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Abstract.
Background: Computer-aided machine learning models are being actively developed with clinically available biomarkers
to diagnose Alzheimer’s disease (AD) in living persons. Despite considerable work with cross-sectional in vivo data, many
models lack validation against postmortem AD neuropathological data.
Objective: Train machine learning models to classify the presence or absence of autopsy-confirmed severe AD neuropathol-
ogy using clinically available features.
Methods: AD neuropathological status are assessed at postmortem for participants from the National Alzheimer’s Coordinat-
ing Center (NACC). Clinically available features are utilized, including demographics, Apolipoprotein E(APOE) genotype,
and cortical thicknesses derived from ante-mortem MRI scans encompassing AD meta regions of interest (meta-ROI). Both
logistic regression and random forest models are trained to identify linearly and nonlinearly separable features between partic-
ipants with the presence (N = 91, age-at-MRI = 73.6 ± 9.24, 38 women) or absence (N = 53, age-at-MRI = 68.93 ± 19.69, 24
women) of severe AD neuropathology. The trained models are further validated in an external data set against in vivo amyloid
biomarkers derived from PET imaging (amyloid-positive: N = 71, age-at-MRI = 74.17 ± 6.37, 26 women; amyloid-negative:
N = 73, age-at-MRI = 71.59 ± 6.80, 41 women).
Results: Our models achieve a cross-validation accuracy of 84.03% in classifying the presence or absence of severe AD
neuropathology, and an external-validation accuracy of 70.14% in classifying in vivo amyloid positivity status.
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Conclusions: Our models show that clinically accessible features, including APOE genotype and cortical thinning encom-
passing AD meta-ROIs, are able to classify both postmortem confirmed AD neuropathological status and in vivo amyloid status
with reasonable accuracies. These results suggest the potential utility of AD meta-ROIs in determining AD neuropathological
status in living persons.

Keywords: Alzheimer’s disease-meta-ROIs, APOE genotype, in vivo amyloid status, machine learning, severe AD neu-
ropathology

INTRODUCTION

Alzheimer’s disease (AD) is the most common
form of age-related dementia. According to the
Alzheimer’s Association report, an estimated 6.5 mil-
lion Americans are living with AD dementia today,
and this number is projected to increase to 13.8 mil-
lion by 2060 [1]. Without effective treatment, AD will
bring tremendous healthcare, economic, social, and
emotional burdens to patients, families, communities,
and society globally [2]. The recent approvals of two
disease modifying therapies are particularly promis-
ing in early AD [3, 4], making accurate and early
diagnosis of AD a critical step for potential treatment
and to promote public health.

Historically, the diagnosis of AD is made based
on observable clinical symptoms and the systematic
exclusion of other potential dementia etiologies, and
with confirmation through postmortem brain autopsy
[5]. There exists a discrepancy between the clini-
cal and pathological AD diagnoses, as approximately
10% to 30% clinical AD cases do not exhibit typical
AD neuropathological changes at autopsy [6, 7]. As a
result, inclusion of AD-specific biomarkers to inform
and refine clinical diagnosis has been sought. In the
National Institute on Aging and Alzheimer’s Associ-
ation (NIA-AA) Research Framework, the diagnosis
of AD has shifted from syndromal towards biological
constructs that are reflective of AD hallmark patholo-
gies [6]. With development and validation of in vivo
biomarkers, quantifying the extracellular amyloid-�
protein deposition (A), the intraneuronal pathological
tau protein accumulation (T), and neurodegeneration
(N) has led to formulation of the ATN framework for
the biological characterization of AD along a disease
continuum.

To date, studies have developed computer aided
machine learning models to predict AD diagnoses
and to identify AD-specific biomarkers [8–10]. How-
ever, relatively fewer efforts have been made to
validate these trained models against data from neu-
ropathologically confirmed AD cases. Instead, the

neuropathological components used in these mod-
els were primarily represented by the qualification
of amyloid and tau status using positron emission
imaging (PET) with radiolabeled tracers [11, 12], or
more recently, using ultra-sensitive measurements of
molecules from central nervous (cerebrospinal, CSF)
or peripheral (blood) fluids [11]. The invasive nature
of both PET and CSF technologies, the high cost of
PET imaging, and the evolving understanding of mea-
surement properties of fluid-based measures, all have
motivated the current research to seek non-invasive
and clinically available features to facilitate the deter-
mination of AD neuropathological status in living
persons.

Structural magnetic resonance imaging (MRI) is
the most common technique for assessing neurode-
generation in AD within the ATN framework, as
structural MRI can characterize the severity and
progression of brain atrophy throughout the AD
continuum [13]. Moreover, MRI is non-invasive,
generally well-tolerated, replicable, and widely
accessible in many clinical settings and large-scale
legacy databases [14, 15]. In contrast to fluid-based
biomarkers, MRI provides additional information
about affected brain regions and holds the promise of
being more AD-specific than some of the emerging
fluid biomarkers [16]. Therefore, the primary objec-
tives of this paper are 1) to develop a methodology
that could facilitate the classification of the pres-
ence or absence of severe AD neuropathology based
on autopsy confirmed cases with clinically available
MRI features, and 2) to identify clinical features and
neurodegeneration patterns that are both sensitive and
specific to AD neuropathology.

Structural MRI-based estimates of hippocampal
and entorhinal cortical volumes were among the
first measures of neurodegeneration proposed in AD
and have frequently been used in both clinical and
research settings [11, 17, 18]. More specifically,
structural MRI estimates of hippocampal atrophy are
correlated with memory decline in living subjects,
and with pathological tau accumulation in post-
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mortem AD subjects [19–21]. However, hippocampal
atrophy is also commonly observed in subjects with
other neurodegenerative pathologies, and is not spe-
cific to AD [5, 22]. From a technical perspective,
volumetric measurements are also biased by the total
intracranial volume, and there are multiple quanti-
tative approaches to adjust volumetric estimates for
differences in head-size. Thus, despite the ease of
use, these limitations undermine the clinical utility
of volumetric measurements in quantifying neurode-
generation along the broad AD continuum.

Cortical thickness is another biologically meaning-
ful and reliable measure computed from structural
MRI. Thickness measurements are less biased by
on head size than volume [23]. Cortical thinning in
multiple regions of interest (ROI) has been reported
across the entire AD continuum, even during the pre-
clinical AD stage [11]; thus, cortical thinning in these
ROIs appears particularly useful in identifying early
neurodegenerative changes. In addition, spatial pat-
terns of regional atrophy might also be sensitive to
the typical localization of different types of neurode-
generative disorders, providing increased specificity
[22, 24].

When methods for automatically quantifying in
vivo thickness were introduced (e.g., FreeSurfer;
https://surfer.nmr.mgh.harvard.edu/), regional thick-
ness values of the entorhinal cortex, medial and
inferior temporal gyrus attracted significant attention
as measurements of disease severity and progres-
sion [25–27]. Cortical signature regions of AD,
encompassing above-mentioned regions in addition
to the fusiform gyrus, para-hippocampal gyrus, infe-
rior parietal cortex and precuneus, have been further
identified to predict pathological changes, clinical
impairment, cognitive declines, and cerebral blood
flow variations in subjects along the AD continuum
[13, 22, 23, 27, 28]. FreeSurfer derived thicknesses
of these regions, which constitute AD meta-ROIs,
convey 1) top diagnostic separability between AD
and CN subjects, and 2) clinical impairment associ-
ations in subjects along the AD continuum [23, 29,
30]. Taken together, cortical thickness measurements
of AD-signature meta-ROIs are promising candidates
to quantify AD-specific neurodegeneration within the
ATN framework, and their predictive ability warrants
further exploration.

In this study, we aimed to classify AD neuropatho-
logical status using clinically accessible features.
We hypothesized that structural MRI-derived cor-
tical thickness measurements from AD meta-ROIs,
together with the apolipoprotein E (APOE) geno-

type and demographic variables, would accurately
classify the presence or absence of severe AD neu-
ropathology, and thus could assist in determining AD
neuropathological status in living persons. Using sub-
jects with both postmortem neuropathological data
and an antemortem MRI scan, we trained machine
learning models to classify the presence or absence
of severe AD neuropathology with clinically accessi-
ble features. We expected that development of these
machine learning models would facilitate the identi-
fication of neurodegenerative changes specific to AD
neuropathology and could assist in determining AD
pathological status in living persons when the clin-
ical etiology is uncertain and other AD biomarkers
are unavailable.

MATERIALS AND METHODS

Primary data set: NACC participants

NACC participants. Data from the National
Alzheimer’s Coordinating Center (NACC,
https://naccdata.org/) database were obtained,
including the NACC Uniform Data Set (UDS), MRI
Data Set and Neuropathology Data Set [31–33]. The
NACC was established in collaboration with more
than 42 previous and current Alzheimer’s Disease
Research Centers (ADRCs) throughout the U.S.
over more than 20 years [14]. Data were collected
by each ADRC and the study was approved by each
ADRC site’s local Institutional Review Boards.

Figure 1 details our NACC sample inclu-
sion/exclusion process. We started with NACC
participants that had both postmortem neuropatho-
logical data in NACC-neuropathology files and at
least one antemortem T1-weighted MRI scan listed
under NACC-imaging files. This inclusion criteria led
to a sample of 560 participants (Fig. 1).

AD neuropathological staging in NACC is based
on NIA-AA guidelines [6]. From the NACC
neuropathological data set, we utilized the NIA-
AA Alzheimer’s Disease Neuropathologic Change
(ADNC) score to represent the severity/status of par-
ticipants’ AD neuropathology [32, 34]. Based on
ADNC scores (i.e., NPADNC variable in NACC
neuropathology data set), participants were staged
into 4 groups: no AD neuropathology (ADNC0),
low AD neuropathology (ADNC1), intermediate
AD neuropathology (ADNC2), and severe AD neu-
ropathology (ADNC3).

https://surfer.nmr.mgh.harvard.edu/
https://naccdata.org/
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Fig. 1. Inclusion/exclusion flow chart. NACC Neuropathology Data Set variables NPADNC, NPLBOD, NPFTDTDP, and NPFTDTAU
were utilized to evaluate AD, Lewy body, Frontotemporal lobar degeneration with TPD-43-immunoreactive pathology (FTLD-TDP), and
FTLD-tau pathologies, respectively.

We focused on participants in the ADNC0,
ADNC1, and ADNC3 groups, and excluded par-
ticipants with Lewy body, frontotemporal lobar
degeneration with TPD-43-immunoreactive pathol-
ogy (FTLD-TDP), and FTLD-tau pathologies to
create homogeneous groups to test our hypothesis of
identifying the presence or absence of severe AD neu-
ropathology (Fig. 1). We did not exclude participants
based on vascular changes due to the high prevalence
in all ADNC groups (>90%). In addition, because
TDP43 pathology was assessed only more recently
on a limited number of participants in NACC, we did
not exclude any participants based on co-occurrence
with TDP-43 pathology.

We utilized participants with ADNC3 to rep-
resent a group with severe AD neuropathology
(ADNC3). We combined ADNC0 and ADNC1
groups (ADNC0&1) to 1) represent a real-world
group with no or low AD neuropathology, as both
amyloid and tau proteins would accumulate during
aging; and 2) to increase our sample-size and boost
the statistical power.

NACC MRI data collection and process. DICOM
images of T1-weighted MRI scans for 560 partici-
pants were obtained from the NACC MRI data set

[14]. As these T1-weighted MRI scans were col-
lected on a variety of scanners at each ADRC, we
obtained scanner field strength, scanner manufac-
turer, and scanner protocols from the DICOM header
of each scan. Information on the implementation
inversion recovery (IR) was specifically obtained
as it could be the major difference among scans
to have an effect on grey (GM) and white matter
(WM) contrast [35] that subsequently affects thick-
ness estimations. Scans from 57 participants were
T1-weighted 2D spin-echo sequences and therefore
were excluded from the following analyses (Fig. 1),
and the maximum acceptable slice thickness and in-
plane resolution for T1-weighted MRI were 1.5 mm
and 1.5 mm × 1.5 mm, respectively.

After preprocessing, T1-weighted MRI images for
each participant were analyzed using the FreeSurfer
6.0 processing pipeline [25]. A subject-specific
anatomical labeling from the Desikan-Killiany atlas
[26] was generated, yielding 68 cortical regions and
12 sub-cortical ROIs for every participant. Thickness
measures of 68 cortical regions were calculated for
each participant.

MRI data quality control. We excluded 31 par-
ticipants from the study due to failed FreeSurfer
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processes. Specifically, 18 participants were excluded
because their scans lacked orientation information
leading to failed Talairach registrations, while 13
participants were excluded since their scan failed
FreeSurfer for unknown reasons (Fig. 1).

For scans that successfully finished the FreeSurfer
6.0 pipeline, we utilized the fsqc toolbox in Python
[36] to perform the quality control (QC) step. We
focused on fsqc generated 1) signal-to-noise ratio
(SNR) for WM and GM on FreeSurfer normalized
norm.mgz file (wm snr norm and gm snr norm), and
2) WM-to-GM contrast SNR ratio in the left and right
hemisphere (con lh snr and con rh snr), as our main
FreeSurfer QC matrices.

We utilized a data-driven approach to assess the
data quality using QC matrices. First, we conducted a
repeated measures analysis of variance (rmANOVA)
to determine if QC values were significantly different
among scanner types and protocols (Supplementary
Material A). In addition, to further evaluate if dif-
ferent scanner types and protocols could introduce
significant changes to FreeSurfer outputs, we per-
formed the same rmANOVA on cortical thickness
measures across different scanner types and proto-
cols in the ADNC0 group alone (i.e., those whose
structure was least affected by disease pathology;
Supplementary Material A). We removed any scans
that produced extreme QC values and cortical thick-
ness measures from our analyses.

We observed that scanner type or protocol does not
significantly affect the WM or GM signal-to-noise
ratio (SNR), but significantly affect the WM-to-GM
contrast SNR (Supplementary Material A). There-
fore, scanner type and scanning protocols were used
as covariate features in our following analyses. For
the thickness measures, we observed that scans col-
lected on 1.5T Philips scanner generated significantly
lower values than other scanners. Therefore, we
removed participants with MRI data collected on
1.5T Philips scanner from both groups and included
scanner type and scanning protocols as covariates in
our analyses.

Final samples. Collectively, our final sample
included 53 participants with ADNC0&1 and 91 par-
ticipants with ADNC3 (Fig. 1). Their demographics
and genetic information including sex, years of edu-
cation, race APOE genotype, age, and diagnoses at
the time of MRI scan, and time differences from MRI
scan to postmortem neuropathology were obtained
from the NACC and reported in Table 1A. Sample
characteristics regarding comorbidities are reported
in Table 1C.

Replication data set: CNTN participants

We utilized an independent, locally collected,
convenience sample from the Center for Neurode-
generation and Translational Neuroscience (CNTN,
https://nevadacntn.org/) as a validation data set.
All CNTN participants were recruited at Cleve-
land Clinic Lou Ruvo Center for Brain Health Las
Vegas, Nevada. The CNTN study was approved by
Cleveland Clinic Institutional Review Board and all
participants gave written, informed consent. Details
of the CNTN cohort has been previously reported
[37].

Dring CNTN-COBRE phase I, there were 190
participants enrolled and with MRI data collected
(January 2017 to October 2020). Our convenience
sample included 144 CNTN participants with a
T1-weighted structural MRI scan (FreeSurfer 6.0
successfully and reliably finished), an amyloid PET
scan (18F-AV45 scan, standard uptake value ratio
(SUVR) computed), and available APOE genotyping.
To increase real-world clinical utility and application
in vivo, we utilized amyloid positivity status deter-
mined from the PET-SUVR as the outcome in this
validation data set, which is assumed to reflect under-
lying AD-pathology.

Following the previously published AV45-PET
processing pipeline and amyloid positivity criteria
on the composite SUVR [38], 144 CNTN partici-
pants were divided into an amyloid positive group
(SUVR > 1.11, N = 73) and an amyloid negative
group (SUVR ≤ 1.11, N = 71). Participant demo-
graphics for both groups are reported in Table 1B.
Details on MRI and PET image processing steps are
included in Supplementary Material B.

Demographic comparisons

All statistical and classification analy-
ses were conducted in MATLAB 2018b
(https://www.mathworks.com/). Differences
between the ADNC0&1 and ADNC3 groups
for NACC participants, and differences between
amyloid positive and amyloid negative groups for
CNTN participants were assessed for demographic
and clinical variables including sex, years of edu-
cation, APOE genotype, race, age at MRI, and
diagnosis at MRI. Differences in time intervals
between MRI scan and neuropathological data,
scanner field strengths, scanner manufacturer,
scanning protocol (implementation of IR), and
GM-to-WM contrast SNR were further assessed

https://nevadacntn.org/
https://www.mathworks.com/
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Table 1
Demographic comparisons between the no or low AD pathology group (ADNC0&1) and severe AD pathology group (ADNC3) in NACC
participants (A) and between amyloid positive and negative groups in CNTN participants (B). Comorbidities of NACC participants are
listed in (C). Variables from NACC Neuropathology Data Set used to evaluate the presence or absence of each pathology are listed in the

bracket

A. NACC data No or low AD pathology
(ADNC0&1)

Severe AD pathology
(ADNC3)

Differences (p-values)

Number of participants 53 91
Sex 29 men 53 men 0.68

24 women 38 women
Years of Education 14.60 ± 3.84 16.04 ± 9.21 0.28
Race 49 White 90 White 0.04

4 African American 1 African American
APOE genotype 11 e2e3 2 e2e3 <0.001

1 e2e4 3 e2e4
32 e3e3 25 e3e3
4 e3e4 45 e3e4
1 e4e4 11 e4e4
4 unknown 5 unknown

Age at First MRI 68.93 ± 19.69 73.60 ± 9.24 0.06
Diagnosis at First MRI 25 CN 3 CN <0.001

5 MC 1 MC
13 MCI 23 MCI
10 Dementia 64 Dementia

Time from First MRI to Pathology 6.23 ± 3.81 6.82 ± 2.83 0.29
First MRI field Strength 27 1.5T 27 1.5T 0.01

26 3.0T 64 3.0T
First MRI scanner 33 GE 64 GE 0.02

5 Philips 0 Philips
13 Siemens 27 Siemens

First MRI Implementation of IR 25 without 15 without <0.001
28 with 76 with

con snr lh 2.81 ± 0.43 2.73 ± 0.32 0.22
con snr rh 2.81 ± 0.42 2.75 ± 0.32 0.35
B. CNTN data Amyloid Negative Amyloid Positive Differences (p-values)
Number of subjects 73 71
Composite SUVR (normalized to
whole-cerebellum)

0.99 ± 0.05 1.44 ± 0.15 <0.001

Sex 32 Men 45 Men 0.02
41 Women 26 Women

Years of Education 15.90 ± 2.68 15.51 ± 2.69 0.38
Race 65 White 67 White 0.13

4 African American 1 African American
4 Asian 1 Asian

2 American Indian/Alaska
Native

APOE genotype 1 e2e2 1 e2e4 <0.001
7 e2e3 1 e2e3
1 e2e4 15 e3e3
42 e3e3 37 e3e4
10 e3e4 10 e4e4
2 e4e4 7 unknown
10 unknown

Age at First MRI 71.59 ± 6.80 74.17 ± 6.37 0.02
Diagnosis at First MRI 43 CN 11 CN <0.001

24 MCI 43 MCI
6 AD 17 AD

All 3T MRI; imaging protocol with inversion recovery pulse sequence; concurrent MRI and PET

(Continued)
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Table 1
(Continued)

C. NACC Neuropathology
(Variables in Neuropathology Data
Set)

No or low AD pathology
(ADNC0&1)

Severe AD pathology
(ADNC3)

Vascular Changes (NACCVASC) 6 without 0 without
47 with 91 with

Lewy body (NPLBOD) 53 without 91 without
FTLD-TDP (NPFTDTDP) 53 without 91 without
FTLD-tau (NPFTDTAU) 53 without 91 without
TDP43-Spinal Cord (NPTDPA) 23 without 11 without

1 with 0 with
29 not assessed 80 not assessed

TDP43-Amygdala (NPTDPB) 44 without 45 without
3 with 21 with
6 not assessed 25 not assessed

TDP43-Hippocampus (NPTDPC) 48 without 52 without
3 with 22 with
2 not assessed 17 not assessed

TDP43-Temporal Cortex (NPTDPD) 47 without 48 without
3 with 20 with
3 not assessed 23 not assessed

TDP43-Neocortex (NPTDPE) 49 without 59 without
1 with 6 with
3 not assessed 26 not assessed

con snr lh, white-matter to grey-matter contrast signal-to-noise ratio in the left hemisphere; con snr rh, white-matter to grey-matter contrast
signal-to-noise ratio in the right hemisphere; IR, inversion recovery.

between ADNC0&1 and ADNC3 groups for NACC
participants. We performed chi-square tests to
examine differences for categorical variables (sex,
race, APOE genotype, diagnosis at MRI, scanner
field strength, scanner manufacturer and implemen-
tation of IR), and used Student’s t-tests to estimate
differences among continuous variables (age at
MRI, years of education, time intervals between first
MRI and neuropathological data, and GM-to-WM
contrast SNR).

Classify the presence or absence of severe AD
neuropathology using clinically available
features

Using NACC participants with both postmortem
neuropathological data and an antemortem MRI
scan, we trained both model-based and data-driven
machine learning models to classify the presence or
absence of severe AD neuropathology using clini-
cally accessible features. Figure 2 shows a schematic
representation of our classification analyses.

Clinically available features. Four demographic
and genetic features (age at MRI, sex, years of educa-
tion and APOE genotype) and eight structural brain
measures from T1-weighted MRI were included as
features to classify ADNC group assignments. Race
was not included in the feature set because more than

95% NACC participants in this study were White.
For the APOE genotype, a categorical variable was
created to code APOE4 allele counts (range: 0, 1, and
2).

For the T1-weighted MRI measures, we focused
on cortical thickness from the FreeSurfer-derived
AD-signature meta-ROIs encompassing the bilateral
entorhinal, inferior temporal, middle temporal and
fusiform [29]. To account for potential variation by
MRI scanners, we included 1) a binary vector repre-
senting MRI field strengths; 2) a categorical vector
representing MRI manufacturer; and 3) a binary
vector representing the implementation of IR, as
additional features in the classification model, lead-
ing to a total of 15 features. Data from all NACC
participants were utilized to train the model with a
cross-validation schema. Due to the high collinearity
among features, especially among cortical thick-
ness features from the eight meta-ROIs, we further
incorporated a feature selection step into each classi-
fication method (detailed below).

Model based method: LASSO logistic regression.
A logistic regression classifier with a Least Absolute
Shrinkage and Selection Operator (LASSO) was used
to evaluate the importance and performance of clin-
ically available features in predicting AD pathology
(ADNC0&1 (0) versus ADNC3 (1) groups). Briefly,
LASSO parametrically shrinks the logistic regression
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Fig. 2. Classification schema. Black box (on the left): Clinically accessible features included in this study; Blue boxes (top part on the right):
training and validating machine learning models in classifying the presence or absence of severe AD neuropathological status in NACC
participants; Orange boxes (bottom part): External validation of trained models in classifying in vivo amyloid positivity status determined
by PET imaging using CNTN subjects.

coefficient of each feature by imposing a penalty term
on its absolute value in the objective function [39]. In
this case, LASSO ensures that the retained features
are the best features that explain the group differences
while maintaining a low variance by shrinking the
coefficients of all other unexplained features to zero
[40]. Since logistic regression assumes sigmoidal
relationships between dependent and independent
variables, two binary variables were created to sep-
arately code subjects with one and two copies of
APOE4 alleles, and two binary variables were cre-
ated to separately code subjects with MRI collected
on Siemens and Philips scanners (i.e., GE scanner
coded as baseline), resulting in a total of 17 features.

Using a 10-fold cross-validation strategy, the fea-
ture set that produced the minimum cross-validation
error in LASSO-logistic-regression was retained and
further utilized in a reduced logistic regression model
to classify the probability of assigning a participant
to the severe AD neuropathology group (ADNC3).
The resulting probability was then compared with
the true group assignment using the receiver operat-
ing characteristic (ROC) curve method. To offset the
population imbalance among two groups (53 versus
91), the threshold used to binarize the probability for
final group assignments (s) was set as the point on the
ROC curve that gives the minimum total false discov-
ery rate (false positive rate (FPR) plus false negative
rate (FNR)), instead of the commonly used value of
0.5. Sensitivity, precision, specificity, accuracy, F1-
score were reported at this threshold, and area under
the ROC curves (AUC) was further used to evaluate
the overall classifier performance.

The final trained reduced logistic regression model
was then tested on the independent CNTN data set to
classify amyloid positivity status. The same threshold
(s) was utilized to binarize the obtained probabil-
ity of assigning participants to the amyloid positive
group, and the same matrices were used to evaluate
the classifier performance.

Data-driven method: Random Forest. We also uti-
lized the data-driven random forest method for the
same classification to take advantage of both lin-
ear and nonlinear relationships between the clinically
available features and AD neuropathology.

The random forest classifier is an ensemble learn-
ing method that operates by constructing a large
number of decision trees. Each decision tree is
constructed using a bootstrapping sample from the
original data, and splits participants based on mini-
mum total impurity score criteria computed at each
partition [40]. The concluding result of the random
forest analysis is determined by counting the majority
determination from all decision trees for each sam-
ple. In general, approximately 1/3 of participants are
left out-of-box (OOB) for each decision tree during
bootstrapping. Therefore, the classification of OOB
samples were utilized as cross-validation results to
evaluate the model performances.

We first trained a random forest model with
1000 decision trees using all NACC participants
with 15 clinically available features (detailed above).
These 15 features were ordered based on the
OOB permutation-based feature importance scores.
Briefly, this score for a specific feature measures the
decrease in mean accuracy when permuting that spe-
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cific feature in the OOB samples, non-parametrically.
We also computed a Gini importance score for each
feature. The detailed explanations of both feature
importance measures are included in Supplementary
Material C.

Next, we performed a recursive feature elimination
(RFE), during which we trained 15 individual ran-
dom forest models, each with 1000 decision trees, by
dropping the least important feature in each iteration,
respectively. To evaluate each model performance,
the predicted probabilities of OOB validation sam-
ples were obtained and compared with the true group
assignment using the same ROC curve-based method.
The model that gave the maximum OOB valida-
tion AUCs among all 15 random forest models was
selected as the most accurate model, and the features
included were considered as the selected features.
This most accurate model was further evaluated using
the independent CNTN participants.

Test the model performance when including
participants with ADNC3 and low-level Lewy
bodies comorbidities

Up to 50% of participants with severe AD neu-
ropathology (i.e., the ADNC3 group) could have
some degree of Lewy bodies [41]. Many participants
with both severe ADNC and low-level Lewy bod-
ies in the brain stem, amygdala or olfactory bulb,
present with AD clinically. Thus, to test the utility
of our models with a more comprehensive real-world
severe AD group, we further trained and tested our
models by including participants with Lewy bodies
in brain stem (NPLBOD = 1, Nsub = 5), amygdala,
(NPLBOD = 4, Nsub = 32) and olfactory bulb (NPL-
BOD = 5, Nsub = 4) in the severe ADNC group.

RESULTS

Demographic comparison

ADNC0&1 and ADNC3 groups in NACC did
not significantly differ with regard to sex and
years of education, and both groups were more
than 90% White (Table 1A). There were signifi-
cantly more APOE4 carriers in the ADNC3 group
(p < 0.001), consistent with the AD neuropathol-
ogy represented in the ADNC3 group. At their first
MRI visit, participants with ADNC0&1 were slightly
younger (p = 0.06) and had a larger age variation, i.e.,
68.93 ± 19.69 for ADNC0&1 versus 73.60 ± 9.24
for ADNC3. Participants with ADNC3 had signif-

icantly more advanced disease (p < 0.001). There
were no differences in the time intervals between
the first MRI visit and the neuropathological data
between ADNC3 and ADNC0&1 groups. In addi-
tion, a significantly larger number of participants with
ADNC3 had their MRI scans collected on 3T scan-
ners (p = 0.01) and with the implementation of IR
(p < 0.001), as compared to the ADNC0&1 group.
Interestingly, WM-to-GM SNRs for these scans did
not differ between the two groups.

For comorbidities (Table 1C), both groups had a
high prevalence of vascular changes (>90%). Around
80% of participants had TDP43 pathologies assessed
in the brain, among which, participants with ADNC3
had a relatively higher prevalence of comorbidities
with TDP43 neuropathology.

Among CNTN participants (Table 1B), when com-
pared to the amyloid negative group, the amyloid
positive group had a significantly higher compos-
ite SUVR (1.44 ± 0.15 versus 0.99 ± 0.05), a lower
proportion of women (p = 0.02), and more APOE4
carriers (p < 0.001). Education level did not differ
between the two groups. At their first MRI scan, amy-
loid positive participants were also older (p = 0.02)
and more advanced into disease (p < 0.001) than amy-
loid negative participants.

Classification performance: LASSO logistic
regression model

Feature selection. Figure 3A plots the 10-fold
cross-validation error as a function of strengths of the
regularization term in the LASSO-logistic-regression
model trained to classify AD neuropathological sta-
tus, i.e., ADNC3 versus ADNC0&1, among NACC
participants. As listed in the intersect table in Fig. 3A,
six features were selected with the minimum cross-
validation error. More specifically, having one copy or
two copies of APOE4 alleles were positively associ-
ated with severe AD neuropathology, whereas having
greater cortical thickness in fusiform and entorhinal
ROIs were negatively associated with severe AD neu-
ropathology. Scanner field strength was also selected
as an important feature in this model.

Model performance with selected features. Fig-
ure 3B shows the cross-validation ROC curve of
the reduced logistic regression model trained with
six selected features. The cross-validation AUC was
0.88 (Fig. 3B, intersect table). A threshold of 0.55
was used to binarize the probability for final group
assignments, corresponding to the point on the ROC
curve with minimum total false rate (Fig. 3B). Using
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Fig. 3. LASSO-logistic regression results. A) Feature selection results. Cross-validated (CV) deviance of LASSO-logistic-regression models,
trained with NACC participants to classify the presence or absence of severe AD neuropathological status (ADNC3 versus ADNC0&1), as
a function of regularization strength in LASSO (lambda). The green circle corresponds to the selected model with a minimum CV deviance.
The intersect table lists the beta coefficient in the logistic regression model of each selected feature. B) Model performance with selected
features. ROC curve for CV performance of the reduced logistic regression model trained with 6 selected features to classify ADNC3 versus
ADNC0&1. The red filled dot indicates the point with the lowest total false rate (false positive rate (FPR) + false negative rate (FNR)). The
corresponding threshold s = 0.55 is used to binarize the predicted probability in assigning participants to the ADNC3 group. Using this model
with this threshold, the intersect table shows the CV-performance with NACC participants to classify AD neuropathological status (ADNC3
versus ADNC0&1) and external testing results with CNTN participants to classify amyloid positivity status (amyloid positive versus amyloid
negative).

this threshold to binarize the predicted probability
in assigning participants to the ADNC3 group, the
cross-validation accuracy, sensitivity, specificity, pre-
cision, and F1-score were 77.78%, 72.09%, 87.76%,
91.18%, and 0.81, respectively (Fig. 3B, intersect
table).

Independent testing performance. The bottom row
in Fig. 3B intersect table lists the performance in
applying this reduced logistic regression model to
classify amyloid positivity status in the independent
CNTN data set (i.e., classifying amyloid positive
versus amyloid negative status). Using the same
threshold (0.55) to binarize the predicted probability,
the independent testing accuracy, sensitivity, speci-
ficity, precision, and F1-score were 76.38%, 75.00%,
77.78%, 77.42%, and 0.76.

Classification performances: data-driven
Random Forest model

Feature selection. Figure 4A plots the feature
importance score in the trained random forest model
to classify severe AD neuropathology, i.e., ADNC3
versus ADNC0&1, using 15 clinically available fea-
tures of NACC participants. As shown in Fig. 4A,
the OOB permutation-based feature importance score

and the Gini impurity index were highly corre-
lated, with a Pearson’s correlation value of 0.86. We
next ranked these 15 features based on the OOB
permutation-based feature importance score and per-
formed the RFE. Table 2 lists features included in
each model (right), and the corresponding model per-
formances on OOB samples (left).

As shown in Fig. 4A, APOE genotype showed
the highest feature importance score. Random for-
est model trained using APOE alone achieved an
AUC of 0.63 in classifying ADNC groups on OOB
samples (Table 2, last row). The final selected ran-
dom forest model was trained using APOE genotype,
age, and thicknesses of left middle temporal gyrus,
left inferior temporal gyrus, left entorhinal cortex,
and right fusiform gyrus as features (N-features = 6),
which gave the highest AUC of 0.89 on OOB samples
(Table 2, 10th row).

Model performance with selected features. Fig-
ure 4B plots the ROC curve of the retained random
forest model trained with the six selected features. A
threshold of 0.59, corresponding to the lowest total
false rate on the ROC curve, was used to binarize
the predicted probability in assigning participants to
the ADNC3 group. As listed in the intersect table
in Fig. 4B, the OOB-validation accuracy, sensitiv-
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Fig. 4. Random forest results. A) Feature selection results. Out-of-box (OOB) permutation based (blue bars) and Gini impurity index (orange
curve) based feature importance scores in the random forest model trained using all features from NACC participants to classify the presence
or absence of severe AD neuropathological status (ADNC3 versus ADNC0&1). Stars (*) indicate features retained in the final model. B)
Model performance with selected features. ROC curve of the random forest model with the 6 selected features (detailed in Table 2). The red
filled dot indicates the point with the lowest total false rate (false positive rate + false negative rate). The corresponding threshold s = 0.5863
is used to binarize the predicted probability in assigning participants to the ADNC3 group. Using this model with this threshold, the intersect
table shows the OOB-validation-performance with NACC participants to classify AD neuropathological status (ADNC3 versus ADNC0&1)
and external testing results with CNTN participants to classify amyloid positivity status (amyloid positive versus amyloid negative).

ity, specificity, precision, and F1-score were 84.03%,
84.62%, 83.02%, 89.53%, and 0.87, respectively.

Independent testing performance. The bottom row
in Fig. 4B intersect table shows the performance in
applying this model to classify amyloid positivity
status in the independent CNTN data set (amyloid
positive versus amyloid negative). Using the same
threshold (0.59) to binarize the predicted probability,
the independent testing accuracy, sensitivity, speci-
ficity, precision, and F1-score were 70.14%, 57.75%,
82.19%, 75.93%, and 0.66.

Model performances with various starting feature
sets. To comprehensively evaluate our model perfor-
mances, we re-trained our random forest model by
1) removing APOE genotype from the starting fea-
ture set; 2) removing both APOE genotype and age
from the starting feature set; 3) adding clinical diag-
noses to the starting feature set; and 4) adding clinical
diagnoses and removing APOE genotype from the
starting feature set. Table 3 lists AUCs on the OOB
and independent testing sets in these models trained
with different starting feature sets.

Without APOE genotype, our model achieved an
AUC of 0.82 in classifying the presence or absence
of severe AD neuropathology in OOB samples and
an AUC of 0.62 in classifying amyloid positivity sta-
tus in the external validation data set (3rd column

Table 3). These AUCs further dropped to 0.80 and
0.59 on the OOB and external validation samples,
respectively after removing age from the starting fea-
ture set. Without APOE and age, our model selected
seven thickness measures from eight meta-ROIs as
predictive features (4th column Table 3). On the other
hand, adding clinical diagnoses to the model boosted
AUCs to 0.93 and 0.77 on the OOB and external vali-
dation samples, respectively (5th column in Table 3).
Removing APOE4 genotype on top of this model still
guaranteed AUCs of 0.92 and 0.71 on the OOB and
external validation samples, respectively (6th column
in Table 3).

Model utilities when including participants with
ADNC3 and low-level Lewy body co-pathologies

An additional 41 participants with ADNC3 and
Lewy bodies in the brain stem, amygdala, or olfactory
bulb were included in the analyses.

Our lasso logistic regression model selected a sim-
ilar set of six features as the main analyses with
the minimum cross-validation error (having one or
two copies of APOE E4 allele, cortical thicknesses
encompassing fusiform and entorhinal ROIs, and
scanner field strength, Supplementary Material D).
With these features, the cross-validation accuracy,
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Table 2
Feature selection results in random forest models. Left. Out-of-box (OOB) validation performances of each random forest model trained with Top-15 to Top-1 important features, respectively.
In each iteration, we recursively drop the feature with the lowest feature importance score. AUC is computed using the ROC curve method (column AUC). The threshold corresponding to the
point on the ROC that gives the minimum total false rate (i.e., false positive rate + false negative rate) is used to binarize the probability of assigning participants to the ADNC3 group (column
Threshold), and to further compute the accuracy, sensitivity, specificity, precision and F1score. Right. The corresponding features included in each model. The model with the highest OOB AUC
is selected as the best model (highlighted in bold). APOE genotype, age, thicknesses of right fusiform gyrus, left middle temporal gyrus, left inferior temporal gyrus, and left entorhinal cortex are

retained in this model

ACC Sensitivity Specificity Precision F1score AUC Selected Features

81.25% 79.12% 84.91% 90.00% 0.8421 0.8831 lh ERC rh ERC lh ITG rh ITG lh MTG rh MTG lh FUS rh FUS sex age edu APOE field-
strength

manu-
facturer

IR

82.64% 84.62% 79.25% 87.50% 0.8603 0.8780 lh ERC rh ERC lh ITG rh ITG lh MTG rh MTG lh FUS rh FUS age edu APOE field-
strength

manu-
facturer

IR

84.03% 85.71% 81.13% 88.64% 0.8715 0.8842 lh ERC rh ERC lh ITG rh ITG lh MTG rh MTG lh FUS rh FUS age edu APOE field-
strength

IR

84.03% 91.21% 71.70% 84.69% 0.8783 0.8810 lh ERC rh ERC lh ITG rh ITG lh MTG rh MTG lh FUS rh FUS age APOE field-
strength

IR

81.94% 83.52% 79.25% 87.36% 0.8539 0.8763 lh ERC rh ERC lh ITG rh ITG lh MTG rh MTG lh FUS rh FUS age APOE field-
strength

81.25% 78.02% 86.79% 91.03% 0.8402 0.8819 lh ERC lh ITG rh ITG lh MTG rh MTG lh FUS rh FUS age APOE field-
strength

79.86% 74.73% 88.68% 91.89% 0.8242 0.8755 lh ERC lh ITG lh MTG rh MTG lh FUS rh FUS age APOE field-
strength

82.64% 85.71% 77.36% 86.67% 0.8619 0.8758 lh ERC lh ITG lh MTG rh MTG lh FUS rh FUS age APOE
84.03% 86.81% 79.25% 87.78% 0.8729 0.8761 lh ERC lh ITG lh MTG rh MTG rh FUS age APOE
84.03% 84.62% 83.02% 89.53% 0.8701 0.8870 lh ERC lh ITG lh MTG rh FUS age APOE
82.64% 83.52% 81.13% 88.37% 0.8588 0.8822 lh ERC lh ITG lh MTG rh FUS APOE
83.33% 83.52% 83.02% 89.41% 0.8636 0.8745 lh ITG lh MTG rh FUS APOE
82.64% 80.22% 86.79% 91.25% 0.8538 0.8611 lh ITG lh MTG APOE
81.94% 79.12% 86.79% 91.14% 0.8471 0.8313 lh MTG APOE
75.56% 68.60% 87.76% 90.77% 0.7815 0.6327 APOE

lh, left-hemisphere; rh, right-hemisphere; ERC, entorhinal cortex; ITG, inferior temporal gyrus; MTG, middle temporal gyrus; FUS, fusiform gyrus; IR, inversion recovery; AUC, area under the
ROC curve; ACC, accuracy.
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Table 3
Random forest performance with different sets of starting features. Main model refers to the model in Table 2, starting with 15 features (Age,
sex, education, APOE status, scanner field strength, scanner manufacturer, scanner protocol and 8 meta-ROI thicknesses). Selected features

were ordered based on out-of-box (OOB) permutation-based feature importance score in each model

Main model No APOE No APOE & no age Main model & with DX No APOE & with DX

Cross-validation AUC 0.8870 0.8189 0.7960 0.9328 0.9165
Test AUC 0.6997 0.6234 0.5790 0.7695 0.7145
Selected features APOE lh MTG lh MTG DX DX

lh MTG rh FUS rh FUS age age
lh ITG lh ITG lh ITG APOE lh ERC
rh FUS age rh MTG lh MTG rh MTG
lh ERC lh ERC lh ITG rh ITG

age rh ITG lh ERC lh ITG
rh ERC lh MTG

rh FUS
edu

DX, diagnoses; lh, left-hemisphere; rh, right-hemisphere; ERC, entorhinal cortex; ITG, inferior temporal gyrus; MTG, middle temporal
gyrus; FUS, fusiform gyrus; AUC, area under the ROC curve. edu: years of education.

sensitivity, specificity, precision, F1-score, and AUC
were 75.57%, 70.08%, 89.80%, 94.68%, 0.81, and
0.88; and the independent testing accuracy, sensitiv-
ity, specificity, precision, F1-score, and AUC were
76.38%, 75.00%, 77.78%, 77.41%, 0.76, and 0.76
(Supplementary Material D).

Random Forest model also gave comparable
results as our main analyses, with the OOB-validation
accuracy, sensitivity, specificity, precision, F1-score,
and AUC being 87.70%, 88.63%, 83.02%, 92.86%,
0.91, and 0.90, respectively. The independent testing
accuracy, sensitivity, specificity, precision, F1-score,
and AUC were 70.83%, 63.38%, 78.08%, 73.77%,
0.69, and 0.71 (Supplementary Material D).

DISCUSSION

In this study, we have developed machine learn-
ing models that can classify the presence or absence
of severe AD neuropathology using available clini-
cal and MRI features with an accuracy of 84.03%.
We further validated these models in an independent
data set to classify in vivo amyloid status derived
from PET imaging, where we achieved an accuracy
of 70.14%. Consistent with our hypothesis, corti-
cal thinning encompassing AD-signature meta-ROIs,
together with APOE genotype, are jointly impor-
tant for identifying severe AD neuropathology. We
specifically excluded participants with Lewy body,
FTLD-TDP, and FTLD-tau pathologies from our
analyses in an effort to ensure the dominance of AD-
related neuropathology in our data. Therefore, the
retained MRI features might potentially represent an
AD-specific neurodegeneration pattern.

Major strength

Currently, there is a lack of well-established mod-
els that could classify postmortem confirmed AD
neuropathological status using clinically available
and noninvasive features in living persons. Accord-
ingly, there are limited in vivo biomarkers that could
directly link neurodegeneration features to AD neu-
ropathology within the ATN framework. Several
studies have utilized MRI-derived measures includ-
ing hippocampal volume, thickness of AD-signature
ROIs, and composite atrophy scores as potential
candidate markers of neurodegeneration for use in
classifying AD-related outcomes. These studies have
usually focused on clinically diagnosed subjects
along the AD continuum [13, 17, 22, 23], and only
a few reports have confirmed subjects’ neuropatho-
logical status with postmortem autopsy data [19, 24,
42]. Without pathological confirmation, the identified
neurodegeneration markers in clinically diagnosed
AD subjects might not be linked to AD neuropathol-
ogy, due to the syndromal overlap across various
dementias. For example, hippocampal atrophy, which
has often been studied in AD [11], has also been
widely reported in various conditions including nor-
mal aging, several other neurodegenerative disorders
and non-neurodegenerative disorders such as dia-
betes, sleep apnea, and bipolar disorder [5].

In this regard, the major strength of our study is
the inclusion of NACC participants with confirmed
no/low (ADNC0&1) or severe (ADNC3) AD neu-
ropathology at autopsy. The ADNC score integrates
postmortem assessments of Thal phase for amyloid
plaques, Braak stage for neurofibrillary degenera-
tion, and density of neocortical neuritic plaques,
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and therefore represents a comprehensive evaluation
of AD-dominant neuropathology [34]. We excluded
participants with confirmed Lewy body, FTLD-TDP,
and FTLD-tau pathologies to further establish the
dominance of AD-related neuropathology in our
ADNC0&1 and ADNC3 groups. Consequently, our
ADNC0&1 and ADNC3 groups were dominated by
lower and higher stages of A, B, and C scores respec-
tively with minimal overlap (Supplementary Material
E), leading to a specific representation of the pres-
ence or absence of severe AD neuropathology. We
obtained high accuracies on both cross-validation
sets with postmortem confirmed AD pathological
status and external validation sets with in vivo deter-
mined amyloid status (Figs. 3 and 4). These results
demonstrate that our models can reliably classify
AD neuropathology both postmortem and in vivo.
Confirmed with neuropathological data, the retained
clinical features may be AD-specific and could assist
in determining AD neuropathological status in living
persons, especially when the etiology is uncertain and
other AD biomarkers are unavailable clinically. The
inclusion of ADNC stage 1 participants increased our
sample size and facilitated the “real world” applica-
tion of our approach. The external validation against
in vivo biomarkers additionally facilitates translation
to clinical applications.

Classification models

For this classification, we trained both a logistic
regression model and a data-driven random forest
model with features including thicknesses from AD
signature meta-ROIs, APOE genotype, age, sex, and
years of education (Fig. 2). Most previous studies
focused on between-group differences of each poten-
tial biomarker to define neurodegeneration in AD [17,
27]. The logistic regression model similarly evaluates
the predictive ability of individual features and would
work well when groups are linearly separable [7].
Random forest, on the other hand, is a data-driven
machine learning method that evaluates multivari-
ate predictive abilities among input features towards
output variables in a nonlinear manner [40]. There-
fore, these two methods complement each other and
comprehensively evaluate both linear and nonlinear
multivariate relationships among potential neurode-
generation biomarkers and AD neuropathological
status. The high classification accuracies obtained
with both models additionally support our hypothesis
that these included features for classifying confirma-
tory AD neuropathology, and thus the retained MRI

features can be utilized to quantify AD-specific neu-
rodegeneration.

Clinically available features

Features included and retained in our models are
clinically accessible and have already been included
in AD legacy databases, which improves the poten-
tial clinical utility. Due to high collinearities among
meta-ROI thickness measures, feature selection steps
are applied in both models. Logistic regression is
parsimonious (i.e., fewer but independent predic-
tors could explain the model better than more but
collinear predictors). LASSO in logistic regression
sets coefficients for non-interesting features to zero
automatically by posting a penalty term on the coef-
ficient in the objective function [39]. This parametric
feature selection step copes with the collinearity
among features by only retaining features that explain
the most group differences [39, 40]. Meanwhile, the
permutation index in random forest evaluates the
decrease in model performances (i.e., classification
accuracies) when a given feature is randomly per-
muted.

In our analysis, both parametric (LASSO in logistic
regression) and nonparametric (permutation index in
random forest) feature selection results indicate that
APOE4 allele counts contribute most significantly
to classifying the presence or absence of severe AD
neuropathology (Figs. 3A and 4A). This result may
be partially explained by the large overlap between
APOE4 carriers and amyloid positive subjects along
the AD continuum [30]. After removing the APOE4
allele counts from the starting feature set, our random
forest model still achieved reasonable performance
on both cross-validation dataset (AUC = 0.82 in clas-
sifying ADNC groups) and external validation dataset
(AUC = 0.62 in classifying amyloid positivity status,
Table 3).

Besides APOE4 carrier status, our results con-
sistently show that cortical thinning encompassing
AD-signature meta-ROIs contribute to the classifi-
cation of the presence or absences of severe AD
neuropathology. The inclusion of the first cortical
thickness measure to the random forest model signif-
icantly boosted the AUC from 0.63 to 0.83 (bottom
two rows in Table 2). Incorporating additional thick-
ness measures led to an incremental effect on model
performances (Table 2), indicating that cortical thick-
ness measures of meta-ROIs might have comparable
impact in classifying confirmatory AD neuropathol-
ogy. We observed a left-right difference in cortical
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thickness measures of all four meta-ROIs in the paired
t-test (Supplementary Material F). In random forest,
thicknesses on the left hemisphere were more fre-
quently selected (Table 2 and Fig. 4), whereas in
LASSO logistic regression, two right hemisphere and
one left hemisphere features were retained (Fig. 3).
These observations further suggest that all meta-
ROI thicknesses could be important to our models.
Nevertheless, our random forest model trained with
meta-ROI thicknesses in addition to APOE4 and age
could boost the AUC on OOB samples from 0.79
to 0.89, and on external validation samples from
0.58 to 0.70 (Table 3). These findings demonstrate
the additive contribution of MRI-derived thickness
measurements to APOE4 and age in classifying AD
neuropathological status in living persons, and further
validate the predictive ability and potential clinical
utility of AD meta-ROIs.

In addition to individual thickness measures, we
also trained a logistic regression model using aver-
age thickness estimated across eight meta-ROIs as
the only thickness feature. We obtained AUCs of
0.8723 and 0.7473 on the cross-validation and inde-
pendent testing samples that were comparable to our
main model (0.8751 and 0.7639 in Fig. 3). These
comparable results suggest subtle benefits of using
individual regions versus the average measure. One
possibility is that our limited and unbalanced sample
sizes may hinder significant performance improve-
ment through data-driven feature selections. Thus,
future studies with larger samples and more balanced
groups may more effectively demonstrate the advan-
tages of integrating measures from individual regions
with data-driven methods, compared to relying on
composite averages. Nevertheless, our major goal is
to train a model that could classify the presence or
absence of severe AD neuropathology with clinically
available features. To this end, results from models
using on average meta-ROI measure further confirm
the classification ability and potential clinical utility
of AD meta-ROIs.

Clinical diagnoses might also be considered as
a feature that could assist in the classification of
AD neuropathology. Our random forest model with
additional clinical diagnoses as features did further
increase AUCs to 0.93 and 0.77 on the OOB and
external validation samples, respectively (Table 4).
Nonetheless, we did not include the clinical diagnoses
in our model mainly due to the potential discrepan-
cies between clinical and pathological AD diagnoses.
In general, about 10% to 30% clinical AD cases do
not display typical AD neuropathological changes

at autopsy [6, 43]. Many clinical centers, includ-
ing our CNTN, are now requiring a positive amyloid
status to diagnose AD, which could introduce poten-
tial circularities between AD diagnoses and amyloid
neuropathology. In addition, despite being a reliable
measure in classifying AD neuropathological status,
efforts and expertise are required for clinical diag-
noses, whereas objective measures combined could
possibly achieve a similar performance. To this end,
our machine learning model would be helpful in aid-
ing the pathological AD diagnoses in living persons
with clinically available features, particularly when
handling those 10%–30% cases where an AD diagno-
sis is not straightforward with overlapping symptoms.

Last, to increase the sample size, we included
NACC participants with both 1.5T and 3.0T struc-
tural MRI scans in training our machine learning
models. Previous studies with the same subjects
scanned on both 1.5T and 3.0T scanners have shown
fair to good between-scanner consistencies for 68
FreeSurfer cortical regions and derived measures [44,
45]. In training our models, we included scanner
field strength, scanner manufacturer, and scanning
protocols (i.e., implementation of IR) as features.
As compared to MRI features, relatively smaller
feature importance scores were obtained in our ran-
dom forest model for these scanner related features
(Fig. 4A). This observation, together with previ-
ous reports, demonstrates that structural MRI-derived
features could be robust and reliable, and therefore
further supports the potential clinical utility of AD
meta-ROI thickness measures.

Detailed examination of the large age-variance
in ADNC0&1 group

As shown in Table 1A, our ADNC0&1 group had
large age variance (68.93 ± 19.69). A detailed exam-
ination revealed that this was driven by inclusion of
seven participants under the age of 40 at time of
the MRI scan and 45 at death, respectively (Sup-
plementary Material G). All seven participants were
characterized as ADNC = 0 and without any FTLD-
tau, FTLD-TDP, Lewy body, TDP-43, ALS-MND,
or trinucleotide diseases pathologies. Five out of
seven participants exhibited vascular changes. Clini-
cally, all seven participants were diagnosed with MCI
or dementia. We chose to retain these seven par-
ticipants in our analyses because 1) they met our
inclusion/exclusion criteria; 2) our major goal is to
train a model that could classify the presence or
absence of severe AD neuropathology; and 3) the



16 X. Zhuang et al. / Classify AD Pathology with Clinical-Available Features

ADNC3 group included more participants and we
sought to avoid introducing further additional sources
of bias via more unbalanced group sizes.

As a result, in our main random forest model,
six out of these seven participants were classified
as no or low AD neuropathology group during
cross-validation, which further suggest the potential
utilities of our model to determine AD neuropatho-
logical status in living persons. In addition, we further
tested whether model performance was driven by
these seven ADNC0 participants by repeating our
analyses after excluding them from the ADNC0&1
group (Supplementary Material G). As compared to
our main LASSO-logistic regression model (Fig. 3),
comparable AUCs were obtained on both cross-
validation (0.8751 versus 0.8714) and independent
testing data sets (0.7639 versus 0.7711). These results
confirm that our model results did not appear to be
driven by these seven participants.

Limitations

The utilization of the NACC participants with neu-
ropathology data is a notable strength of our study,
but it also introduces limitations that may impact gen-
eralizability. The most significant is that our analyses
had a relatively small number of participants with
no AD neuropathology, as compared to the number
of participants with severe AD neuropathology. This
group imbalance stems from the fact that the NACC
database is heavily enriched for AD neuropathology.
This bias could also limit us to comprehensively and
impartially evaluate feature importance. To reconcile
this bias, we have 1) combined ADNC1 with ADNC0
participants to increase the sample size and represent
a “real-world” group of no or low levels of ADNC;
2) utilized thresholds that give minimum total false
rates to binarize the probability for group assign-
ments in training our classification models; and 3)
validated the trained models using an external dataset
with balanced sample sizes. Future replication with a
balanced group design would lend additional support
to our results.

Although we tried to eliminate comorbidities by
removing participants with confirmed Lewy body,
FTLD-TDP and FTLD-tau pathologies using NPL-
BOD, NPFTDTDP, and NPFTDTAU variables in
NACC Neuropathology Data Set. We were not able to
fully exclude vascular changes and TDP43 pathology
due to the high prevalence and limited assessments,
respectively. Because AD neuropathological levels
were low in ADNC0&1 group, it may be possible

that these comorbidities could contribute to the clin-
ical symptoms in this group [46, 47]. Our current
analyses were limited by sample-size in ADNC0&1
group to further exclude participants based on any
clinical or neuropathological criteria related to vas-
cular changes and TDP43 pathology (Table 1). With
an increased sample size, future analyses could ben-
efit from removing participants with a non-normal
clinical diagnosis in this group to further refine the
classification and prediction of AD neuropathology.
Methodologically, we considered it less problematic
to include participants with TDP43 pathology and
vascular changes in the ADNC3 group, because AD-
neuropathology was severe, and was likely to be the
strongest pathological contributor to clinical symp-
toms and patterns of neurodegeneration. In addition,
our model was tested by including participants with
ADNC3 and low-level Lewy body neuropathol-
ogy. Given the prevalence of comorbidities between
severe AD and Lewy bodies in real-world subjects,
the comparable performances (Supplementary Mate-
rial D) further demonstrated our models’ utilities with
a more comprehensive representation of real-world
severe AD cases. The relatively limited number of
participants in the ADNC0&1 group might restrict us
from observing any significant differences by includ-
ing more participants with ADNC3 and Lewy bodies.

Additional limitations arise in our use of data
from the NACC database, as there is relatively lim-
ited representation of racial and ethnic minorities
with an overrepresentation of a highly educated and
non-Hispanic White population in NACC. It remains
unclear whether our results would generalize well
to more diverse samples. Future efforts focusing on
replicating and validating our models in novel diverse
cohorts would be necessary before potential utilities.

It is also important to highlight that even though all
features included and retained in our machine learn-
ing models are clinically accessible, they may not be
widely available, especially outside of specialty clin-
ics. For instance, to achieve the best performance of
our model, either genotyping or sequencing analyses
are required to obtain the APOE genotype. Thickness
measurements for meta-ROIs also require detailed
processing of structural MRI scans. Therefore, while
our models are still optimized for research settings
and have the potential for clinical applications, they
cannot be deployed currently in non-specialized clin-
ical settings (e.g., primary care).

Furthermore, although we demonstrated that thick-
ness measures did not significantly differ among
scanner types, we observed a trend of scanner effect



X. Zhuang et al. / Classify AD Pathology with Clinical-Available Features 17

on thickness measures in our relatively small samples
(Supplementary Material A). For future studies with
larger samples, harmonization of thickness measures
across scanners might be preferrable, such as those
produced by the ComBAT tool [48]. In addition, the
current study did not assess the model performance
with other features that might be available in special-
ized clinics, such as neuropsychological measures or
blood-based biomarkers. We did not seek access to
these features from NACC to train our model, as 1)
our validation cohort (CNTN) had limited informa-
tion on these features, and 2) these features might be
invasive, subjective and more variable. Nevertheless,
if these features are easily available, future initiatives
should be undertaken to develop similar approaches
to those presented here.

Conclusion

We have developed machine learning models to
classify the presence or absence of severe AD
neuropathology using clinically accessible features.
Satisfactory accuracies are obtained in classifying
both postmortem confirmed AD neuropathological
status on the cross-validation data set and in vivo
amyloid status on the external validation data set.
Our models further indicate that APOE genotype and
cortical thinning encompassing AD meta-ROIs are
the most important biological features for classifying
AD neuropathological status. Therefore, the retained
MRI features may represent an AD-specific neurode-
generation pattern within the ATN framework. Future
replications and validations on ethnically and racially
diverse samples with balanced pathology groups are
necessary before potential clinical utilities.
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