Although lecanemab
and donanemab slow the clinical progression of early-
stage AD, there may be a ceiling to their ability to do
so. Therapeutic interventions to increase A� efflux
from the brain, if used as an adjunct to treatment with
these antibodies, might allow further slowing of AD
progression.
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