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Abstract.
Background: Histopathologic studies of Alzheimer’s disease (AD) suggest that extracellular amyloid-� (A�) plaques pro-
mote the spread of neurofibrillary tau tangles. However, these two proteinopathies initiate in spatially distinct brain regions,
so how they interact during AD progression is unclear.
Objective: In this study, we utilized A� and tau positron emission tomography (PET) scans from 572 older subjects (476
healthy controls (HC), 14 with mild cognitive impairment (MCI), 82 with mild AD), at varying stages of the disease, to
investigate to what degree tau is associated with cortical A� deposition.
Methods: Using multiple linear regression models and a pseudo-longitudinal ordering technique, we investigated remote
tau-A� associations in four pathologic phases of AD progression based on tau spread: 1) no-tau, 2) pre-acceleration, 3)
acceleration, and 4) post-acceleration.
Results: No significant tau-A� association was detected in the no-tau phase. In the pre-acceleration phase, the earliest
stage of tau deposition, associations emerged between regional tau in medial temporal lobe (MTL) (i.e., entorhinal cortex,
parahippocampal gyrus) and cortical A� in lateral temporal lobe regions. The strongest tau-A� associations were found in
the acceleration phase, in which tau in MTL regions was strongly associated with cortical A� (i.e., temporal and frontal
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lobes regions). Strikingly, in the post-acceleration phase, including 96% of symptomatic subjects, tau-A� associations were
no longer significant.
Conclusions: The results indicate that associations between tau and A� are stage-dependent, which could have important
implications for understanding the interplay between these two proteinopathies during the progressive stages of AD.
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INTRODUCTION

Alzheimer’s disease (AD) is currently character-
ized by two key proteinopathies: intracellular neu-
rofibrillary tau tangles and extracellular amyloid-�
(A�) plaques [1, 2]. Under the new National Insti-
tute on Aging-Alzheimer’s Association (NIA-AA)
guidelines [3], the presence of both neuropatholog-
ical hallmarks of AD is necessary for the diagnosis
of the disease, and unimpaired individuals with aber-
rant A� and tau pathologies should be characterized
as preclinical AD. The traditional view of the AT(N)
biomarker framework [4] is often interpreted as A�
being the initiator of the disease, followed by tau
accumulation and, subsequently, neurodegeneration.
The new guidelines specifically emphasize that “The
AT(N) biomarker system does not imply a specific
order of events nor does it imply causality” [3, 5]. This
is because recent postmortem and imaging studies
show that both early A�-only and tau-only individ-
uals are prevalent in the asymptomatic population
[6], and both proteinopathies can be found in up to
30% of the asymptomatic but older population [7–9].
Furthermore, the early stages of tau deposition in
the transentorhinal cortex are commonly observed in
older healthy subjects (aged > 60), while the spread of
tau to neocortical areas is usually complemented by
the presence of A� plaques [10]. Previous studies also
propose two stages of tau deposition: the age-related
stage and the pathological stage. The accumulation
of tau pathology as a result of aging is limited to
the medial temporal lobe (MTL) and does not spread
to the isocortical Braak stages [11]. On the other
hand, the pathological stage of tau is not restricted
to the MTL region and is accompanied by the pres-
ence of A� plaques [11]. Altogether, this evidence
suggests that perhaps there is an early-stage associ-
ation between these two pathologies. However, the
main challenge of assessing this association between
A� and tau pathologies lies in their spatially dis-
tinct initiation and to some extent progression [12,
13]. Tau accumulation initiates in the locus coeruleus
and entorhinal/perirhinal cortex, where negligible A�

pathology is found [14], whereas A� accumulates
throughout the cingulate, medial parietal, and pre-
frontal cortices, where negligible tau pathology is
located in the early stages of tau deposition [15, 16].
Our aim is to understand the associations between
these two AD proteinopathies in remote (spatially dis-
tinct) brain regions at different stages of the disease,
especially in the early stages when no spatial overlap
occurs.

We have previously shown that co-localized AD
pathologies in default mode network regions are more
reliable predictors of the conversion of healthy con-
trol (HC) or mild cognitive impairment (MCI) subject
to MCI and AD patients, respectively [17]. However,
overlapping A� and tau pathologies do not occur
during the early stage and cannot explain the ini-
tial interaction between the two pathologies. In a
separate study, we showed that sub-threshold accu-
mulation of A� was associated with the increased
cortical thickness in many regions, including MTL,
where the initial accumulation of tau occurs [18].
The increase in cortical thickness was associated with
early A� deposition and up to some level with early
tau accumulation. So, our novel hypothesis is that
the mechanisms underpinning the A�-tau associa-
tion are stage-dependent and might be different in the
early stage of the disease versus the later stage where
the decrease in cortical thickness has been reported
[19–21]. To our knowledge, investigating the remote
association between two pathologies during the early
stage of the disease and, in comparison, to the later
stage of the disease has not been done at the region-
specific level by statistical model-based analysis. In
addition, early accumulation of A� and tau in the
brain is also considered a normal aging biomarker,
which makes their disentanglement from preclini-
cal AD a real challenge in the field. The differential
degree of association between A� and tau in preclini-
cal AD versus normal aging population may also help
discriminate the two pathologies.

In this study, we use tau and A� positron emis-
sion tomography (PET) to accurately quantify the
regional tau and A� uptakes and consequently can
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Table 1
Subject demographics in this study

Young Tau- Young A�- Old
PET Participants PET Participants participants

(N = 47) (N = 97) (N = 572)

Age (y) 29.36 ± 4.73 27.64 ± 3.23 67.11 ± 6.08
Sex (M/F) 20/27 42/55 230/342
HC (A�+%) 47 (0%) 97 (0%) 476 (22%)
MCI/mild AD (A�+%) 0 (0%) 0 (0%) 96 (77%)

HC, healthy control; MCI, mild cognitive impairment; M, male, F, female; PET, positron emission
tomography; A�, amyloid-beta; A�+, amyloid-beta positive; A�–, amyloid-beta negative.

assess their inter-regional and remote association,
particularly between tau in MTL and cortical A�.
We use multiple linear regression to model a region’s
tau uptake in terms of remote regions A� when age,
gender, intracranial volume (ICV), and co-localized
(local) A� are controlled. Using 144 young, healthy
samples (aged 20–39), we expanded the frequency-
based method developed by Lee et al. [22] to sort our
large cohort of old participants (572 subjects aged
67.11 ± 6.08 years, including 476 HC, 14 with MCI,
and 82 with mild AD) from early to later stages of the
disease. Our large sample size made it possible for us
to investigate the tau-A� associations in four differ-
ent phases of the tau progression. Our findings will
help to provide a comprehensive understanding of the
remote associations between A� and tau pathologies
from the early to later stages of the disease.

METHODS

Participants

Five hundred and seventy-two older (age
67.11 ± 6.08 years, 342 females) from Weill Cornell
Medicine and Columbia University’s Irving Medical
Center. This older cohort included 476 HC, 14 MCI,
and 82 mild AD participants who underwent 3T T1-
weighted structural MRI, A�-PET (18F-Florbetaben
for HC and 18F-Florbetapir for MCI or mild AD),
and harmonized 18F-MK6240 tau-PET scans within
12 months (Table 1). All participants gave informed
consent to participate in their respective studies,
and the local institutional review boards approved
all recruitment/enrollment procedures and imaging
protocols. The subjects underwent medical and
neuropsychological evaluations to confirm they
had no neurological or psychiatric conditions,
cognitive impairments, major medical illnesses, or
any contraindications based on structural images.
The patients with MCI or mild AD had Mini-Mental
State Examination scores ranging between 18 and

28, a Clinical Dementia Rating of 0.5 (MCI) or
1.0 (mild AD), and the presence of a biomarker
associated with AD (either a positive A�-PET scan
or cerebrospinal fluid analysis showing positivity for
A�42, tau, and phospho-tau protein181).

To define cut-points most accurately, which region
would be considered A�– or tau-positive, in this
study, we included data from a separate cohort of
144 younger HC subjects. As shown in Table 1,
younger subjects had either 18F-MK6240 tau-PET
(47 subjects with age 29.36 ± 4.73, 27 females)
or 18F-Florbetaben A�-PET (97 subjects with age
27.64 ± 3.23, 55 females) scan and a 3T T1-weighted
structural MRI scan. These young healthy subjects
were a normative reference group to generate the
region-specific cut-points.

Image acquisition protocols

For tau-PET, all subjects were injected with 185
MBq (5 mCi) ± 20% (maximum volume 10 mL) of
18F-MK6240 before imaging that was administered
as a slow single IV bolus at 60 s or less (6 s/mL max.
Imaging was performed as six 5-min frames for a
30-min PET acquisition, 90–120 min post-injection).

For A�-PET, subjects underwent 18F-Florbetaben
or 18F-Florbetapir PET scans. This scan consisted of
four 5-min frames over 20 min of acquisition, starting
50 min for the 18F-Florbetapir and 90 min for 18F-
Florbetaben tracers after injection of 8.1 mCi ± 20%
(300 MBq), which was administered as a slow single
IV bolus at 60 s or less (6 s/mL max).

MRI scans at 3T with a 3D volumetric
T1 magnetization-prepared rapid gradient-echo
sequence were performed. Each subject first
underwent a scout localizer to determine the posi-
tion and set the field of view and orientation,
followed by a high-resolution T1 image with
TR/TE = 2300–3000/2.96–6.5 ms, flip angle = 8–9◦;
field of view = 25.4–26 cm, and 165–208 slices with
1 mm thickness.
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Neuroimaging preprocessing

All MRI scans were processed with FreeSurfer
7.1.0 (http://surfer.nmr.mgh.harvard.edu) for auto-
mated segmentation and cortical parcellation (e.g.,
including segmentation and creation of an average
gray matter mask) [23, 24] to derive regions of
interest (ROIs) in each subject’s native space using
the Desikan–Killiany atlas [25]. These ROIs were
utilized for calculating A�- and tau-PET regional
measures. The A� and tau regional standardized
uptake value ratio (SUVR) were calculated by nor-
malization to cerebellum grey matter. ROIs of this
study are based on 68 cortical regions of the Desikan-
Killiany atlas.

As previously published, the fully automated in-
house pipelines were utilized to process the A� and
tau PET images [26–30]. Both A�- and tau-PET
dynamic frames (six frames in tau-PET and four
in A�-PET) were aligned to the first frame using
rigid-body registration and averaged to generate a
static PET image. Next, the structural T1 image in
FreeSurfer space was registered to the same sub-
ject’s PET composite image using normalized mutual
information and six degrees of freedom to obtain a
rigid-body transformation matrix. Finally, the SUVR
value for A� was converted to centiloid standard val-
ues due to different tracers in A�-PET data [31].

To detect the A�+ subjects, we generated the global
cortical A� (based on centiloid), including frontal,
parietal, temporal, anterior cingulate, posterior cingu-
late, and precuneus ROIs [32–34]. Using our previous
study method [18], we calculated the normal distri-
bution of global A� values in the young comparison
cohort. We chose to define cut-points using a young
cohort rather than an older cohort, as our research
question focused on determining whether individuals
exhibited abnormalities irrespective of their preclin-
ical or clinical stages [35]. Finally, using the 95th
percentile of the fitted normal distribution, we calcu-
lated the cut-point for defining abnormal global A�.
We defined the cut-point of centiloid equal to 28 for
global abnormality to separate the subjects into pos-
itive and negative groups. By generating the same
regions of interest for older subjects and utilizing the
cut-point, we identified the A�+ subjects in the older
population.

Regional cut-points for tau progression

Off-target binding of 18F-MK6240 tau tracer in
meningeal has a significant impact on the cortical

uptake of tau-PET imaging [36]. In this study, we
extended our previous study [18] and developed a
technique to calculate regional cut-points for each
cortical region of tau deposition relative to deposition
in the normative young reference group. We used this
regional cut-point to define the different stages of tau
accumulation and categorize the subjects by consid-
ering the regional positivity and spatial distribution
of tau protein. To determine the regional cut-points
using the selected atlas (Desikan Killiany) with 68
cortical regions, we calculated the normal distribu-
tions of the normative reference group regional tau.
Then for each region, we determined the 95th per-
centile of the fitted normal distribution as regional
cut-points. The regional cut-points for tau based
on the Desikan Killiany atlas and normative refer-
ence group vary between about 0.9 to 1.3. Thus,
the regions closer to the meningeal off-target bind-
ing have higher cut-point values, and the regions far
from the meningeal of target binding will have lower
cut-point values (Supplementary Figure 1). Notably,
we implement the same method to define the regional
cut-point for A� uptake and use these cut-points only
to visualize A� spatial distribution in different groups
of subjects.

Pseudo-longitudinal categorization of the elderly
subjects

We expanded upon the frequency-based method
introduced by Lee et al. [22] to define four phases
of tau progression (no-tau, pre-acceleration, accel-
eration, and post-acceleration) by utilizing regional
cut-points derived from a normative young cohort.
We used the regional cut-point to define the different
stages of tau progression and categorize the sub-
jects by considering the regional positivity and spatial
distribution of tau deposition. We first determined
the number of regions in each subject that exceeded
the regional cut-point, which was defined compared
to the normative young cohort. Then, we ordered
the subjects based on the regions that exceeded the
regional cut-points from 0 to 68 (x-axis in Fig. 1).
Regions were also sorted by the frequency at which
the regional cut-point was reached across all sub-
jects to define a regional tau spreading order (y-axis
in Fig. 1). In this way, we constructed a pseudo-
longitudinal order for tau progression in AD. For
example, regions in which many subjects were tau
positive in the cohort (including normal subjects),
such as the entorhinal cortex, were considered early in
the disease; on the other hand, regions in which only

http://surfer.nmr.mgh.harvard.edu
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Fig. 1. The sequence of tau deposition in 572 elderly subjects based on young subjects’ regional cut-points. Subjects were sorted based on
the number of tau-PET regions that exceeded the regional cut-points in the x-axis. Regions were also sorted by frequencies exceeding the
regional cut-point across all subjects in the y-axis. The tau SUVR for the regions that exceed the regional cut-point is color-coded with a heat
map; the blue color indicates the tau SUVR value equals 1, and the red color indicates the tau SUVR value higher than 2. Three thresholds
were defined to separate the subjects into regions into four phases: no-tau, pre-acceleration, acceleration, and post-acceleration.

a few subjects had tau positivity were considered late
in the disease (i.e., frontal lobe).

The “no-tau” phase included subjects with no
regions that exceeded the regional cut-points. The
subject was considered in the “pre-acceleration”
phase if a single region was considered tau-positive
based on the regional cut-points. We utilized the
elbow method to define the start of the “acceleration”
phase, at which the smoothed graph showed the high-
est change. Finally, the “post-acceleration” phase was
defined, where the second derivative graph became
zero (see Fig. 1) [22].

Statistical analyses

Pathologically, there is evidence that A� facili-
tates the spread of tau outside of MTL [13]. Using
multivariate regressions, we investigated associations
between tau burden by region and A� in brain cor-
tical regions. We tested these associations in the
four defined phases of tau progression, using the tau
regions in each phase as the “target” region.

After categorizing the older subjects, a probabilis-
tic atlas was obtained to visualize each category’s
A� and tau deposition pattern. For visualization,

we applied the regional cut-points of A� and tau
and binarized each region as A� positive/negative
and tau positive/negative. Lastly, we calculated the
probability of observing abnormal A�/tau levels (as
determined by regional cut-points) among individu-
als in each category.

Remote tau-A� associations were assessed in all
68 segmented regions. Notably, this association inde-
pendently assesses each target region tau and remote
region A�. We applied a multiple regression model
for each target region of tau (i) to assess the associ-
ation with A� deposition in all other brain regions
(j) (67 separate multiple regression analyses, i /= j),
while age, gender, ICV, and target region A� were
controlled as covariates:

Taui∼β0 + β1 Aβj + β2 Aβi+ β3 Age + β4 Gender

+ β5 ICV + e, i. j = 1, . . . , 68 and i /= j (1)

Finally, statistical maps (t-value) were generated
for each group and target region based on 67 inde-
pendent regression analyses to visualize regions with
significant remote associations between tau uptake in
the target region and the other regions’ A� deposi-
tions.
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Table 2
Demographic characteristics of categorized participants

No Tau Pre-Acceleration Acceleration Post-Acceleration Four
(N = 229) phase phase phase group difference

(N = 155) (N = 143) (N = 45)

Age (y) 65.52 ± 4.72 67.12 ± 5.78 69.27 ± 6.99 68.24 ± 7.60 p<0.0001, F = 13.25
Sex (M/F) 101/128 61/94 50/93 18/27 p=0.37, χ2 = 3.12
HC (A�+%) 220 (18%) 143 (18%) 111 (33%) 2 (50%) ∗p<0.006, χ2 = 12.361
MCI/mild AD (A�+%) 10 (25%) 11 (27%) 32 (84%) 43 (98%) ∗p<0.0001, χ2 = 24.95

HC, healthy control; MCI, mild cognitive impairment; M, male, F, female; PET, positron emission tomography; A�, amyloid-beta; A�+,
amyloid-beta positive; A�–, amyloid-beta negative. ∗Chi-square tests compare the number of A�+subjects with A�– subjects.

This study used Python for all statistical analyses
and visualizations. The main numeric modules and
visualization were utilized: NumPy and Matplotlib
[37, 38]. Statistical tests, such as analysis of variance
(ANOVA) and chi-square tests, were performed using
the SciPy statistical package (v6.1.1) [39]. The poten-
tial ceiling effects have been addressed by checking
the normality of distribution using the Shapiro-Wilk
test [40]. A permutation test performed family-wise
error correction of regional associations. A null dis-
tribution was determined by randomly shuffling the
independent variable 10,000 times. Based on the 95th
percentiles of the fitted normal distribution for pos-
itive t-values, we calculated the family-wise error
rate-corrected t-value.

RESULTS

Characteristics of categorized subjects

The regional distributions of tau and A� in old
subjects categorized by the four phases of tau pro-
gression (no-tau, pre-acceleration, acceleration, and
post-acceleration) are depicted in Supplementary
Figure 2. Furthermore, Supplementary Figures 3 and
4 illustrate the ranges of alterations in tau and A�
uptakes, respectively, within each categorized group
and region separately. In both figures, the numbers
on the y-axis, ranging from 1 to 68, correspond to
the sorted regions in the brain as depicted in Fig. 1.
Table 2 depicts the number of subjects and their
demographic characteristics by phase. As shown in
Supplementary Figure 2 and Table 2, the no-tau phase
comprised 220 HC (18% of these were A�+) and
10 MCI or mild AD subjects (25% of these MCI or
mild AD subjects were A�+). In the pre-acceleration
phase, 143 were HC (18% were A�+) and 11 MCI
or mild AD subjects (27% were A�+). Subjects
showed tau deposition from one to eight brain regions
(Supplementary Figure 3), largely restricted to MTL

sub-regions (e.g., entorhinal cortex, parahippocam-
pal gyrus). In the acceleration phase, 111 were HC
(33% were A�+), and 32 had MCI or mild AD (84%
were A�+). Subjects showed tau deposition from 9
to 58 brain regions across the cortex. In the post-
acceleration phase, 43 of the subjects had MCI or
mild AD (98% were A�+), and only 2 subjects were
HC (50% were A�+). In this phase, tau was observed
in almost the entire cortex (in at least 75% of sub-
jects), while A� in MTL and occipital lobe regions
showed presence in only 25% of subjects (Fig. 1).

In summary, across different phases of tau depo-
sition, the number of A�+ subjects (p < 0.0001,
χ2 = 128.50) and the number of participants with MCI
or mild AD (p < 0.0001 and χ2 = 238.84), increased
significantly and monotonically from no-tau phase to
post-acceleration phase.

Remote associations from early to late stages of
tau progression

To investigate the potential association between tau
deposition from early (MTL region) to late stages of
disease and cortical areas of A� deposition, we exam-
ined all associations between tau in a target region and
remote A� deposition, controlling for age, gender,
ICV, and local A� deposition within the target region
(see Equation 1); these associations were investigated
separately for each tau target region at each phase of
tau progression. Controlling for the A� within the
target region was done to focus the investigation on
tau-A� remote associations. As expected, no statis-
tically significant association was identified between
regional A� and tau deposition in the no-tau phase.
This is not surprising due to the absence of detectable
regional tau deposition on PET in this phase.

Subjects in the pre-acceleration phase showed sig-
nificant tau deposition in one to eight brain regions,
largely restricted to MTL sub-regions. As seen in
Fig. 2, in this phase, remote association analysis iden-
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Fig. 2. Region-wise statistical map (t-value) of remote association between tau deposition in three target regions and regional A� depositions
in 67 cortical regions obtained in the pre-acceleration phase of tau deposition. The family-wise corrected t-value at each region is color-coded
with red or yellow colors representing increasing positive t-values and overlaid on the semi-inflated cortical surface of the MNI152 template.
The red color indicates the t-value is equal to 3, and the yellow color indicates the t-value is higher than 5. The target region is indicated as
light blue.

tified three regions (left and right of the entorhinal
cortex and right parahippocampal gyrus) that showed
a significant association with A� in several cortical
regions. The right entorhinal cortex, for instance, is
strongly associated (p-value<0.0001 and t-value>4)
with several A� regions, including the bilateral mid-
dle temporal gyrus, inferior temporal gyrus, and
fusiform gyrus. This result suggests a pathologic con-
nection between tau in the entorhinal cortex and A�
in these temporal lobe cortical regions since higher
levels of A� in the temporal lobe cortex are associated
with higher levels of tau in the entorhinal cortex.

A� and tau deposition and spatial distribution
increased in the acceleration phase. Subjects in this
phase have 9 to 58 (out of 68) brain regions showing
a significant amount of tau in this phase (Sup-
plementary Figure 2). Importantly, subjects in the
acceleration phase displayed the strongest remote
associations between regional tau and A� deposi-
tions (Fig. 3). Our analysis identified 28 regions
(14 bilateral brain regions) where their tau uptakes
were significantly associated (p-value<0.0015 and
t-value>3) with at least one region’s A� uptake.
However, MTL sub-regions (i.e., bilateral entorhinal
cortex and parahippocampal gyrus) appear to have
the strongest remote associations in the accelera-
tion phase. Tau uptakes in these two bilateral regions
illustrate the significant associations with more than
55 regions’ A� deposition, particularly frontal and
temporal lobe regions, including the bilateral middle

temporal gyrus, inferior temporal gyrus, and rostral
middle frontal A� deposition, frequently showed the
strong association with tau.

Finally, in the post-acceleration phase, tau was
present in nearly the whole cortex in at least 75%
of subjects, and A� was present in nearly the whole
cortex (with at least 80% of subjects) except the MTL
and occipital lobe (with limited 25% of subjects).
Surprisingly, no significant remote association sur-
vived multiple comparisons in the post-acceleration
phase, where the tau pathology was elevated (SUVR
higher than two shown with red color in Fig. 1)
and distributed through the whole brain (Supple-
mentary Figure 2). This result suggests that the
observed associations between regional tau and A�
are strongest during earlier stages of the disease and
vanish as the disease progresses and the participant
becomes symptomatic since this phase included pre-
dominantly subjects with MCI/mild AD.

The lack of any significant finding in the post-
acceleration phase might be potentially due to the
ceiling effects in these samples or the lower number
of samples in this phase (45 participants com-
pared to 111 participants in the acceleration phase).
The potential ceiling effects have been effectively
addressed through an examination of the normality
of distribution in tau uptakes using the Shapiro-Wilk
test. The results of the Shapiro-Wilk test of subjects
in the post-acceleration phase indicated that the tau
regional uptakes were normally distributed, with a p-
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Fig. 3. Region-wise statistical map (t-value) of remote association between tau deposition in fourteen target regions and regional A�
depositions in 67 cortical regions obtained in the acceleration phase of tau deposition. The family-wise corrected t-value at each region
is color-coded with red or yellow colors representing increasing positive t-values and overlaid on the semi-inflated cortical surface of the
MNI152 template. The red color indicates the t-value is equal to 3, and the yellow color indicates the t-value is higher than 5. The target
region is indicated as light blue.

value greater than 0.05 in 20 out of the 28 regions
(i.e., bilateral entorhinal cortex and parahippocam-
pal) where significant remote associations between
A� and tau uptakes were observed during the accel-
eration phase (Fig. 3). This indicated that, while in
the post-acceleration phase, abnormal tau distributed
across almost the entire context (Supplementary Fig-
ure 2), the regional uptakes exhibited a symmetric
distribution and were not skewed. This ensures the
reliability of the results for regression analyses by
confirming that the observed uptakes were not biased
toward extreme values. To address the potential sam-
ple size issue in the next section, we performed two
more analyses to show that the tau and A� associa-
tion in the acceleration phase can be found even with
the same or a smaller number of participants as we
have in the post-acceleration phase.

Aβ+ HC subjects show the highest remote
association

We conducted two analyses to investigate whether
our method can identify the remote association in
a subset of subjects in the acceleration phase with
a sample size comparable to the post-acceleration
group. Additionally, these two analyses were con-
ducted to evaluate the remote tau-A� association
in symptomatic versus asymptomatic states and
A�+versus A�– conditions in the acceleration phase.
We first reanalyzed the acceleration phase subjects
with only MCI or mild AD (32 subjects, including
27 A�+ patients). Figure 4 shows the result where
tau in five regions illustrated weak but significant
associations with a few remote A� brain regions.
Notably, due to the sample size issue, we could not
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Fig. 4. Region-wise statistical map (t-value) of remote association between tau deposition in five target regions and regional A� depositions
in 67 cortical regions obtained the MCI and mild AD subject in the acceleration phase of tau deposition. The family-wise corrected t-value
at each region is color-coded with red or yellow colors representing increasing positive t-values and overlaid on the semi-inflated cortical
surface of the MNI152 template. The red color indicates the t-value is equal to 3, and the yellow color indicates the t-value is higher than 5.
The target region is indicated as light blue.

compare the remote associations in A�+ versus A�–
groups in MCI or mild AD patients. In summary, the
results illustrate that the remote tau-A� association is
weak but detectable (after multiple comparison cor-
rections) in symptomatic subjects in the acceleration
phase.

Next, we divided the 111 HC acceleration subjects
into 37 A�+ and 74 A�– groups and investigated
the remote associations separately. In HC A�– sub-
jects, despite the larger sample size, only two regions’
tau uptake (left lingual and right entorhinal cortex)
showed marginal associations with other regions A�
(Fig. 5). Note that A�– subjects can have elevated
levels of A� in some regions but, on average, fall
below the threshold of global A� abnormality. On
the other hand, tau in six regions showed a signifi-
cant association with A� in several brain regions in
HC A�+ subjects. Interestingly, the right entorhinal
cortex showed strong associations with remote A� in
several regions. In Fig. 6, we illustrated the multiple
regression analysis results between the right entorhi-
nal cortex tau and three top-ranked associated remote
regions A�: left inferior temporal, right fusiform, and
right inferior temporal. As it is evident from this
figure, even in 37 HC A�+ subjects, the regional
tau elevation in the right entorhinal cortex is signif-
icantly associated with all three remote regions A�
(p-value < 0.0001, t-value > 4.81, and r > 0.51). These
results confirmed a significant remote tau-A� asso-

ciation can be detected using our statistical methods
even with fewer subjects than we have in the post-
acceleration phase. Altogether, our results suggest
that the tau-A� association becomes considerably
attenuated after the disease onset (impaired patients),
whereas, at the preclinical stage, the existing abnor-
mal A� demonstrates a strong remote association
with tau.

DISCUSSION

Since the accumulation of AD pathologies is grad-
ual and often starts decades before the onset of
the disease, it is crucial to understand the progres-
sion of neuropathology during aging to prevent the
development of AD and its clinical implications. In
this study, we applied the pseudo-longitudinal tech-
nique, utilizing regional cut-points driven by the
young normative cohort, to evaluate the remote tau-
A� association within 68 cortical brain regions. The
association was assessed throughout four phases of
tau progression from early to late stages of disease
using model-based statistical analysis: no-tau phase,
pre-acceleration phase, acceleration phase, and post-
acceleration phase. The main findings in this study
were: First, the tau-A� association strongly depends
on the stage of the disease. Second, the remote tau-A�
association started in the early stages of tau deposi-
tion in the MTL sub-regions. Also, MTL sub-regions
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Fig. 5. Region-wise statistical map (t-value) of remote association between tau deposition in six target regions and regional A� depositions
in 67 cortical regions obtained in the HC A�– and A�+ subjects in the acceleration phase of tau deposition. The family-wise corrected
t-value at each region is color-coded with red or yellow colors representing increasing positive t-values and overlaid on the semi-inflated
cortical surface of the MNI152 template. The red color indicates the t-value is equal to 3, and the yellow color indicates the t-value is higher
than 5. The target region is indicated as light blue.

tau have the strongest remote association with cortical
A�. The third finding was that this association con-
tinued and accelerated in the next accumulation stage
(acceleration phase) but then attenuated significantly
in the symptomatic stage of the disease. Finally, the
strongest remote associations happen in the HC sub-
jects with abnormal levels of A� deposition in the
acceleration phase of tau progression.

Previous studies indicated that tau pathology can
be found within MTL during normal aging without
significant neocortical A�, and A� pathology acts
as a gatekeeper for tau pathology to spread out of
the MTL to the neocortex [41]. Our results in the
pre-acceleration phase suggest that the entorhinal
cortex and parahippocampal gyrus tau have sig-

nificantly strong remote associations even at the
early deposition stage when tau is limited to MTL.
This association would suggest that the interaction
between these two pathologies happens earlier than
the literature reported. The difference is that the
tau association inside the MTL happens remotely
with cortical A� [22], and A� may enhance the
tau accumulation even inside the MTL via remote
association. The remote association of the entorhinal
cortex tau with other cortical regions A� has been
supported by previous studies, particularly in later
stages of accumulation through the neural connec-
tion of the brain [22, 42–46]. Considering the pivotal
role of functional connectivity in the observed pat-
terns of tau spread [42–44], we speculate that the
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Fig. 6. The regional multiple regression analysis results of right
entorhinal cortex tau and three top-ranked associated remote
regions A�: left inferior temporal, right fusiform, and right infe-
rior temporal in 37 HC A�+ subjects in the acceleration phase. All
these analyses survived family-wise error correction.

neural connection might be a facilitator of remote
tau-A� association. This is particularly relevant given
the observed relationship between the accumulation
of A� in the neocortex among cognitively normal
older individuals and functional alterations in the
MTL [47]. Moreover, there is evidence that limbic
structures (including the entorhinal cortex) as a super-
ficial layer are significantly vulnerable to A� [48].
Therefore, given that the superficial layers are more
involved in corticocortical connections [49], it is valid
to suggest that during the initial phases of tau patholo-
gies, variations in susceptibility to A� may arise from
neural pathways, particularly brain functional con-
nections.

Consistent with the pre-acceleration phase find-
ings, strong remote associations appeared in several
tau target regions in the acceleration phase. More
importantly, we observed the strongest associations
across the HC A�+ subjects in the acceleration phase.
Previous reports also observed that tau increased
faster with higher A� deposition than with lower
A� deposition in clinically normal adults [50], which
might be related to this high level of remote associa-
tion in A�+ subjects. Another longitudinal study also
found that changes in tau were strongly linked to the
rate of change in A� deposition levels [51]. They
also noted that tau changes occurred soon after A�
positivity was detected. Additionally, earlier findings
indicating that abnormal A� deposition in the neo-
cortex is linked to alterations in task-evoke activity
and resting state functional connectivity [47] provide
support for the hypothesis that the remote connection
between A� deposition in the neocortex and tau in

the MTL could be facilitated by neural connection
pathways.

Most surprisingly, we found no significant remote
association between tau and A� for participants in
the post-acceleration phase, which included more
than 96% MCI or mild AD and A�+ subjects. While
the spatial distribution of tau and A� increased in
this phase compared with the acceleration phase, no
remote association survived after multiple compari-
son corrections. The MCI/mild AD subjects’ tau in
the acceleration phase also shows a weak remote
association with A�, supported by previous reports
[52]. Earlier studies have reported that the rate of A�
deposition seems to decelerate as it reaches higher
levels [53, 54]. Additionally, neuropathological stud-
ies also demonstrated that deposition of tau and
A� rate decrease with aging in AD patients [55]
and there is a significant negative age association
with tau deposition at the disease stage [56]. This
negative association in patients with early demen-
tia would explain the results of MCI or mild AD
subjects in the acceleration and post-acceleration
phases. The hypothesis we want to highlight is again
based on the neural connection between different
regions in the brain, especially in remote associa-
tion. Tau in target regions, such as the entorhinal
cortex, demonstrating remote associations with A�
in other cortical regions (i.e., in temporal and frontal
lobes) during the pre-acceleration and acceleration
phases, are mostly functionally interconnected with
one another [57]. On the other hand, late-stage tau
and A� affect functional connectivity [58, 59], and
these two pathologies might induce a disruption in the
functional connectivity in the symptomatic stages of
deposition and finally lead to an uncoupling with one
another.

The results of this study emphasize the strong
remote association between the two key pro-
teinopathies of AD. While the cellular mechanism
of this association is still elusive, several in vitro and
in vivo studies have demonstrated that A� triggers
tau deposition [13, 60, 61]. Therefore, the mecha-
nism for explaining the remote tau-A� association
is a compensation mechanism facilitated by neural
connections. Recent research has provided grow-
ing evidence that early A� deposition is linked to
increased brain activity in individuals without cog-
nitive impairment but with A� burden [62–65]. Our
recent study [18] also reported compelling insights
for this compensatory mechanism where the early
A� deposition was associated with increased cor-
tical thickness, particularly in the MTL region. On
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the other hand, more recent studies indicated that tau
accumulation in hub regions, regions with maximum
level of functional connection to the rest of the brain,
tends to spread more than tau accumulated in non-
hub regions [42–44, 46]. This evidence suggests that
the observed stage-dependent trajectories in remote
association likely result from the combined influ-
ences of A� and tau on functional connectivity and
how the brain compensates for the disruption effects
of these two pathologies. Specifically, the initial A�
deposition induces hyperactivity/hyperconnectivity,
which may lead to elevated tau levels, triggering a
synergic tau and A� accumulation cycle. However,
the high levels of tau and A� accumulation (disease
stage) eventually break down the network organi-
zation of functional connections, which results in
the hypoactivity/hypoconnectivity observed in symp-
tomatic individuals [66, 67]. This attenuation in brain
connectivity may finally lead to a weak remote asso-
ciation between these two pathologies. We speculate
that the mechanisms underpinning the A�-tau asso-
ciation may differ in the early stage of the disease
compared to the later stage. The A�-tau association
in the later stages most likely occurs locally rather
than remotely. Since the utility of anti-amyloid drugs
in the later stages of AD remains unclear, understand-
ing the early associations of A� on tau pathology in
the brain is crucial.

The present study has limitations, which will serve
as areas for further investigation. The first limita-
tion of this study is that a different A�-PET tracer
was used for healthy controls (18F-Florbetaben) and
individuals with MCI/mild AD (18F-Florbetapir). To
address this issue, all analyses in the study were done
using centiloid standard values instead of SUVR [31].
Furthermore, we also implemented interclass statis-
tical analysis to compare the centiloid and SUVR
regional values. The strong average correlation of
0.98 and the standard deviation of 0.01 was calcu-
lated across 68 regions, and SUVR values changed
none of the reported results. The next limitation that
needs further investigation is the heterogeneity of A�
or tau patterns in AD, which were not directly consid-
ered in our analyses due to the sample size limitation
in each phase. Moreover, the relationship between
AD pathologies is challenging to analyze cross-
sectionally and group-wise. Thus, considering the
pathological changes individually in a longitudinal
dataset is necessary. Finally, while 572 older and 144
younger samples were used in this study—greater
than typically reported in human studies in the field,
especially with the second generation of tau PET

tracer—despite our effort to address the sample size
issue, it is possible that our sample size was not large
enough to provide sufficient statistical power to detect
associations, especially in symptomatic stages (post-
acceleration phase) of the pathologies.

Conclusion

The results of the current study illustrate the robust
remote tau-A� association, not only in the accelera-
tion phase but also strongly in the pre-acceleration
phase (early stages of tau deposition), particularly
in the entorhinal cortex and parahippocampal gyrus
regions. Our study shows that the remote association
begins with MTL tau during the early stage and is
evident in the later stages of tau deposition in asymp-
tomatic subjects. It is interesting to note that remote
association was attenuated in symptomatic subjects
with cognitive decline (MCI and mild AD subjects),
whereas this association is strongly enhanced in A�+
asymptomatic subjects (HC). These results contribute
valuable insights for researchers seeking to under-
stand the remote tau-A� associations through disease
progression.
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Vilanova M, Vilor-Tejedor N (2020) Multitracer model for
staging cortical amyloid deposition using PET imaging.
Neurology 95, e1538-e1553.

[17] Hojjati SH, Feiz F, Ozoria S, Razlighi QR (2021) Topo-
graphical overlapping of the amyloid-� and tau pathologies
in the default mode network predicts Alzheimer’s disease
with higher specificity. J Alzheimers Dis 83, 407-421.

[18] Hani Hojjati S, Butler TA, Chiang GC, Habeck C, Roy-
Choudhury A, Feiz F, Shteingart J, Nayak S, Ozoria S,
Fernández A, Stern Y, Luchsinger JA, Devanand DP, Raz-
lighi QR (2023) Distinct and joint effects of low and high
levels of A� and tau deposition on cortical thickness. Neu-
roimage Clin 38, 103409.

[19] Susanto TAK, Pua EPK, Zhou J (2015) Cognition, brain
atrophy, and cerebrospinal fluid biomarkers changes from
preclinical to dementia stage of alzheimer’s disease and
the influence of apolipoprotein E. J Alzheimers Dis 45,
253-268.
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