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Abstract.
Background: There is no molecular test for Alzheimer’s disease (AD) using self-collected samples, nor is there a definitive
molecular test for AD. We demonstrate an accurate and potentially definitive TempO-Seq® gene expression test for AD using
fingerstick blood spotted and dried on filter paper, a sample that can be collected in any doctor’s office or can be self-collected.
Objective: Demonstrate the feasibility of developing an accurate test for the classification of persons with AD from a
minimally invasive sample of fingerstick blood spotted on filter paper which can be obtained in any doctor’s office or
self-collected to address health disparities.
Methods: Fingerstick blood samples from patients clinically diagnosed with AD, Parkinson’s disease (PD), or asymptomatic
controls were spotted onto filter paper in the doctor’s office, dried, and shipped to BioSpyder for testing. Three independent
patient cohorts were used for training/retraining and testing/retesting AD and PD classification algorithms.
Results: After initially identifying a 770 gene classification signature, a minimum set of 68 genes was identified providing
classification test areas under the ROC curve of 0.9 for classifying patients as having AD, and 0.94 for classifying patients
as having PD.
Conclusions: These data demonstrate the potential to develop a screening and/or definitive, minimally invasive, molecular
diagnostic test for AD and PD using dried fingerstick blood spot samples that are collected in a doctor’s office or clinic, or
self-collected, and thus, can address health disparities. Whether the test can classify patients with AD earlier then possible
with cognitive testing remains to be determined.

Keywords: Alzheimer’s disease, dementia, diagnostic classifier, fingerstick blood, gene expression signature, health disparity,
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INTRODUCTION

Alzheimer’s disease (AD) is the most common
form of dementia, affecting more than 55 million
people worldwide with more than 10 million new
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cases/year.1 It is estimated that three-fourths of those
with AD worldwide have not been diagnosed, and on
average it can take over 2 years for a diagnosis of
AD when one is made.2 6.5 million Americans live
with AD, with a risk of developing AD of 1 in 5 for
women, and 1 in 10 for men.3 The prevalence of AD
is higher among non-Hispanic Black and Hispanic
Americans, populations which experience health dis-
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parities reducing access to healthcare. This may result
in under-diagnosis, particularly at earlier stages of
disease.

Estimates of AD prevalence are based on cognitive
testing because there is no FDA approved defini-
tive molecular test. By “definitive” we mean a test,
which if positive for AD, does not require further
testing other than to stratify patients and assess their
progression. Currently, a definitive diagnosis of AD
requires a battery of tests including clinical pheno-
type of AD and biomarker evidence of AD pathology.
Thus, when a patient presents with clinical mani-
festations of possible AD, a definitive diagnosis is
based on assessment of patient history, neurologi-
cal exam, objective cognitive/functional assessment
to establish a clinical phenotype commonly associ-
ated with AD, scans (MRI, CT, PET) to rule out
hemorrhages, strokes, etc., a positive immunoassay
for tau and amyloid-� (A�), and may include posi-
tive FDG PET/CT and A� PET scans.4 This series
of tests requires access to a medical specialist and
numerous laboratory visits. While immunoassays
measuring A� and tau proteins from cerebrospinal
fluid or plasma have received FDA clearance as in
vitro diagnostic devices, they are not sufficient alone
to diagnose AD.5–10 Cognitively unimpaired subjects
can have a positive tau or amyloid immunoassay test
and be classified as at-risk for progression to a demen-
tia but may never develop clinical manifestations of
AD within their lifetime.4 Thus, the intended use of
these tests are for patients already being evaluated for
AD.6

Not only is there no definitive molecular test for
AD, but there is no molecular test that uses a min-
imally invasive sample permitting collection in any
doctor’s office or self-collection that can be used to
screen persons to identify those who should seek fur-
ther diagnosis for AD. Furthermore, the number of
AD patients greatly outweighs the number of neu-
rologists, making it important to have a test that can
be caried out on a sample that can be collected in
any doctor’s office or clinic, to identify those who
should be seen for further diagnosis.11,12 Finally, the
inaccessibility of many patients to any doctor, much
less a neurologist, leads to health disparities, creating
a need for a classification test that can use a self-
collected sample without having to see any doctor
first. We report a classifier test for AD that uses a
sample that can be collected in any doctor’s office or
clinic, or which can be self-collected to inform sub-
jects that they should see a neurologist for diagnosis.
While there is the potential for this test to provide

a definitive diagnosis, it has clinical utility even if it
is not definitive because of how easy it is to collect
the sample, and it has utility as a research use assay
generally in the field of dementia research.

There are many reports of gene expression sig-
natures for AD and PD that have utilized RNA
extracted from whole blood or from white cells or
were derived bioinformatically from databases of
such samples.13–28 All these used blood obtained
by venipuncture. While most did not correlate their
results to biomarker assays, one did, demonstrat-
ing a good correlation (classifying 24 of 28 positive
patients) to the CSF amyloid biomarker test.18

Another reported an accuracy of 74–77% predicting
AD in patients with mild cognitive impairment (MCI)
two years prior to diagnosis of AD.21 Thus, there is
good evidence that a whole blood test can be used to
classify patients with AD.

TempO-Seq® is an assay platform that uses crude
sample lysates to measure the expression of focused
sets of genes up to the whole transcriptome.29 Seek-
ing to develop a minimally invasive test, we pursued
the use of dried blood spots on filter paper pre-
pared from a fingerstick as the assay sample. Others
have profiled RNA extracted from blood spotted on
filter paper, but not from AD patients.30 Because
the TempO-Seq assay does not require RNA extrac-
tion, we chose to directly test punches of dried
blood collected on filter paper. The TempO-Seq assay
has also been shown to provide the same quality
data from highly degraded RNA (RIN 3.0) as from
high quality RNA samples, a feature we believed
would be beneficial profiling RNA within the spot-
ted blood samples.29 This TempO-Seq Dried Blood
Spot (TempO-SeqDBS) assay was used to determine
whether patients clinically diagnosed with AD could
be identified and differentiated from asymptomatic
controls and patients clinically diagnosed with PD.

MATERIALS AND METHODS

We tested cohorts of patient samples to identify a
gene signature and algorithm that classified patients
with AD and differentiated them from controls and
PD. While subtypes of AD based on gene expression
profiling have been described, our objective was to
identify a test that could classify patients as having
AD regardless of disease subtype.31 Thus, we used
an approach that identified an AD classifier signa-
ture that was in common to all patients in the training
set. We subsequently retrained and retested the algo-
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rithm on independent cohorts of samples to confirm
the ability of the test to classify patients.

Patients being seen at the Neurology Center of
Southern California with a clinical diagnosis of AD or
PD and asymptomatic controls, were consented under
an IRB-approved protocol (Solutions IRB, protocol
ID 0417). The clinical diagnosis of AD followed the
clinical guidance published by the National Institute
on Aging and Alzheimer’s Association (NIA-AA),
published in 2011, and involved a thorough medical
evaluation, including a review of the patient’s medi-
cal history, physical examination, cognitive testing
using, e.g., the Mini-Mental State Examination or
Montreal Cognitive Assessment, neurological eval-
uation including MRI/CT imaging to exclude other
causes of the cognitive functional loss, and lab test-
ing to exclude metabolic diseases that could account
for the cognitive function loss. The clinical diagno-
sis of PD followed the guidance published by the
UK Parkinson’s Disease Society Brain Bank for PD,
and was based on medical history, review of symp-
toms, neurological and physical exam, identifying
the presence of characteristic motor symptoms of
bradykinesia, rigidity, postural instability, and resting
tremor. Blood was obtained by a fingerstick, 2-3 drops
spotted on Whatman filter paper to generate a spot
with a diameter of ∼1.5 cm, air dried, de-identified,
and then shipped to BioSpyder and tested. Two areas,
each 1.6 mm diameter, were collected using a hand
punch and placed into a microplate well, with four
replicate wells per patient sample (providing 4 within
patient biological replicates). Samples were lysed by
heating at 95◦C for 10 min in 2 �L of Denatura-
tion Buffer covered with 10 �L of mineral oil. The
assay was initiated by adding 2 �L of an Annealing
Mix containing detector oligos from the commer-
cial TempO-Seq Whole Transcriptome Whole Blood
assay v2.1 (measuring all ∼21,000 genes) and incu-
bated at 70◦C for 10 min, followed by a temperature
ramp to 45◦C over 50 min, then held at 45◦C for
16 h before being cooled to 25◦C. 20 �L of Whole
Blood Nuclease Mix was added to the aqueous layer
(achieved by adding 20 �l nuclease buffer and then
transferring the supernatant into a fresh microplate
well and adding concentrated nuclease mix), and
samples incubated for 1.5 h at 37◦C before adding
24 �L of Ligation Mix to each well, incubating 1 h
at 37◦C, then incubating for 15 min at 80◦C, before
dropping the temperature to 25◦C. 10 �L of each well
containing the sample-specific ligated products, were
transferred for amplification into TempO-Seq PCR
Primer Plates containing sample-specific indexed

universal forward and reverse PCR primers and PCR
mix. After 30 cycles, the ligated detector oligos for
each sample were uniquely indexed and sequencing
primers incorporated into the PCR adduct, to pre-
pare a sequencible product. 5 �L of the PCR product
from each sample well were pooled together into
a sequencing library, purified using the Macherey-
Nagel NucleoSpin Gel and PCR Cleanup Kit (catalog
number 740609.50) and quantified by absorbance
using the 260/230 and 260/280 ratios and Qubit flu-
orescence. The filter paper TempO-Seq processing
kits with the reagents described above are now com-
mercially available, for use with the content of any
TempO-Seq assay.

Sequencing was carried out on an Illumina
NextSeq to an average depth of ∼6 M reads/sample.
Demultiplexing was carried out on the sequencer
to correctly associate individual FASTQ files (and
ultimately counts) with each indexed sample. Com-
mercial TempO-SeqR™ software was then used for
alignment to generate count tables and evaluate the
sequencing run. Quality control metrics for analy-
sis were repeatability between replicates, determined
using a Pearson correlation, with any samples among
the four replicates that had an R < 0.9 correlation to
the remaining replicates being removed from analy-
sis as an outlier, while requiring at least 3 remaining
replicates/sample. We calculated the NSig80 (the
number of probes that capture 80% of the signal)
and the NCov10 (the number of probes receiving less
than 10 reads) for each sample, and performed anal-
ysis to assure that distributions of these metrics were
consistent between the classes of controls, AD, and
PD.

RESULTS

Components of whole blood have previously been
shown to interfere with certain steps in the TempO-
Seq protocol, an interference we were successful
in overcoming to establish the Tempo-SeqDBS
protocol.32 We discovered that after spotting on fil-
ter paper and drying, interferences were eliminated
by the TempO-SeqDBS protocol, permitting gene
expression to be profiled. The reproducibility of
whole transcriptome data measured by the TempO-
SeqDBS assay from different replicate regions within
the spot tested for each donor is shown as Pearson
correlations, calculated using expression of all genes
as a variable so that significance values could be cal-
culated for the overall comparison rather than at a
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Fig. 1. Histogram showing the distribution of the Pearson r cor-
relation between replicates as a measure of reproducibility. Four
different areas of the filter paper spotted with finger stick blood
from each donor were tested as replicates. The Pearson correla-
tions between all the possible pairwise comparisons between the
replicates for each donor sample were calculated after log trans-
forming the data, and the results depicted as a histogram of the
number of samples grouped into each Pearson coefficient value.

gene level, between all possible pairwise compar-
isons between the replicates for each donor sample
after log transforming the data (Fig. 1). The coef-
ficients reported in Fig. 1 were all significant with
a p < 0.05. Assay repeatability between finger stick
samples collected and tested from the same subject
on different days over a period of 400 days is depicted
in Fig. 2. In this case, all the replicates for the same
time point were averaged, log transformed, values
were correlated, and the Pearson correlation for each
comparison plotted.

The TempO-SeqDBS whole transcriptome assay
was used to test AD, PD, and control samples to iden-
tify signatures of differentially expressed genes to
be subsequently used to identify classification algo-
rithms for AD and PD. A first cohort (cohort A)
of samples was profiled using the whole transcrip-
tome assay. The majority, 24 controls, 28 AD, and
27 PD passed the quality control replicate sample
metric (see Methods). A set of genes was identified
that provided a differentiating signature by perform-
ing pairwise comparison between the three classes
of patients. To account for the presence of multiple
dementia subtypes in our dataset, we contrasted dif-
ferent “classes” (AD to control, PD to control, and

Fig. 2. Pearson r correlation of log-transformed counts to quantify
reproducibility of gene expression measurement from the same
donor, different days. Samples from the same donor were spot-
ted and tested on different days as controls over a period of 400
days. The replicates for the same time point were averaged and the
average log transformed values were correlated using the Pearson
correlation, comparing days 0, 7, 15, 24, 30, and 400. The Pearson
correlations are indicated as the values of the heatmap.

AD to PD) of samples by testing hundreds of random
subsets and performing differential gene expression
analyses (DESeq2). The genes that proved to be dif-
ferentially expressed in at least 33% of the tests
(n = 770 differentially expressed genes for control vs
AD, control versus PD, AD versus PD, Table 1) were
used as a signature differentiating the three classes of
patients.

Before proceeding to identify classification algo-
rithms, the identified signature genes were grouped
into pathways to explore/establish the translational
significance of the differentially expressed signature
genes. We performed an over-representation analy-
sis in well-annotated biological processes (p value
threshold of 0.05). The predominant pathways were
immune response pathways (Fig. 3), with the three
most significantly differentially expressed pathways
related to the involvement of neutrophils in the
immune and inflammatory response.

We used different machine learning approaches,
together with the 770 gene signature, to build
algorithms that differentiated control, AD and PD.
Methods used were k-nearest neighbors, Random
forest, Support vector machine (SVM) with either
linear, polynomial or Radial Basis Function (rbf)
kernel and Extreme Gradient Boosting (XGboost)
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Table 1
List of the genes within the 770 and 68 gene signatures

770 Gene signature

FCRL2 H1F0 SERPINA1 FOLR3 NPIPA1 CSF2RB JCHAIN BLVRB MYZAP ADTRP RUNX3 CD6 ZDHHC2 CSF3R

JUNB GNAI2 BTG2 OGFRL1 CYP4F3 FCGR2A RPL4 SH2D1B SLC6A8 FCMR FCGR3B GYPC RGCC CTDSP1

CRISPLD2 S100A12 DUSP1 MPIG6B FMN1 MMP25 KCNJ15 BCL2A1 ODC1 RHOG IER2 IGHA2 ABCA7 DCAF12

EIF1AY HLA-DRA CXCR1 IGLV3-21 AMD1 RAB11FIP1 TUBB1 FYN RPL13 HEBP1 CCL4 RAB31 RPL19 DDX5

BSG OST4 RPL3 HAGH CD8A HLA-DRB1 HIST1H4K MAP4K1 ARHGAP15 TREM1 FYB1 PDZK1IP1 UBB DEFA3

UTY SEPTIN7 RBM38 WNK1 HLA-DRB4 ALDOA CD3D ADM NFAM1 HNRNPC PROK2 FGL2 KCNE3 FCGR3A

TRBC1 FAM126B FOS CD79A SRSF5 USP48 CD22 SELENBP1 CXCR2 IDS BST2 GIMAP5 S100A6 FCMR

HLA-DRB5 TNFSF13B TCL1A OAS3 OGT MXD1 VPS8 SHISA4 PVALB NBPF9 CCNI TAP2 HBA2 FPR1

VMP1 GNA13 IFI30 GZMB ATP6V0C XPO6 ANXA2 ZNF417 AIF1 PLCB2 MGAT4A RPS4X OR1S2 FTL

NAGK SLC25A39 SIRPB1 SERPING1 GNLY VCAN CST3 FCN1 SIRPA TPCN2 KLF3 FXYD5 ARHGEF40 GABARAPL2

HAL TMCO1 CEP85L CA1 TRDC RPL12 LCP1 SNAP23 HLA-C TMCC3 TIMP2 C6orf62 PAIP2 GADD45B

NBPF12 PLXNB2 RPL23 RGS18 BCL2 YWHAZ UBN1 SMCHD1 RNF182 PGGHG FAM153A SLC25A37 RPS2 GNAS

KLF4 FPR1 ALAS2 PARP1 CXCL8 TNFAIP8 TAF1D AZU1 OSTF1 CD163 PRDX6 RNF213 VCL GNLY

DENND4A ZBTB1 GCA PFN1 MAPK1 LRP1 IGHV3-23 NQO2 CASP1 TRGC1 UCP2 PSMF1 TENM1 GPX1

CAVIN2 MUC20 VSIR IFIT1 MKRN1 TSPAN5 IL1R2 LMBRD1 UBA52 RPL36 NKG7 SMIM5 TCP11L2 GYPC

APEX1 ANXA11 UBALD2 USP12 VIM B2M ALDH2 CTSD ITGB3 RAC2 CORO1B CD33 AP1S2 HBA1

MMP9 DCUN1D1 SLC35A2 GABARAPL2 CD3E IFI6 NEAT1 DGKA NPRL3 MSN CNOT1 INKA2 WASHC4 HBG1

RALGPS2 AC011462.1 WLS S100B USP4 NLRC5 FOSB CTSB ALOX5AP RNF130 TSC22D3 SPTB KRT5 HDGF

STRADB NBEAL2 RPS23 NCF2 DDX3Y FTH1 GBP5 FCGR3A NKX3-1 NUP50 RPL28 TMEM154 BCL2L1 HLA-A

SORL1 SOCS3 HNRNPH1 HCK IFIT2 MPEG1 RASSF2 RNASET2 IER5 TOMM7 ZNF728 IL6R AGO4 HLA-C

SOX6 YPEL3 ISG15 AC124319.1 CD53 PABPC1 RPL9 MT2A HLA-DQB1 MRC2 BNIP3L LRRK2 SLC6A6 IFIT1

CCL3L1 N4BP2L2 HIST1H4E TMSB10 SLC11A1 PHC2 GPX1 RPL18 CD3G EVI2A BCL6 PHOSPHO1 ZDHHC18 IGF2R

AHSP TRIM25 CD68 ITGAM EMC3 KDM5C PECAM1 VPS13B SH3BGRL ADGRG3 PTGS2 DCAF12 CEACAM4 IGLV3-21

HK3 EPB42 MAP2K3 STAT1 UBE2L6 OCLN NACA2 XK ORAI2 ADGRE2 AGTRAP BZW1 ABCB10 ITGB2

EMP3 RPL35A ELF1 CD58 PLEKHG2 EPB41 MTRNR2L9 HLA-DRB3 WASHC1 S100A8 C9orf78 CD74 TYMP LST1

HIST1H2BO DICER1 CDC34 CARD8 TMEM176B TM9SF2 CDC42 LGALS3 STEAP4 LITAF KDM4C STMP1 DEFA1 LYZ

MAX CD226 TUBA1A ATP6V0E1 LPIN2 TAGLN2 MICAL2 FCGR1B HBZ RPL23A IGHG1 SH3BGRL3 LEF1 MAP2K3

SLFN5 RPS27 IGF2R ZFAND6 TRIM22 PPP3R1 GATA1 GIMAP7 GMPR SLC16A3 FBXO7 PCED1A CTDSP1 MGAM

S100P FBXL5 CA4 MXI1 CTSS AGAP6 S100A4 DDT VTI1B MTRNR2L8 SEC62 UBXN6 SDCBP MMP25

LTA4H LILRA3 PIM2 MSR1 RPS6 FTL APOBEC3A MYL9 MED18 APLP2 NRGN TMCC2 SRPRA MNDA

VNN2 CRIP1 IRF1 SERF2 RPL21 KLF1 SLC25A28 RNF149 P2RX5-TAX1BP3 GLRX5 ABI3 HDGF LAPTM5 MTRNR2L9

CD247 CR1 RGS2 NPM1 THNSL2 MX1 ADGRE5 PINK1 IFI44 ABCC4 LFNG KAT2B FAM210B MYO1F

DGLUCY LAP3 PPM1F RPL26 HNRNPD IL10RA SLC38A5 AATK TBC1D10C HSP90AB1 KRT14 ASAH1 MEFV NCF2

LYL1 PTGS1 GZMH PYCARD SRP14 LILRA4 CDR1 AQP9 M6PR SIGLEC10 HIST1H1C S100A9 LYZ NEAT1

EIF4G2 TCEA1 MYL12B CISD2 ZFC3H1 DENND2D STX7 YBX1 RPL22 ANXA1 IGLC2 PGM5 HIST1H1E NKG7

GADD45B C15orf54 CMTM6 RPIA SCPEP1 CYP27A1 IFIT1B NBPF14 FCER1G ZNF141 LAMP2 JUN TMSB4X NPRL3

MME CSF1R SRRM2 SPOPL TYROBP SOD2 GNAQ PSMB9 ESPN HVCN1 CMTM1 TRANK1 NCOA4 PDZK1IP1

HBA1 GNAS SLC35C2 JAK1 SMG1 NIBAN3 IGHD HSPB1 RESF1 ISCA1 TRGC2 LY6E PIM1 PGGHG

EIF2S3B IFITM1 PI3 TAPBP RAB18 DGAT2 SLC7A5 RIOK3 FAM153B EIF3L OSBP2 P2RY13 HLA-A PIP4K2A

ATP5MG ARF6 FPR2 RGS10 BTNL3 MT1L RAB2B MGME1 HSPA6 RAI2 STAT6 POTEF CDC42SE1 PRF1

TSC22D4 JUND UBE2O CFL1 NBPF8 HSPA8 CALM2 SLC44A2 GIMAP4 RPS8 IQGAP1 EFHD2 IFITM3 PROK2

NBPF26 SELL ARHGAP9 DDX39B LCK RNF10 ADSS ACOX1 TFDP1 ARPC3 YY1AP1 OTUB1 PPDPF PSMF1

PPM1A SRGN CD46 CMPK2 HNRNPA1 ORMDL3 GNS PLSCR1 MDGA1 PPP1CB PTBP1 GANC MDM4 RFK

ITGAX VAMP3 ATF6B OGA SLC38A1 IGSF6 COTL1 LILRB3 IVNS1ABP SRSF7 NOSIP CD83 CD52 RNASET2

PGD RGPD1 ACTB ITGB1 FCAR NMI IFITM2 CRTAP BCL11B TXNIP KIF20B GUK1 TMEM123 S100A6

ATG16L2 SPOCK2 TPST1 UHMK1 MALAT1 ACTN1 MANBA SULF2 F13A1 ZYX PILRA GSPT1 PRR13 S100A9

MX2 PITHD1 CD37 SRGAP2 MYO1F PPBP CD300E PNISR FBXW7 NTSR1 GID4 RPS16 GUCD1 S100P

VNN3 GZMA NAGA POTEJ CD5 GPR146 TRIM58 KLRC2 IFIT5 SP110 CCR2 DEFA1B PSAP SEC62

ABHD18 TPT1 TMEM30A NPIPB11 DDX5 PIP4K2A HBG1 ACAP2 IGHM CPSF1 HIST1H2BD ANK1 ARL6IP1 SLC2A3

EVI2B PADI4 TMOD1 EIF2AK1 FAM104A RPS27A CHCHD2 ZNF83 SIRPB2 HIPK3 ICAM3 APAF1 IGF2BP2 SORL1

AOAH MTRNR2L6 WSB1 MARCH8 SPARC CD36 MBNL1 SMARCA2 FAM117A FOXO3 RHOH SIGLEC9 68 Gene TENT5C

NT5C3A FBXL13 CFD OPTN ARHGDIB LILRA5 ACSL1 TMEM164 S100A11 TUBB2A BTF3 R3HDM4 Signature TOMM7

FCER2 NINJ2 RFK ITGB2 TLN1 TANK PRF1 SRSF2 RPS4Y1 DMTN AKR1E2 RBM39 ACTB TRBC1

RPS3 RSRP1 TCF7 FECH RHOQ SEC14L1 INSIG1 CD8B FCGR2C RNF11 MPP1 RBBP4 ALAS2 TRIM22

HLA-E PTBP3 UBE2H UIMC1 FGFR1OP2 NCF4 ITGA2B SF3B1 DPM2 ITGAL TRIM10 RBM33 ARHGAP9 TRIM58

C4orf3 PRPF4B TIMM10 TRGV4 SMIM1 SAT1 SLC15A4 CCL4L2 MGAM HEMGN CYBB VENTX ARHGDIB UBB

ELOB LST1 FLNA MNDA KDM5D RAF1 EGR1 PAK2 SH3KBP1 FCGR1A RPS20 NUSAP1 B2M VSIR

ADIPOR1 SLC2A3 GBP2 LDHB FOXO4 DEFA3 MYL4 HMOX1 STK17B NPIPB4 ACTG1 LGALS2 BNIP3L YBX1

TMEM50A CSF3R TNFRSF10C PRKAR1A GTF2IP1 RPS15A HBM HCAR3 ARRDC3 FKBP8 MS4A1 NBPF19 C9orf78 YBX3

ZEB2 OAZ1 THEMIS2 CCR7 PLEK2 TCIRG1 YBX3 CHI3L1 RSAD2 PXN UBE2W TENT5C CRIP1 YWHAZ

and for all of these models hyper-parameters were
tuned using a Random Grid approach. Randomly
sampled subsets accounting for 80% of the initial
dataset were used to train these classifiers, which
were then tested on the remaining 20% of the
samples. For each classifier an area under receiver
operating characteristic (ROC) curve (AUC-ROC)
was calculated for classification of both AD and
PD. The Support Vector Machine (SVM) model
(kernel = linear, gamma = 0.1, c = 0.001) resulted in
the best performance for the classification of both
AD (ROC-AUCAD = 0.81), and for PD (ROC-
AUCPD = 0.88), as shown in Fig. 4. This model was

used without further retraining to classify an indepen-
dent cohort of 22 AD patients (cohort B), 18 of which
were predicted as AD while the remaining 4 were
predicted as PD. The two cohorts were pooled and
the same SVM model was retrained using 80% of the
samples and tested with the remaining 20%. The AUC
for AD increased to 0.86 (Fig. 5), and the AUC for PD
remained 0.87. The model misclassified one control
classified as AD, one AD as control, and one PD as
AD thus providing an accuracy of 97% across all 106
samples. Thus, while the average age of controls was
67, of AD was 78, and PD was 68, and there were
a percentage of patients with co-morbidities, these
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Fig. 3. Gene expression pathway analysis. The differentially expressed genes in the AD classifier signature were used to carry out analysis of
what molecular pathways were differentially expressed. Gene set enrichment was performed using the Gene Ontology database for biological
processes with a p value threshold of 0.05. The 20 most significant identified pathways are depicted, ranked by log adjusted p value for each.

factors did not appear to have significantly impacted
classification and the 97% accuracy of the test.

The 770 gene signature was further investigated in
an effort to identify the smallest subset that could reli-
ably classify patients using the SVM model. Briefly,
100 random training sets were selected from the orig-
inal dataset A, B, and C, each consisting of 80% of
the total samples. SVM models were trained for each
random dataset and tested on the remaining 20%.
For each of the 770 genes a weight score was calcu-
lated at each iteration and such scores were summed
in order to obtain a cumulative value. These values
were sorted in descending order and ROC curves were
calculated for the AD classifications using the genes
featuring the 5 highest cumulative scores. This anal-
ysis was repeated using gene sets spanning between
6 and 100 of the top scorers. The same approach was
used to select the genes with the highest weight for
the classification of PD patients. A steady maximum
level of AUC was observed when the first 47 of the
top scoring genes were selected for both the AD and
PD classifications, with 13 of those genes being in
common between AD and PD. The final signature
consisted of a total of 68 genes. This signature set
of 68 genes (see Table 1) was used to recalculate the
ROC-AUC for the classification analysis. Figure 6

shows the ROC-AUC curves relative to dataset A, B,
and C, providing an ROC-AUCAD = 0.9, and ROC-
AUCPD = 0.94, outperforming the 770 gene classifier.
Across all 106 samples, two were miss-classified,
providing an accuracy using the 68 gene signature
of 98%.

Having established the classification algorithm
for AD based on cognitive/functional assessment
of the subjects we assessed how this correlated
to A� PET scores to begin assessing whether the
TempO-SeqDBS AD classifier might be definitive.
Because A� PET scans were not reimbursable until
after the samples were collected (reimbursement was
approved October 2023), the set of patients for which
scans were available was limited. There were A� PET
scores available for 12 of the patients clinically diag-
nosed with AD. Nine patients were scored as positive
for plaques in excess of those typical for their age,
supporting a diagnosis of AD, while three patients
were scored as negative, not significantly different
from the degree of plaque formation for a person their
age. All twelve AD patients, whether with positive or
negative A� PET scores indicative of AD, were clas-
sified as AD by the TempO-SeqDBS test. In addition,
one patient diagnosed with PD had both a positive A�
PET scan and DaTscan (used to distinguish between



B. Seligmann et al. / Identify AD From Fingerstick Blood 819

Fig. 4. ROC Curve for classification of Cohort A samples as
AD and PD. The ROC curves are shown for the classification of
patient samples as AD or PD using the Support Vector Machine
(SVM) model (kernel = linear, gamma = 0.1, c = 0.001) and the ini-
tially identified 770 gene signature. Use of this model resulted
in the best performance for the classification of both AD (ROC-
AUCAD = 0.81), and for PD (ROC-AUCPD = 0.86). The model was
trained using 80% each of the control, AD, and PD samples in
cohort A. As a test for classification accuracy, the trained model
was used to classify the remaining 20% of samples. The resulting
ROC-AUC vales were 0.81 for AD and 0.88 for PD.

PD where it is positive for loss of dopamine, and
essential tremor), and was classified as PD by the
TempO-SeqDBS assay.

DISCUSSION

These TempO-SeqDBS test results demonstrate
not only the feasibility of identifying gene expres-
sion signatures from fingerstick whole blood spotted
on filter paper, but also signatures for AD and PD
that enabled patients to be classified as AD or PD.
These data indicate the feasibility of implementing a
test for AD (and PD) that uses a minimally invasive
sample that can not only be collected in any doctor’s
office or clinic, but also can be self-collected, and
thus, address health disparities, whether a definitive
test or a screen that identifies patients who should be
seen for further assessment.

The ROC-AUC values of 0.9 and 0.94 for AD and
PD, respectively (Fig. 6) for the combined Cohorts A,
B, and C, were excellent, indicating strong putatively
diagnostic performance. While we acknowledge the
risk of overfitting data from small sample sizes, the

Fig. 5. ROC Curve for Classification of the combined Cohort A
and B samples. The ROC curves for the classification of patient
samples using the Support Vector Machine (SVM) model (ker-
nel = linear, gamma = 0.1, c = 0.001) and the initially identified 770
gene signature are depicted after pooling together Cohorts A and
B to provide a sample set of 106 samples, training with 80% of the
samples, and testing with the remaining 20%. For this combined
cohort, the ROC-AUC was 0.86 for Ad and 0.87 for PD.

Fig. 6. ROC Curve for classification of Cohort A, B, and C sam-
ples as AD and PD, 68 gene signature. The ROC curves are shown
for the classification of patient samples as AD or PD using the Sup-
port Vector Machine (SVM) model (kernel = linear, gamma = 0.1,
c = 0.001) and minimal 68 gene signature. The model was trained
using 80% each of the control, AD, and PD samples in cohorts A,
B, and C. As a test for classification accuracy, the trained model
was used to classify the remaining 20% of samples. The resulting
ROC-AUC values were 0.9 for AD and 0.94 for PD.
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consistent results for the additional independent AD
patient Cohort B of 22 samples, tested separately after
retraining the 770 gene signature with all the Cohort
A samples, strengthened the validity and generaliz-
ability of our findings. Two of the Cohort A, B, and C
AD samples were classified as PD, resulting in 98%
accuracy calling AD. Thus, the assay provides highly
accurate classification whether based on the AUC of
0.9 for AD (Fig. 6) or this final measure of 98% accu-
racy. It also accurately classified PD (AUC = 0.94,
Fig. 6), but the number of PD samples was more
limiting, and this will be the focus of a follow-up
investigation.

Demonstrating that patients with a clinical diag-
nosis of AD can be classified from fingerstick blood
using a gene expression assay represents the first
step towards developing a screening test that informs
subjects to see a neurologist for diagnosis earlier
then they might otherwise have sought diagnosis,
and, potentially, a definitive diagnostic test. With the
recent lifting of the curb on reimbursement for A�
PET scans for AD patients (October 2023), a posi-
tive A� PET scan compared to non-AD individuals
of the same age may also be required for definitive
diagnosis. However, in the meantime, A� PET scans
serve as a useful benchmark test, though itself not
definitive.

While A� PET scores were only available for 12
(24%) of the 50 patients clinically diagnosed with
AD during the sample collection period (as patients
had to pay for these scans themselves), 9 were A�
PET score positive, 3 negative. That all 9 patients
with positive A� PET scores were also classified as
AD by the TempO-SeqDBS test suggests that this
classifier may be specific for AD compared to other
dementias. That it is not just correlated to positive
A� PET scores is supported by the observation one
patient clinically diagnosed as PD had both a positive
A� PET scan and positive DaTscan, and this patient
was classified by the TempO-DeqDBS test as PD, not
AD. A much larger cohort of AD and PD samples
with associated A� PET scores and DaTscan data is
necessary to confirm this conclusion.

Additionally, the classification of all three patients
clinically diagnosed with AD, but with A� PET
scores that were not indicative of AD, requires further
investigation. The research demonstrating a blood-
based gene expression assay’s ability to classify AD
patients as much as two years before diagnosis, sup-
ports the possibility that the TempO-SeqDBS test
can identify patients with AD before they become
A� PET positive.21 To determine how early in the

progression of AD the TempO-SeqDBS test can
classify patients, longitudinal samples need to be
collected and tested from individuals before they
develop dementia (both those with and without MCI).
This will allow us to determine whether classifica-
tion can occur before patients are biomarker or A�
positive, and whether all patients classified as AD
by the TempO-SeqDBS test will eventually become
biomarker and A� PET positive.

While we do not have data addressing whether
changes in gene expression were connected to dis-
ease progression or to disease response, the three
most significantly differentially expressed pathways
in AD blood relate to the involvement of neutrophils
in the immune and inflammatory response, consis-
tent with the literature.32–35 Among other significant
pathways were the cytokine-mediated signaling path-
way, cellular response to cytokine stimulus, antigen,
and receptor-mediated signaling pathway, all consis-
tent with AD immune cell function literature.36,37

Whole blood single-cell gene expression studies are
planned to address which cells contribute to the clas-
sifier, and to pursue the association of specific cells
and AD.

Once validated, there are several scenarios for
use of the TempO-SeqDBS test, particularly because
there is a shortage of neurologists with a wide diver-
sity in access based on geographic location of a
patient, which reduces access to care, increases health
disparities, and worsens patient outcomes.11,12 One
potential application of the TempO-SeqDBS AD test
is as a screening tool for patients who present to their
general practitioner (GP) with concerns about early-
stage AD or PD. The test results could then be used
to identify individuals who require further evalua-
tion. Another potential use is for self-testing, which
could directly reduce health disparities. This would
also help identify individuals who should seek further
evaluation. Thus, without having established that the
test is definitive, but rather using the TempO-SeqDBS
AD test for screening, neurologists would see patients
earlier in the course of their disease, allowing for ear-
lier intervention and potentially greater benefit from
therapy. With the recent approval of donanemab and
lecanemab for the treatment of early-stage AD, earlier
diagnosis can lead to significant benefits for patients.
The TempO-SeqDBS AD test could help patients
realize these benefits by eliminating the delay caused
by limited access to medical specialists, even if the
diagnosis itself cannot be made any sooner than with
traditional cognitive testing and biomarker analysis
conducted by a neurologist. There is also the poten-
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tial that the TempO-SeqDBS test could be definitive.
To reach this conclusion it will be necessary to corre-
late the classification by the TempO-SeqDBS assay to
biomarker tests and A� PET scan data, demonstrat-
ing that when classified as AD those patients either
are, or over time become, biomarker and A� PET
scan positive.
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