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Abstract.
Background: Despite numerous past endeavors for the semantic harmonization of Alzheimer’s disease (AD) cohort studies,
an automatic tool has yet to be developed.
Objective: As cohort studies form the basis of data-driven analysis, harmonizing them is crucial for cross-cohort analysis.
We aimed to accelerate this task by constructing an automatic harmonization tool.
Methods: We created a common data model (CDM) through cross-mapping data from 20 cohorts, three CDMs, and ontology
terms, which was then used to fine-tune a BioBERT model. Finally, we evaluated the model using three previously unseen
cohorts and compared its performance to a string-matching baseline model.
Results: Here, we present our AD-Mapper interface for automatic harmonization of AD cohort studies, which outperformed
a string-matching baseline on previously unseen cohort studies. We showcase our CDM comprising 1218 unique variables.
Conclusion: AD-Mapper leverages semantic similarities in naming conventions across cohorts to improve mapping perfor-
mance.

Keywords: Alzheimer’s disease, automatic data harmonization, cohort study, common data model, data interoperability,
semantic mapping

INTRODUCTION

In Alzheimer’s disease (AD) research, numer-
ous cohort datasets serve as the foundation for
data-driven investigations (e.g., based on machine
learning (ML)). These datasets are often customized
to address specific research questions and, there-
fore, focus on specific biomarkers and measurements
that are essential for the research [1]. Such col-
lected measurements are usually stored in different
formats and using arbitrary naming systems. These
inconsistent variable naming conventions and meta-
data across cohorts impede interoperability and make
cross-cohort research time-consuming [2]. Despite
the growing number of collected AD cohort datasets,
harmonizing and utilizing multiple cohorts for dis-
ease investigation remains challenging due to these
variable naming differences. As a result, the major-
ity of research is practically limited to single cohorts.
However, numerous reports indicate that conclusions
drawn from AD data were constrained to the cohorts
used and may not necessarily be generalizable [3, 4].
Therefore, single-cohort studies benefit from valida-
tion using independent datasets [5]. To address this
and encourage cross-cohort investigations, it is vital
to identify a common ground for AD data harmoniza-
tion [6], ideally, using an automated tool.

Motivated by these matters, several attempts have
been made to harmonize cohort studies by generat-
ing data catalogs, common data models (CDMs), and
data stewardship tools (DSTs). Notably, the Obser-
vational Medical Outcomes Partnership (OMOP) has
tackled data harmonization challenges across various
disease research domains [7]. In addition to estab-

lished efforts such as OMOP, tranSMART stands
out as a significant initiative for aggregating clinical
trial data. Leveraging the i2b2 CDM, tranSMART
offers a structured approach to organizing clinical
and biological data, facilitating data integration and
analysis across diverse sources [8]. Recently, Salimi
et al. (2022) demonstrated the differences that exist
concerning over 1000 collected measurements and
the naming convention across 20 major AD cohort
studies through manual curation. They harmonized
the cohorts’ variables against normalized variable
names in addition to ontology terms. Their endeavor
established the foundation for implementing a har-
monized AD landscape, aiding researchers in cohort
data selection and ensuring data interoperability [2].
Similarly, Bauermeister et al. (2023) proposed the
C-Surv data model, covering the harmonization of
124 variables across four distinct cohorts [9]. Alter-
natively, other attempts were made to establish a data
catalog and patient/variable outcome. For instance,
the ROADMAP data cube and the EMIF data catalog
projects illustrate the data availability among multiple
cohort studies [10, 11]. While both of these projects
included many cohorts and modalities, the reported
information was mainly gathered through the data
owners and the corresponding metadata. Such a data
catalog did not address the available variables on a
granular level and the variable harmonization aspect
across cohort studies. Another study by Wegner et
al. (2022) established a semi-automatic DST using a
string-matching technique for the harmonization of
clinical datasets and applied it in the field of demen-
tia [12]. However, despite previous efforts, there is
currently no model or tool enabling fully automatic
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harmonization in the AD field. Consequently, data
curation/harmonization has predominantly remained
a manual task.

One promising direction to address the aforemen-
tioned issue is the automation of manual mappings
using natural language processing (NLP). In recent
years, approaches such as the Bidirectional Encoder
Representations from Transformers (BERT) model
[13] and its biomedical equivalent, BioBERT [14],
have greatly improved the ability of language models
to correctly represent a word or phrase using its sur-
rounding context. As a result, these models offer more
flexibility for mapping purposes compared to previ-
ous methods based on string matching. Further, to
account for domain shifts, such pre-trained language
models (PLMs) can be fine-tuned to a wide range of
tasks using task-specific datasets [15]. Nonetheless,
to the best of our knowledge, no approach has lever-
aged pre-trained biomedical language models for
variable harmonization between AD cohort datasets
yet.

Here, we implemented AD-Mapper, an auto-
matic tool for the semantic harmonization of AD
cohort datasets. We developed this tool by fine-
tuning BioBERT [14] using our in-house CDM (i.e.,
comprising 20 cohorts’ variable naming systems)
in addition to two distinct CDMs. We defined a
cross-connection among all three CDMs to derive a
comprehensive variable embedding space from those.
Finally, we enabled the AD-Mapper through a web
interface to make the tool accessible.

METHODS

Common data model

In developing a model that can distinguish between
the semantics of different variables, two aspects
played a major role. First, it was essential to include
multiple ways that variables have been reported
in different cohort studies and within the litera-
ture. For example, participants’ years of education
were reported differently across cohort studies (Eduy,
education, EDUC, etc.). Second, the inclusiveness
of variable granularity was another vital aspect of
establishing a successful model. The Apolipopro-
tein alleles (APOE) of participants were reported
separately in certain datasets and together in other
datasets. To address both of these factors, we con-
sider a variety of ways that variables were addressed
by including multiple cohorts’ naming systems. We

utilized our in-house mapping CDM which con-
sists of 20 distinct cohort datasets [2]. All cohorts’
variables were mapped to a reference term and an
ontology where it was relevant. The reference terms
were defined based on the variable description in
addition to the abbreviation of the term where it
was applicable (i.e., commonly used). For instance,
the Mini-Mental State Examination is commonly
referred to as MMSE, and as such, we defined the
reference term as Mini-Mental State Examination
(MMSE). Another example of our proposed CDM
workflow based on the Clinical Dementia Rating
Scale Sum of Boxes (CDRSB) reference term is
shown in Fig. 1.

To expand the variability of the variable naming
system, we manually harmonized previously con-
structed data models against our in-house model,
namely, data models that were developed by Demen-
tias Platform UK (DPUK) [9] and the Neuronet
cohort initiative (NEURO Cohort). The set of harmo-
nized variables generated by DPUK, called C-Surv,
included 124 commonly measured variables among 4
distinct cohort studies. Similarly, the NEURO Cohort
data model included 94 AD-related terms. Lastly, we
harmonized our reference terms against the OMOP
CDM terms where the applicable term was available
[7]. As a result, we created the AD-Mapper CDM.

The AD-Mapper NLP model

In this section, we explain the training, valida-
tion, and test data generated using the AD-Mapper
CDM, the model training strategy of the AD-Mapper
tool, and how the AD-Mapper can be used for infer-
ence. Additionally, we describe two different ways
in which the mapping would be carried out: either
using the reference terms (i.e., previously defined in
AD-Mapper CDM) or using those reference terms
in addition to prior knowledge of the cohorts’ and
CDMs’ mappings.

Training data

To investigate the feasibility of semantic har-
monization of AD cohort studies using PLMs, we
constructed a binary classification task aimed at
discriminating between pairs of semantically equiv-
alent variables (positives) and pairs that are not
equivalent (negatives). By training on data consist-
ing of positives and negatives, a fine-tuned PLM
could generalize from it to find semantically equiv-
alent pairs in a previously unseen set of variables.
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Fig. 1. Example case of semantic variable harmonization. Different cohorts (indicated in different colors) use different variable names and
accompanying descriptions. AD-Mapper ensures that all are mapped to each other and to the reference term “Clinical Dementia Rating
Scale Sum of Boxes (CDRSB)”. This example case also illustrates the need for semantic harmonization beyond string matching, shown by
the substantial spelling variations across variable names and descriptions. Note: here the “–” represents lack of variable description in the
respective cohort.

More specifically, we generated training data using
the mappings that were established among different
cohorts, CDMs, and the reference terms within the
AD-Mapper CDM. We sampled different combina-
tions of mappings among each reference term and
mapped variables. For instance, the reference term
‘Age’ was mapped to multiple variables represent-
ing the age of participants in different cohorts and
within CDMs (e.g., age, PTAGE, samplingAge, and
age at visit, etc.). We created pairs for each mapping
between ‘Age’ and all possible mapped variables. We
followed a similar procedure for all pairs of mappings
until we had generated one-to-one mappings, each
labeled with 1 (i.e., positive) to represent semantically
equivalent pairs.

For the negative mappings, we aimed to pro-
vide close variations of positive mapping pairs to
enhance the model’s ability to distinguish very sim-
ilar terms that are not equivalent. To achieve this,
we created pairs of mappings within each modal-
ity, as variables grouped into a modality often had
similar naming conventions. For instance, in the mag-
netic resonance imaging (MRI) mappings, we had

left and right hippocampus volume and it was impor-
tant for the model to learn the difference between
‘left’ and ‘right’. Therefore, we generated pairs that
could be potentially confusing for the model to dis-
tinguish (e.g., Lhippo FS adj and Rhippo FS adj)
and assigned them to class 0 (i.e., negative). This
resulted in 13,330 positive and 13,330 negative labels.
Moreover, we employed a weighted loss function
where the negatives and positives are weighted by
0.1 and 0.9, respectively. This was undertaken to
penalize false positives accurately and to represent
the distribution of classes in later application scenar-
ios, in which the majority of pairings between any
two variables are expected to be non-semantically
equivalent.

Variable mappings were frequently too uninfor-
mative for a model to learn the relation between
the variables. To address this, we included descrip-
tions where available for each variable in CDMs and
cohort studies’ data dictionaries. For this purpose,
we added two respective descriptions to each map-
ping pair in our training data. The description for the
reference term was taken from the mapped ontology



P. Wegner et al. / Semantic Harmonization of Alzheimer’s Disease Datasets 1413

Fig. 2. The underlying workflow of the AD-Mapper tool. Training the AD-Mapper consists of three steps: training BioBERT (i.e., Model A)
on a text corpus, retrieving the names and descriptions from the CDM, and generating the embeddings. Then, the inference step comprises
using Model B and A to generate a ranking of potential candidates and calculating the probabilities of positive mappings, respectively.

term. In contrast, the description for the mapped term
was extracted from the corresponding data dictio-
nary or the CDM from which the variable originated.
Thereafter, we formed a sentence by concatenat-
ing each variable and its corresponding description
(e.g., ‘variable’+‘its description’; Fig. 2, Step 2). This
strategy was then used for training our model. For
further explanation, we refer to the Supplementary
Material.

Validation of cohort studies

For model tuning and performance investigation,
we divided the dataset into train, test, and validation
sets with fractions of 80/4/16, respectively. The test
set consisted of 549 unseen examples. Additionally,
to assess the performance of the plan strategy for the
automatic harmonization of AD studies, we collected
three distinct cohort studies (BRACE [16], AMED
[17], and ALFA [18]) and manually harmonized them
to the AD-Mapper CDM. The total number of avail-
able variables and mapping overlap between each
cohort and the AD-Mapper CMD is shown in Sup-
plementary Table 1. However, to evaluate the model’s

performance on unseen datasets, we excluded these
mappings from the training dataset.

Models and training strategy

To develop a tool that could perform semantic har-
monization of AD cohort studies, we developed a
workflow that contained two models, Model A and
B (Fig. 2, AD-Mapper Training). First, we trained
a Model A, performing a binary classification task
using BioBERT [14] with a feed-forward classifica-
tion head. This model compared two variables of the
AD-Mapper CDM and their definitions, if available,
and determined whether they were a match. Here,
we considered two variables to be a match if they
were semantically equivalent. In contrast, Model B,
also based on BioBERT, was trained on embedding
a variable into an embedding space (R768) such that
it was close, measured by the Euclidean distance, to
its corresponding reference term. The initial embed-
ding to be learned by model B was generated by
taking each variable’s representation at the last hidden
layer of BioBERT within model A. Initially, Model
A and B were trained independently from each other,
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whereas they were used consecutively in the later
application.

Inference

The final pipeline employed in the AD-Mapper
application consists of the two models (i.e., Models A
and B) shown in Fig. 2 (i.e., AD-Mapper Inference).
A mapping procedure starts with an input including a
variable name and a suitable variable description if a
description is available. This is concatenated to a joint
sentence and fed into Model B. This first part of the
pipeline returns K potential candidates, where K is a
parameter provided by the user. Those candidates are
the K closest variables in the embedding space where
the variable gets mapped into while utilizing Model
B. Then these K pairs, consisting of the input variable
and each potential candidate, are fed into Model A,
which returns a class probability for each pair indicat-
ing whether they belong to class 1, implying a match.
All candidates below a certain threshold (e.g., 0.5) are
eliminated and the rest is returned, where the one with
the highest class probability is returned as the winner.
The returned winner is the reference term suggested
by the AD-Mapper.

As we previously established a mapping among
all reference terms, cohort studies, and CDMs within
the AD-Mapper CDM, we expanded the search for
the best matches with this knowledge. We included
another optional function, where not only the K
candidates are determined by the model, but based
on prior determined mappings, the model could
also compare the new variable with those existing
mappings. For instance, once K = 5 candidates are
generated as a result of model B, the total num-
ber of candidates fed to model A is enriched by all
prior known mappings onto any of the 5 candidates.
Finally, all 5 candidates and the prior known map-
pings onto those candidates are given to model A,
and ultimately a winner is determined. In this case,
the winner is either within one of the 5 original candi-
dates or one of the later added ones. In the latter case,
the final winner is determined by reversing the known
mapping, and subsequently obtaining the reference
term.

Considering that sometimes variables within
cohort studies could potentially have a simi-
lar naming (e.g., AGE, age at visit), we added
another optional functionality to the model to
perform fuzzy string matching (https://github.com/
maxbachmann/Levenshtein). We included this by
assigning a weight to each methodology for the final-

ized mapping. This was done by introducing two
weights W1, W2ε [0, 1] where the first weight rep-
resents the BioBERT-based model (i.e., AD-Mapper
model) and the second relies on the fuzzy string
matching technique by calculating the Levenshtein
distance between variables. This allows the user to
decide whether the data should be harmonized using
each technique separately or rather a weighted com-
bination of both models.

The AD-Mapper Interface

The AD-Mapper application comes with two inter-
faces. The first one is a web-based graphical user
interface (https://ad-mapper.scai.fraunhofer.de/),
specifically designed for mapping single variables
as well as .csv files. In both cases, the model
requires variable names and their descriptions, if
available, to perform the harmonization. Second, we
provide powerful REST APIs that enable technically
experienced users to employ the AD-Mapper in
other applications. The APIs are fully documented
and organized in a Swagger UI interface [19]. The
interaction via REST APIs allows the user to fully
leverage all configuration options that the mapping
pipeline provides.

RESULTS

AD-Mapper CDM

We constructed AD-Mapper CDM using pre-
viously established in-house data mappings and
expanded the variables naming system by includ-
ing three previously created CDMs. The AD-Mapper
CDM included 20 cohorts’ variable naming systems
semantically harmonized against a reference term
and an ontology term per variable. In total 1,218
unique reference terms were included in the AD-
Mapper CDM. The total number of each cohort’s
specific term and each external CDM that was har-
monized against the reference terms is presented in
Table 1. The overlap between our in-house CDM
and the other external CDMs (i.e., C-Surv, NEURO
Cohort, and OMOP) was small. One reason for this
was that external CDMs were often developed based
on the availability of measurements in this field,
rather than the measurements themselves. To clar-
ify further, certain terms were defined as biomarkers
availability indicators (i.e., biomarker collected, yes
or no) whereas AD-Mapper CDM focused on each
specific measurement and how it was defined among
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Table 1
Total number of harmonized variables included in the AD-Mapper CDM. This table comprises all cohorts used for training the AD-Mapper
model and hence excludes the ALFA, AMED, and BRACE cohorts. The final CDM presented on the AD-Mapper website consists of both

training and test data as well as additional variables (resulting in 1300 unique variables, Supplementary Table 2)

Variable origin Consortium # Mapped
variables

Cohort A4 [20] Anti-Amyloid Treatment in Asymptomatic Alzheimer’s Disease 73
ABVIB [21] Aging Brain: Vasculature, Ischemia, and Behavior 12
ADNI [22] The Alzheimer’s Disease Neuroimaging Initiative 340
AIBL [23] The Australian Imaging, Biomarker & Lifestyle Flagship Study

of Ageing
54

ANM [24] AddNeuroMed 162
ARWIBO [25] Alzheimer’s Disease Repository Without Borders 1104
DOD-ADNI [26] Effects of TBI & PTSD on Alzheimer’s Disease in Vietnam Vets 322
EDSD [27] The European DTI Study on Dementia 1061
EMIF [28] European Medical Information Framework 30
EPAD [29] European Prevention of Alzheimer’s Dementia 116
I-ADNI [30] The Italian Alzheimer’s Disease

Neuroimaging Initiative 1064
JADNI [31] Japanese Alzheimer’s Disease Neuroimaging Initiative 647
NACC [32] The National Alzheimer’s Coordinating Center 187
OASIS [33] Open Access Series of Imaging Studies 1057
PREVENT-AD [34] Pre-symptomatic Evaluation of Experimental or Novel

Treatments for Alzheimer’s Disease
34

PharmaCog [35] Prediction of Cognitive Properties of New Drug Candidates for
Neurodegenerative Diseases in Early Clinical Development

1067

ROSMAP [36] The Religious Orders Study and Memory and Aging Project 29
VASCULAR [37] The Vascular Contributors to Prodromal Alzheimer’s Disease 53
VITA [38] Vienna Transdanube Aging 1054
WMH-AD [39] White Matter Hyperintensities in Alzheimer’s Disease 1054

CDM NEURO Cohort – 14
C-Surv [9] – 46
OMOP [7] The Observational Medical Outcomes Partnership 107

Other CURIE [40] Compact Uniform Resource Identifiers 189
Reference term – 1218

different cohorts and CDMs. For instance, there were
only 46 terms in C-Surv CDM that could be harmo-
nized against our in-house CDM. Additionally, often
CDMs consisted of a limited number of variables
(e.g., NEURO Cohort 94 terms), which resulted in
fewer terms being mapped as AD-Mapper CDM con-
tained granular measurements. Lastly, we extended
our AD-Mapper CDM to include previously unseen
cohorts and additional variables. The total number of
variables from each source is presented in Supple-
mentary Table 2.

Model performance

We investigated the AD-Mapper’s performance by
validating the model using the test split of the data, as
well as distinct cohorts’ datasets that were excluded in
the training step of the model. Using different weights
and K values, we harmonized the test set and previ-
ously unseen datasets and calculated the accuracy of
the mappings (Table 2). In addition, we compared
the performance of the final pipeline with a baseline

model. For that purpose, we used a string-matching
model.

Our results indicated that for the test dataset, the
AD-Mapper had a superior accuracy of 77.2% while
considering 10 candidates compared to the base-
line approach (string-matching with 8.5% accuracy).
Similarly, for all three cohort studies, previously
unseen by the model, we observed that the AD-
Mapper achieved (without incorporating prior known
mappings) a much higher accuracy than the string-
matching (BRACE 76.4% with K = 5 and K = 10;
AMED 59.09% with K = 1; and ALFA 67.92% with
K = 1, K = 5, and K = 10). Moreover, we noticed that,
out of the cohorts harmonized, only the AMED cohort
showed higher accuracy when using the model while
utilizing prior known mappings than the one with-
out. The AMED cohort had an accuracy of 70.45%
while the model utilized the mappings of other cohort
studies and CDMs with K = 5. Furthermore, in all
cases, except for the CDM test set, the model with-
out prior knowledge achieved the same score for
K = 5 or K = 10, which indicates that the model can
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Table 2
Performance scores for harmonization of the test set and previously unseen cohorts using the AD-Mapper and string-matching as a baseline

comparison. K indicates the number of candidates to be assessed by the model

Dataset Model Prior knowledge W-values (W1, W2) K Accuracy (in %)

CDM test set String-matching – – – 8.5
AD-Mapper – 1.0, 0.0 1 72.9
AD-Mapper No 1.0, 0.0 5 76.3
AD-Mapper Yes 1.0, 0.0 5 74.88
AD-Mapper No 1.0, 0.0 10 77.2
AD-Mapper Yes 1.0, 0.0 10 73.93

BRACE String-matching – – – 26.4
AD-Mapper – 1.0, 0.0 1 64.7
AD-Mapper No 0.8, 0.2 5 76.4
AD-Mapper Yes 0.8, 0.2 5 61.76
AD-Mapper No 0.8, 0.2 10 76.4
AD-Mapper Yes 0.8, 0.2 10 44.11

AMED String-matching – – – 4.16
AD-Mapper – – 1 59.09
AD-Mapper No 1.0, 0.0 5 56.81
AD-Mapper Yes 0.9, 0.1 5 70.45
AD-Mapper No 1.0, 0.0 10 56.81
AD-Mapper Yes 0.9, 0.1 10 61.36

ALFA String-matching – – – 15.51
AD-Mapper – – 1 67.92
AD-Mapper No 0.7, 0.3 5 67.92
AD-Mapper Yes 0.7, 0.3 5 54.71
AD-Mapper No 0.7, 0.3 10 67.92
AD-Mapper Yes 0.7, 0.3 10 54.71

predict the target variable from a small number of
candidates.

We observed that different weights indicating the
inclusion of different mapping strategies yielded var-
ious results. For instance, for the CDM test set, solely
relying on the BioBERT-based prediction yielded the
highest accuracy, while for the BRACE, AMED, and
ALFA, combining the mapping technique (i.e., the
BioBERT and string-matching) in a weighted manner
reported better performance.

To further evaluate the AD-Mapper model, we
exclusively utilized Model B and investigated
whether the correct target variable is among the K
candidates. The results of this analysis are presented
in Supplementary Table 3. In all instances where
both K = 5 and K = 10 candidates were employed,
they exhibited identical accuracy, except in the case
of the test set. We observed the following accuracy
rates: 71.7% for ALFA, 76.5% for BRACE, 79.5%
for AMED, and 82.9% for the test set when using
K = 5, and 84.8% when using K = 10. Additionally,
we assessed whether it is possible to harmonize the
variables that have not been included in the AD-
Mapper CDM (Supplementary Table 4). We provide
additional details in the Supplementary Material.

Our results revealed that the maximum accuracy
was achieved by selecting K = 5, and by increasing K

to 10, the accuracy remained the same in the majority
of cases. We observed the same results when solely
utilizing Model B (see Fig. 2, Supplementary Table 3)
to investigate whether the correct target could be
found within a certain number of candidates. Tak-
ing this into account, we recommend that K = 5 could
be a sufficient standard for the number of candidates
and that the model conducts the harmonization at a
considerably quicker rate.

Exemplary application scenario

We developed the AD-Mapper web interface and
showcased our tool for accelerating semantic data
harmonization of AD cohort studies. Within this
interface, users can simply upload their data dictio-
nary as a .csv file and download the harmonized
version. The interface allows users to select how
the mapping should be carried out, either using
the BioBERT-based model alone or in combination
with the string-matching technique. An example of
the AD-Mapper application scenario is illustrated in
Fig. 3. As shown in the figure, users can customize
the weights and the number of candidates before exe-
cuting the variable mapping. Users can also choose
to have their data dictionary harmonized against the
reference term or additionally have the harmonized
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Fig. 3. A page preview of the AD-Mapper user interface.

version of all data sources available within the AD-
Mapper CDM.

We included the AD-Mapper CDM as an addi-
tional function of the AD-Mapper interface. By doing
so, we enable users to investigate cross-mappings
among different cohorts and CDMs that have been
harmonized against a reference term. Users can
decide which weights are more suitable for their
cohort dataset based on the similarity or dissimilarity
of their data with the AD-Mapper CDM’s reference
terms. For instance, when the variable naming system
is defined similarly to our reference term, utilizing
W2 (i.e., the string-matching technique) in addition
to the BioBERT-based model could potentially result
in higher accuracy. Lastly, users can easily down-
load the AD-Mapper CDM to use it for semantic data
harmonization of the cohorts that were included and
have been harmonized.

DISCUSSION

In this work, we investigated whether semantic
harmonization of cohort studies could be undertaken
using automated models. Since semantic data har-
monization has frequently been a manual task, often
very time-consuming, we explored the feasibility
of employing a PLM to simplify this process. We
fine-tuned a BioBERT model using a CDM that we
generated, and evaluated the model’s performance
using previously unseen datasets. Additionally, we
compared our approach to a naive string-matching

baseline model. Our results indicate that the AD-
Mapper model can effectively facilitate the semantic
harmonization of AD cohort studies.

Enabling variable transparency through a CDM

One underrepresented aspect of AD cohort studies
is variable transparency and their naming conventions
among cohorts or CDMs [2]. Even though multiple
attempts were made previously to bring this aspect
to light [2, 10, 11], most research focused on a lim-
ited number of variables. The AD-Mapper CDM
addressed all of these challenges by considering a
multitude of variables ranging from multiple modal-
ities (1,218 variables), and by including 23 different
variable naming conventions (20 cohort studies and
three CDMs). The AD-Mapper CDM can provide
a valuable reference to highlight the underexplored
biomarkers in this field. Another major concern
was data privacy as data owners often prevent the
researchers from uploading or sharing the data. We
factored this aspect by using AD data dictionaries
rather than the data itself as a foundation for our
analysis and tools.

Automatic data harmonization

We evaluated the harmonization accuracy of
unseen AD data using a naive approach as well as
our proposed AD-Mapper model and showed that
the latter technique exhibited superior accuracy. Fur-
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thermore, due to occasional similarities in naming
systems among certain cohort studies, we inves-
tigated whether the inclusion of prior knowledge
regarding cohort and CDM mappings would enhance
the accuracy of correct match determination. This
assessment demonstrated that, whilst the incorpo-
ration of prior knowledge increased harmonization
accuracy for the AMED cohort, the opposite was
observed in other cohorts. This could potentially be
attributed to the AMED cohort sharing a highly simi-
lar naming system with the ADNI, DOD-ADNI, and
JADNI cohort studies. By contrast, the other cohort
studies did not share a similar naming system with
any of the included variables’ mappings. Considering
this finding, it can be inferred that employing prior
knowledge could prove beneficial when similarities
exist between the input cohort (i.e., the data requir-
ing harmonization) and the variable naming system
included within the AD-Mapper CDM, regardless of
the cohort or CDM to which it closely corresponds.

To date, to our knowledge, there has been no auto-
matic NLP-based harmonization of cohort studies
conducted beyond standard string-matching tech-
niques [12] or manual curation [41]. The application
of such a standard technique (string-matching) led
to relatively poor performance in the present study.
This is highly important as utilizing cohort stud-
ies for data-driven investigation requires semantic
data harmonization and preprocessing [2, 6], and as
such, incorrect harmonization of such cohorts could
potentially lead to inaccurate discoveries. Although
manual harmonization is often the most reliable
approach, given the lengthy process of manual data
harmonization, an automatic harmonization tool such
as AD-Mapper could facilitate the procedure. In a
broader context, semantic automatic harmonization
can facilitate the use of large-scale multi-site datasets
in the context of disease modeling, which ultimately
contributes to advancements in drug discovery and
treatment outcomes. Currently, clinical research is
often limited by single-cohort data collection and
analysis. Therefore, combining variables from multi-
ple cohorts through AD-Mapper opens opportunities
for more robust findings.

Model complexity and performance

To achieve better accuracy for the harmonization of
cohort studies, we included a large number of variable
naming systems stemming from different cohorts
and CDMs within the AD-Mapper CDM. This fac-
tor influenced the variability of measurements being

defined and subsequently resulted in 1,218 unique
reference terms. By selecting K candidates to explore
and assess for finding the correct match for each
unseen variable, the model expanded the search by
that number of candidates to estimate the probability
of them being a correct match. However, the choice
of how many candidates are potentially sufficient to
find the correct target for each unseen variable had
a direct effect on the computational complexity of
the model. Thus, the higher the number of candidates
to be compared to, the higher the model complexity,
affecting the inference speed.

The accuracy of the variable harmonization was
influenced by the choice of methodology that
was utilized for finding the best mapping tar-
gets. One possible explanation is that by utilizing
the string-matching technique in addition to the
BioBERT-based mapping, the model is leveraging
the similarities that exist between the potential can-
didates (the K-chosen reference terms) and the input
variables to narrow down the best match. On the
contrary, based on the observed result, we presume
that the string-matching technique could decrease the
accuracy of finding the best match when the input
variables are not similar (i.e., they have a greater
edit distance) to the reference terms. Thus, the ideal
weights are highly dependent on the input cohort.

Limitations

One of the main limitations of our study was that
we could only enable semantic harmonization, and
the data distribution and measurement units may
not be comparable across cohorts. This result stems
from cohort studies employing certain exclusion and
inclusion criteria while recruiting their participants,
as well as differences in the way measurements
were collected (e.g., different MRI devices). Addi-
tionally, cohort studies implement specific privacy
agreements upon sharing the datasets, which ham-
per uploading or sharing of the data in any form (e.g.,
uploading data in the AD-Mapper interface). Given
these challenges, within the scope of our paper, we
could not achieve data interoperability beyond the
semantics of variables. Here, we limited our map-
ping of the variables to those that are potentially
comparable using a few preprocessing steps. Another
limitation was that we could only cover the most
commonly measured variables in our AD-Mapper
CDM, and there are potentially certain variables that
have not been included so far. This limitation was
due to study-specific goals and the measurements
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collected to achieve these goals, as well as the granu-
larity of variables shared with researchers. Moreover,
although AD-Mapper clearly outperforms previous
approaches, the fact that errors persist in an entirely
automated mapping procedure suggests that while the
accuracy level remains high, there is still a need for
manual curation. However, integrating the presented
approach with manual post-processing efforts has the
potential to significantly reduce the human endeavor
required for semantically harmonizing large datasets.
Future work can address this shortcoming by extend-
ing the AD-Mapper CDM, resulting in a refined
embedding space, which ultimately leads to improved
performance.

Conclusion

Semantic data harmonization is an essential pre-
liminary step in cross-cohort investigations before
conducting data-driven analyses. Our objective was
to expedite this often time-consuming process by
developing the AD-Mapper interface. In doing so,
we aimed to emphasize the importance of data com-
patibility and provide transparent insights into the
biomarkers measured across diverse cohorts. The
AD-Mapper demonstrated the feasibility of automati-
cally harmonizing cohort studies, suggesting that this
methodology could be applied to the study of differ-
ent diseases.

AUTHOR CONTRIBUTIONS

Philipp Wegner (Conceptualization; Investigation;
Methodology; Software; Validation; Visualization;
Writing – review & editing); Helena Balabin (For-
mal analysis; Investigation; Methodology; Writing
– review & editing); Mehmet Can Ay (Data cura-
tion; Formal analysis; Writing – review & editing);
Sarah Bauermeister (Data curation; Resources; Writ-
ing – review & editing); Lewis Killin (Resources;
Writing – review & editing); John Gallacher
(Resources; Writing – review & editing); Martin
Hofmann-Apitius (Funding acquisition; Resources;
Supervision; Writing – review & editing); Yasamin
Salimi (Conceptualization; Data curation; Investiga-
tion; Methodology; Resources; Supervision; Writing
– original draft).

ACKNOWLEDGMENTS

We would like to express our appreciation to
all data owners for their commitment to open

science principles through the sharing of their
data.

We thank the study participants and staff of
the Rush Alzheimer’s Disease Center. ROSMAP
was supported by NIA grants P30AG010161,
R01AG015819, and R01AG017917.

The A4 Study is a secondary prevention trial
in preclinical Alzheimer’s disease, aiming to slow
cognitive decline associated with brain amyloid accu-
mulation in clinically normal older individuals. The
A4 Study is funded by a public-private-philanthropic
partnership, including funding from the National
Institutes of Health-National Institute on Aging, Eli
Lilly and Company, Alzheimer’s Association, Accel-
erating Medicines Partnership, GHR Foundation, an
anonymous foundation and additional private donors,
with in-kind support from Avid and Cogstate. The
companion observational Longitudinal Evaluation
of Amyloid Risk and Neurodegeneration (LEARN)
Study is funded by the Alzheimer’s Association and
GHR Foundation. The A4 and LEARN Studies are
led by Dr. Reisa Sperling at Brigham and Women’s
Hospital, Harvard Medical School and Dr. Paul Aisen
at the Alzheimer’s Therapeutic Research Institute
(ATRI), University of Southern California. The A4
and LEARN Studies are coordinated by ATRI at the
University of Southern California, and the data are
made available through the Laboratory for Neuro
Imaging at the University of Southern California. The
participants screening for the A4 Study provided per-
mission to share their de-identified data in order to
advance the quest to find a successful treatment for
Alzheimer’s disease. We would like to acknowledge
the dedication of all the participants, the site person-
nel, and all of the partnership team members who
continue to make the A4 and LEARN Studies pos-
sible. The complete A4 Study Team list is available
on: a4study.org/a4-study-team.

Data collection and sharing of ABVIB was funded
by the National Institutes on Aging (NIA) P01
AG12435.

Data collection and sharing of ARWIBO was
supported by the Italian Ministry of Health, under
the following grant agreements: Ricerca Corrente
IRCCS Fatebenefratelli, Linea di Ricerca 2; Pro-
getto Finalizzato Strategico 2000–2001 “Archivio
normativo italiano di morfometria cerebrale con riso-
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