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Abstract. The “amyloid cascade” hypothesis of Alzheimer’s disease (AD) pathogenesis invokes the accumulation in the brain
of plaques (containing the amyloid-� protein precursor [A�PP] cleavage product amyloid-� [A�]) and tangles (containing
hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis
suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in
which the A�PP cleavage product C99, not A�, is the main culprit, via its role as a regulator of cholesterol metabolism. C99,
which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes
(MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with
mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in
increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes,
thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any
genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again
upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark
disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated
elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom,
a lipid disorder.
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THE PROBLEM

Alzheimer’s disease (AD) is the most common,
and arguably the most devastating, neurodegenerative
dementia of the elderly [1]. The two main histopatho-
logical hallmarks of AD are the accumulation of
extracellular neuritic plaques containing amyloid-�
(A�) and of intracellular neurofibrillary tangles con-
sisting mainly of hyperphosphorylated forms of the
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microtubule-associated protein tau. The vast major-
ity of AD is sporadic (SAD), but a genetic variant of
apolipoprotein E (APOE), APOE4, predisposes peo-
ple to the disease [2]. Mutations in three genes have
been identified in the autosomal-dominant familial
form (FAD): amyloid-� precursor protein (APP),
presenilin-1 (PS1; gene PSEN1), and presenilin-2
(PS2; gene PSEN2). Presenilins are components of
the �-secretase complex that, together with �- and
�-secretase (BACE1), processes A�PP [3].

In the “non-amyloidogenic” pathway (Fig. 1A,
left), full-length A�PP (∼700 aa) is first cleaved
by �-secretase at the plasma membrane (PM) to
produce a long soluble N-terminal fragment (NTF;
sA�PP�) and a short membrane-bound 83-aa
C-terminal fragment (CTF), called C83 (�-CTF).
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C83 is then cleaved by the �-secretase complex to
produce two peptides, P3 and the A�PP intracellular
domain (AICD), a nucleus-targeted transcription
factor. In the alternative “amyloidogenic” pathway
(Fig. 1A, right), full-length A�PP is first cleaved
by BACE1 within endosomes to produce a slightly
shorter soluble N-terminal fragment (sA�PP�), and
a correspondingly slightly longer 99-aa membrane-
bound C-terminal fragment, called C99 (�-CTF)
[4]. C99 is then cleaved by the �-secretase complex
to produce two peptides, A� (predominantly 40-aa
long [A�40]) and AICD [5].

In the most widely-accepted pathogenetic model
of AD, both SAD and FAD arise when A�PP
is misprocessed to produce a slightly longer,
aggregation-prone, form of A� (A�42) that accumu-
lates in the plaques [1]. The A� is toxic to cells, and
the resulting stress stimulates tau hyperphosphoryla-
tion, leading to the tangles. The senile plaques are
proposed to be the cause of the disease. The overall
process has been called the “amyloid cascade” [1, 6,
7]. However, there are other data that challenge this
perspective. For example, plaques are prevalent in the
brains of aged subjects without dementia [8]. More-
over, an AD-protective isoform of APOE3, known
as the “Christchurch” variant, was recently shown to
delay AD symptoms in an FADPS1 patient in spite of
unusually high brain plaque levels [9].

Numerous in vitro studies have shown that high
levels of soluble or oligomerized A� can induce cell
toxicity through multiple mechanisms, such as mem-
brane damage, mitochondrial dysfunction, and tau
phosphorylation [10]. However, these results could
not be replicated in animal models of AD [11], casting
doubt on what looked initially to be a straightfor-
ward hypothesis. Nevertheless, the field continued
to produce data further cementing amyloid’s puta-
tive role as the main cause of neuronal death in AD,
which, in turn, stimulated a search for compounds
to inhibit A� production [12]. Disappointingly, most
anti-A� strategies and the use of BACE1 inhibitors
[13] have had limited success in ameliorating clini-
cal outcome [14], and �-secretase inhibitors, rather
than improving disease outcomes, made them worse
[15].

IMPLICATIONS OF THE AMYLOID
CASCADE

When amyloid was observed to be abundant in
plaques in AD brains, the logical conclusion was that

its production was augmented, and that a patholog-
ical hallmark as conspicuous as plaques had to be
relevant to the disease mechanism. Later, the discov-
ery that �-secretase is the only enzyme responsible
for A� production [16] led some to the conclusion
that its activity in AD was increased [17], resulting in
toxic higher concentrations of A� that were deposited
in the plaques, and became the source of the idea that
AD pathogenesis was caused by altered �-secretase
enzymatic function [18].

However, it is important to note that the efficiency
of an enzyme’s function is defined by the rate at which
it converts substrate (e.g., C99) to product(s) (e.g.,
A� + AICD). Thus, measuring only the levels of the
amount of product as the readout of enzyme activity
can lead to misinterpretations. For example, if a given
enzyme under normal conditions consumes 1 unit of
substrate to produce 1 unit of product per minute
(i.e., a conversion efficiency of 1.0), producing 1.5
units of product in a minute could be interpreted as a
50% increase in enzymatic activity. Yet, if those 1.5
units of product were derived from 2 units of substrate
(i.e., an efficiency of 0.75), we would conclude the
opposite, namely, a 25% decrease in enzyme activity.

It is true that in AD altered A�PP cleavage causes
an increase in total A� and a tendency towards the
production of longer neurotoxic species of amyloid
(e.g., A�42 rather than A�40) that are more prone
to aggregate into senile plaques [19]. But it is also
true that while elevations in A� are highly vari-
able among patients, AD tissues typically present
with significant increases in the levels of C99 (the
substrate for A� production) compared to the total
amount of amyloid produced [20–22], a result con-
sistent with the idea that �-secretase activity in most
AD patients is decreased, not increased [23]. For
example, using an in vitro reconstitution assay admit-
tedly prone to artefacts [24, 25], Sun et al. showed
that ∼90% of 138 FAD mutations in PS1 presented
with increases in A�42:A�40 ratio but had reduced
total amyloid production [26] (but to be fair, ∼10%
showed the opposite result [26, 27], implying that
different �-secretase activities are associated with dif-
ferent PS1 mutations [28]). However, as noted above,
enzymatic activity should be reported at the ratio of
product:substrate; merely reporting the product (e.g.,
ratio of A�42:A�40 [26]), does not say anything about
the activity of �-secretase. Similar results, although
not the goal of those studies, were found in other
reports [29].

As a result, we can define AD not only by an
elevated ratio of longer:shorter A� species [30], but
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Fig. 1. A�PP processing. A) Processing intermediates. Yellow dot, cholesterol-binding domain (CBD); orange dot, sphingolipid-binding
domain (SBD). Adapted from [3], with permission (doi.org/10.1016/j.nbd.2020.105062). B) Human C99 sequence; important residues for
SBD [149] and CBD (based on [117] and [118]) binding, and the YENPTY motif, in bold. Cleavage sites for �-, �-, and �-secretase are
indicated (arrows). See text for details.

also by an increased ratio of C99:total A� [31]. This
implies that in AD, defects in �-secretase result in
reductions both in the quantity of cleaved product
(i.e., A�) relative to the amount of available C99 and
in the “quality” of its processing towards longer, more
aggregation-prone, A� species. From this point of
view, we can redefine AD as a partial loss of function
of �-secretase [32–35] due to inherited genetic muta-
tions in the case of FAD [36–38], or to undetermined
causes in the case of SAD. Based on this, the buildup
of uncut C99 could be considered an early patholog-
ical hallmark that could elicit many of the molecular
features seen in AD cells [28]. This is hardly a new
idea, as C99 has been suggested to be a pathogenic
trigger of disease by many groups [39–42]. For exam-
ple, some authors have shown that in animal models
of AD with pathogenic mutations in PSEN1 or APP,
C99 accumulation occurs in AD-relevant brain areas
(cortex and hippocampus) at early stages of develop-
ment, long before the appearance of any detectable
increases in A� [39, 40, 42]. These data also high-

light the contribution of C99 accumulation to some of
the symptoms of AD [32, 41], including endosomal
dysfunction, cognitive impairment, and hippocampal
degeneration [21, 43–45]. Interestingly, other groups
found C99 to be especially toxic to neurons [46, 47],
and that the accumulation of C99, rather than alter-
ations in A� or AICD, caused symptoms of dementia
[41, 48].

HOW DOES ELEVATED C99 RESULT IN
LONGER A� SPECIES?

As mentioned above, C99 is cleaved in an intra-
cellular compartment by �-secretase to produce two
peptides, A� and AICD (Fig. 1). It is important to
note that �-secretase is an unusual “rhomboid-like”
protease that cleaves substrates located within mem-
brane domains [49], especially within lipid rafts [50].
Lipid rafts are transient membrane domains formed
by local increases in cholesterol, sphingomyelin, and
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saturated phospholipids, resulting in a more rigid and
“liquid-ordered” membrane “island” (i.e., the raft)
located within the surrounding “liquid-disordered”
membrane [51, 52]. These local elevations in choles-
terol (by ∼45% in mouse embryonic fibroblasts
[MEFs] [53]) and sphingomyelin (by ∼40% in
mouse liver [54]) create highly ordered membrane
microdomains that passively segregate and enrich for
lipid-binding proteins, thereby facilitating protein-
protein interactions for the regulation of numerous
signaling pathways [52]. Moreover, the membrane
of a lipid raft is thicker than the surrounding liquid-
disordered region [55, 56], due mainly to local
increases in straight and long saturated phospho-
lipid acyl chains [55–57]. This modification in the
structure of the membrane induces changes in the
conformation of those transmembrane (TM) proteins
embedded within them and modulates their enzy-
matic activities. Relevant to AD, it has long been
known that �-secretase activity resides in lipid rafts
[58, 59], and in fact it has now been shown that
these rafts are located intracellularly, in subdomains
of the ER [60–62]. Moreover, increases in intracellu-
lar cholesterol are known to induce the association
between C99 and �-secretase in membranes, and
are required to activate the production of A� [63].
Importantly, �-secretase cleavage is activated by the
formation of these lipid rafts and by the regulation of
their lipid composition [64].

Equally important, cleavage by �-secretase is not
sequence-specific: it “cuts what it sees” [65] (Fig. 2).
Under normal circumstances, following formation of
the lipid raft, �-secretase processes C99 in a “product
line” consisting of an initial cleavage event followed
by sequential ∼3-aa “bites” to produce a distribution
of successively shorter fragments, ranging in length
from ∼36 - ∼48 amino acids (i.e., A�36−A�48) [30,
66–70]. Under these conditions, there is “hydropho-
bic matching” between the length of C99’s �-helical
transmembrane domain [71] and the thickness of the
[lipid-raft] membrane in which it resides [72]. In nor-
mal cells, the initial cleavage of C99 by �-secretase
[73] favors the production of A�40 (Fig. 2A). In AD
cells, however, the lipid composition of the raft is
altered by increases in the levels of ceramide derived
from elevated sphingomyelinase activity [35], which
generates a significantly longer [74] and slightly
thinner [75–77] lipid raft (but still thicker than the
surrounding “free” ER (i.e., our term for ER not
apposed to other intracellular organelles) [78–80]),
forcing the C99 TM domain to maintain hydropho-
bic matching by tilting [73, 81, 82]. This tilt changes

the alignment of C99 with �-secretase and alters the
positioning/conformation of the initial �-secretase
cleavage site [24, 83, 84] on C99 such that more
A�42 and less A�40 is produced (Fig. 2B) [85–87].
This model is consistent with an altered lipid milieu
playing a role in determining the physical apposition
of PS1 to C99 [81], and implies that the Aβ42:Aβ40
ratio in AD is fundamentally a surrogate marker of
the thickness of the membrane in which C99 cleavage
occurs [88, 89]. It turns out that A�42 happens to have
the unfortunate property of being more aggregation-
prone, more prevalent in plaques, and more toxic to
neurons than is A�40 [90], influencing the field to
focus on A�42 more as a pathogenic culprit and ther-
apeutic target while focusing less on its biophysical
implications.

C99 REGULATES A� PRODUCTION

Pathogenic mutations in A�PP [33, 91] and PS1
[92] promote an increase in the A�42:A�40 ratio asso-
ciated with increased levels of C99, suggesting that,
ironically, the accumulation of C99 is to blame for
the decrease in the ability of �-secretase to cleave its
own substrate, namely C99 itself. In support of this
idea, in vitro studies have shown that upon exceed-
ing a concentration threshold, C99 peptides associate
with each other in membranes [69], inducing a con-
formational change in them that precludes, or at least
delays, their cleavage by �-secretase [25, 93]. This
decrease in enzymatic activity by substrate saturation
could explain why inhibition of �-secretase favors the
accumulation of C99 fragments [94]. Taken together,
we can conclude that the degree of C99 accumulation
is a major determinant of amyloid production via the
modulation of its own processing. The mechanism by
which C99 affects its own cleavage, ultimately result-
ing in an increased A�42:A�40 ratio, is addressed
below.

ELEVATED LEVELS OF C99 ARE A
LIKELY CAUSE OF AD

Based on the above analysis, we propose that
increased C99 is a more accurate indicator of dis-
ease progression than is increased amyloid or plaque
burden. The correlations between A� production,
A�42:A�40 levels, and plaque/tangle burden and the
progression of dementia are not significant enough to
blame any one of these as the sole cause or indicator of
disease [95]. In fact, brain samples from cognitively
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Fig. 2. Generation of A�40 versus A�42. A) In the normal situation the �-secretase complex aligns with C99 in the ER raft such that its
initial cleavage favors a product line that generates A�40, and the A�42:A�40 ratio is relatively low. B) In AD, the ER raft is thinner than
normal (shorter double-headed arrow) but is still thicker than the “free” ER. Hydrophobic matching of C99’s �-helical region within the
thinner membrane causes it (and perhaps the �-secretase complex as well) to tilt, resulting in the initial cleavage of C99 displaced by ∼2
amino acids, generating a higher A�42:A�40 ratio. See text for details.

normal older adults often show significant amyloid
deposition [96]. On the other hand, many groups have
shown a significant association between C99 levels
and the appearance of cognitive impairment, both in
animal models and in AD patients [97]. Moreover,
an “AD-protective” mutation in A�PP (“Icelandic”)
causes a substantial decrease not only in amyloid
but also in C99. Conversely, some pathogenic muta-
tions in PSEN1 associated with aggressive forms
of AD [98] do not cause higher amyloid levels,
senile plaques, or neurofibrillary tangle formation
[99, 100].

This raises a conundrum: if C99 is so important in
AD pathogenesis, why hasn’t the field come to the
conclusion that C99, and not A�, is the culprit, or at
least concluded that �-secretase activity is reduced,
not increased, in AD? One explanation is that exper-
imental limitations, as well as the definition of AD
itself, have contributed to difficulties in data inter-
pretation.

With respect to experimental design, we note that
C99 encompasses A� (at its N-terminal “half”) and
AICD (at its C-terminal “half”), and therefore con-
tains the same [partial and/or overlapping] amino
acid sequences as are present on both fragments (see
Fig. 1). Thus, in the absence of detailed controls, it
is easy to envision difficulties in interpreting exper-
imental data that might unequivocally implicate any
particular A�PP fragment. In fact, many antibodies
used to detect A� in cells or tissues by imag-
ing approaches or by enzyme-linked immunosorbent
assay (ELISA) cannot discriminate between C99 and
other A�PP fragments [101], a pitfall that raises the
interesting possibility that, guided by the amyloid
cascade hypothesis, some histological studies had
interpreted elevations in C99 as deposition of A�
[102, 103].

Second, AD is defined operationally: to receive a
diagnosis of AD requires the presence of a thresh-
old number of plaques and tangles in postmortem
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brain samples from patients with cognitive impair-
ment [104]. Therefore, those cases diagnosed with
AD-like dementia, but presenting with low numbers
of extracellular deposits of A�, will not be diagnosed
as AD after histological analysis, even if they carry
mutations in PSEN1 [36, 105, 106].

That C99, and not A�, is a trigger of disease can
also explain why treatments aimed at inhibiting �-
secretase activity or minimizing A� production/size
have yielded disappointing results [107]. However,
at this point, a logical question arises: if C99 is so
bad, why have anti-BACE1 therapies (that prevent
C99 formation in the first place) not been success-
ful either? There are really only two responses to
this question: (1) The C99 idea is wrong, or (2) C99
and/or the regulation of A�PP cleavage to produce
the “right” amount of C99 is necessary to fulfill a
currently-unknown cellular function. Which brings
us to the question of:

WHAT IS THE FUNCTION OF C99?

Full-length A�PP has been proposed to play a role
in neurite outgrowth [108] and cell signaling [109],
while the C99 fragment has been shown to modulate
voltage-gated potassium channels [110] and to play a
role in mitophagy [111]. However, the most frequent
and supported hypothesis for the normal function of
A�PP (and by inference, of C99) is that it is associ-
ated with the regulation of cellular cholesterol [112].
The expression, processing, and activity of A�PP are
modulated by changes in the levels and distribution
of cholesterol [113, 114]. Conversely, alterations in
the expression, distribution, and cleavage of A�PP
results in changes in cholesterol homeostasis [115].
Extensive data suggest that one function of A�PP
could be to serve as a cholesterol sensor [116] and/or
a regulator of cholesterol distribution in the cell
[35, 53]. To make the connection between A�PP
and cholesterol even more direct, A�PP contains
a cholesterol-binding domain (CBD; yellow dot in
Fig. 1A and highlighted sequence in Fig. 1B) con-
sisting of tandem GxxxG motifs located within C99
immediately upstream of the �-secretase cleavage site
[116–119], and whose abrogation prevents A�PP’s
and C99’s ability to regulate this lipid [53]. (The
GxxxG motifs have also been proposed to play an
alternative role, as a mediator of C99 homodimer-
ization, but this is controversial [120, 121].) Thus, a
likely role of C99 is to maintain cellular cholesterol
homeostasis. But how is this accomplished?

Cholesterol is produced within animal cells, in
the endoplasmic reticulum (ER) [122], but is also
taken up from outside the cell, primarily from cir-
culating lipoproteins containing free cholesterol and
cholesteryl esters (CEs), with most of the cholesterol
released to the plasma membrane [122]. Compared
to the PM, the ER contains very low, but biologically
important, levels of cholesterol [123]. For example,
the amount of cholesterol in ER membranes regu-
lates the activation of the sterol-regulatory element
binding proteins (SREBP1 and 2), transcription fac-
tors that are localized to the ER membrane in an
inactive state. When the level of intracellular choles-
terol is low, SREBP is released and eventually travels
to the nucleus, where it switches on genes, such as
those encoding the low-density lipoprotein receptor
(LDLR) and 3-hydroxy-3-methylglutary-CoA reduc-
tase (HMGCR), that cause the cell to generate more
cholesterol. Conversely, when the level of ER choles-
terol is high, SREBP remains within the ER and
cannot translocate to the nucleus, thereby reducing
the production of cholesterol by reducing HMGCR
levels [124].

These pathways imply that normal cholesterol
homeostasis in the cell is maintained by the
crosstalk between the PM, where most of the
cholesterol resides, and the ER, where most of the
cholesterol-regulatory enzymes reside [124]. This
PM-ER communication is a regulated process, with
cholesterol trafficking mediated by both vesicu-
lar (e.g., via the LDL receptor and endosomes)
[125] and non-vesicular (e.g., via Aster/GRAMD
[GRAM domain-containing protein] proteins [126])
[127, 128] processes; we will focus here mainly on
the vesicular pathway. Excess cholesterol in a PM-
localized raft induces the invagination of the plasma
membrane and the formation of a cholesterol-rich
endosome that pinches off from the PM, enters the
cell proper, and eventually fuses with a lysosome
[129]. The lower pH in the resulting endolyso-
some induces the activation of cholesterol-regulatory
enzymes, such as Niemann-Pick type C protein 1
(NPC1) [130], which contributes to the fusion of the
endolysosome with the ER (likely via inter-organelle
contact sites [131]) and the release of cholesterol to
ER membranes [132].

We note in this context that problems in endosome
function [133] and in lysosome acidification [134],
driven by elevated levels of C99 [135], play a key
role in AD pathogenesis [136]. In particular, C99
accumulates in lysosomes that are defective in acid-
ification [134]. This result seems counter-intuitive,
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as elevated endolysosomal pH should decrease,
not increase, BACE1 enzymatic activity and hence
C99 production. Remarkably, however, the vacuo-
lar ATP-synthase (v-ATPase) required for endosomal
acidification is inhibited by phosphorylation of C99
(at Tyr-682 in the highly-conserved YENPTY motif
[135] [see Fig. 1]). Thus, it is possible that the degree
of BACE1-induced production of C99 [43, 137] is
regulated by v-ATPase-mediated lysosome acidifica-
tion via an equilibrium between phosphorylated and
dephosphorylated C99 [138].

Importantly, this PM-derived cholesterol changes
the structure of the ER membrane by forming an
intracellular lipid raft (Fig. 3) [139]. Formation of
the raft is maintained by proteins with affinity for
cholesterol, in particular C99, that are capable of clus-
tering cholesterol into local islands. This membrane
reorganization results in changes in the distribu-
tion and conformation of ER proteins embedded
within these islands (i.e., rafts) and in the modu-
lation of the activities they regulate. For example,
C99-mediated raft formation induces the activity of
acyl-CoA:cholesterol acyltransferase (ACAT1; gene
SOAT1), the enzyme that converts cholesterol into
cholesteryl esters that are then deposited as lipid
droplets (LDs), in order to detoxify the cell of excess
cholesterol and return cholesterol to normal levels in
a homeostatic loop [53, 140]. Alterations in the regu-
lation of any step in this pathway leads to changes in
the distribution of cholesterol and in the composition
of lipid membranes, leading to altered raft “setpoints”
(discussed below).

This trafficking of cholesterol is paralleled by a
similar trafficking of A�PP and C99 (Fig. 3). As
noted above, in the amyloidogenic pathway A�PP
is internalized in cholesterol-rich endosomes [141],
where it is then cleaved by BACE1 [142, 143], an
enzyme activated at low pH [144]. This results in
the production of C99 that is then delivered from
endosomes to the ER (by a currently unknown mech-
anism [131], but possibly via endosome-ER contacts
[145–147] and/or the retromer complex that recycles
proteins from endosomes to the plasma membrane via
the Golgi [148]), where it “attracts” cholesterol [116,
117] and sphingomyelin [149] (see below), resulting
in the formation of the lipid raft domain described
above. In the raft, C99 associates with �-secretase
(by physical proximity [63]) and is cleaved into A�
(which is then exported from the raft via exosomes
[150, 151]) and AICD. Once C99 is cleaved, releas-
ing A� containing the CBD (see below and Fig. 1),
clustering of cholesterol in lipid rafts is reduced

Fig. 3. The C99-cholesterol axis in the normal situation. Role of
cholesterol: Excess plasma membrane (PM) cholesterol derived
from extracellular lipoproteins induces the invagination of the PM
and the formation of cholesterol-rich endosomes, which pinch
off from the PM, enter the cell, and eventually fuse with lyso-
somes. The resulting endolysosomes fuse with the ER and release
cholesterol to ER membranes, forming an intracellular lipid raft.
Cholesterol-regulatory proteins detoxify the cell of excess choles-
terol and return cholesterol to normal levels in a homeostatic loop.
Role of C99: At the same time, the excess PM cholesterol binds
to A�PP (via the CBD) that is also internalized in endolysosomes,
where it is cleaved by BACE1 at low pH, forming C99. C99 is
then delivered to the ER raft where it is cleaved by �-secretase
in an amount sufficient to reduce the initial raft C99 content to a
“setpoint” level. Once C99 is cleaved (releasing A� containing the
CBD), clustering of cholesterol in lipid rafts is reduced dramati-
cally. Note that the ability of C99 to bind cholesterol (via the CBD)
allows for a homeostatic loop to be set up in which the equilibrium
between the amount of cut versus uncut C99, and the correspond-
ing amount of cholesterol bound to uncut C99, determines the raft
setpoint. Green/red arrows, increased/decreased levels. See text for
details.

dramatically. Thus, like cholesterol, C99, and raft
formation, is regulated in a homeostatic loop that
is mediated by the level of C99 and the degree of
its cleavage by �-secretase (i.e., C99 controls raft
formation and hence �-secretase levels; �-secretase
controls C99 levels and hence raft formation [53]).
In indirect support of this scenario, we note that of
the 114 documented pathogenic point mutations in
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A�PP (https://www.alzforum.org) 25 are located in
the C99 region, but none are at the critical glycines in
the CBD GxxxG motifs (see Fig. 1B), implying that
the presumed loss of C99’s ability to bind cholesterol
disrupts the relationship between C99 and cholesterol
to the point where C99 is no longer pathogenic (a con-
clusion also supported by mutagenesis of the CBD
[53]).

In broad view, both cholesterol trafficking and
A�PP trafficking follow essentially the same topo-
graphical pathway (PM→endosome→endolyso-
some→ER→lipid raft) (Fig. 3). We believe that this
is not a coincidence: the fact that the cholesterol-
internalization and A�PP-cleavage pathways operate
in parallel could help explain the effects of choles-
terol on A�PP metabolism [152] and the fact that
cholesterol turnover [153, 154]—mainly the oxi-
dation of cholesterol to 24(S)-hydroxycholesterol
by CYP46A1 (cytochrome P450 46A1; cholesterol
24-hydroxylase) [155] and its negative regulator
ATAD3A (ATPase family AAA domain-containing
protein 3A) [156], both of which are localized to
ER rafts [156, 157]—is necessary for A� produc-
tion [115, 158–160]. Moreover, the “superposition”
of both pathways reveals a picture in which A�PP
is a reporter of the lipid environment of the cell, by
regulating the transport of cholesterol between PM
and ER, and that A�PP’s internalization and cleav-
age by BACE1 and �-secretase are essential steps in
the regulation of cellular cholesterol and overall lipid
homeostasis.

Accordingly, we propose that C99 is required to
maintain intracellular cholesterol and raft homeosta-
sis. Specifically, in the normal situation (Fig. 3), after
a threshold is exceeded, the excess of cholesterol
in the plasma membrane [161] binds to full-length
A�PP [162, 163] and induces its internalization
by the formation of cholesterol-rich endosomes.
Following cleavage of A�PP by BACE1 within
endolysosomes to produce C99, C99 traffics to the ER
where it “attracts” cholesterol (at 1:1 stoichiometry
[117]) [116, 117] and sphingomyelin [149], resulting
in the formation of a lipid raft domain. Formation of
the raft promotes the association of �-secretase with
C99 and its cleavage into A� and AICD. Once C99 is
cleaved and A� is released, clustering of cholesterol
in lipid rafts is reduced dramatically.

Thus, the interplay between C99 and
cholesterol—a “C99-cholesterol axis”—sets up
a self-correcting homeostatic feedback loop such
that, under normal circumstances, the amount of
uncleaved C99 is maintained at extremely low levels,

in order to help maintain intracellular cholesterol
and raft levels at a desired “setpoint”, both quanti-
tatively (e.g., raft amount) and qualitatively (e.g.,
raft function) (Fig. 3). Moreover, this setpoint likely
varies both spatially (e.g., in different cells and
tissues) and temporally (e.g., during development or
in response to changing environmental conditions).
In AD, however, the steady-state levels of C99 and
cholesterol are increased significantly, disrupting
this feedback loop and setting off a chain of events
that results in the disease, as described below.

FAMILIAL AND SPORADIC AD: A
SHARED PHENOTYPE WITH DISTINCT
TRIGGERS

As in FAD, tissues from SAD patients also have
increased C99 levels [97], by various proposed mech-
anisms, including lysosomal dysfunction [134] and
altered activation of �-secretase [164]. Relevantly,
increased exposure of cells to high levels of extra-
cellular cholesterol can induce an increased rate of
cholesterol internalization and A�PP cleavage, and
an increase in C99 and in the A�42:A�40 ratio [165,
166]. Therefore, any condition or gene variant that
provokes an elevation in cholesterol uptake and traf-
fic to the ER will be capable of inducing high levels
of C99 in sporadic forms of the disease [167].

Notably, the �4 allele of APOE (ApoE4) is one of
these SAD genetic risk factors, as it is recycled from
endolysosomes much less efficiently than is ApoE3
[168–170]. This results in an accumulation of intra-
cellular cholesterol, thereby stimulating an increase
in C99, similar to what was described above for FAD.
In fact, of the 34 AD risk-factor genes with coding-
region non-synonymous mutations identified by us
(Table 1), nine are associated with altered cholesterol
trafficking or metabolism (marked in red in Table 1;
see also [171]).

Thus, an increase in the steady-state level of C99
in AD can come from many sources (Table 1), includ-
ing: 1) reduced cleavage of C99 by �-secretase [32];
2) increased BACE1 cleavage of A�PP [172–174],
as is found in the A�PP “Swedish” mutation [175];
3) increased steady-state levels of A�PP, as is seen
in Down syndrome [176] (APP is on chromosome
21) or in patients with mutations in the sortilin-
related receptor (SORL1; an AD risk factor [167])
that reduces A�PP recycling via the retromer path-
way [177, 178]; 4) increased intracellular cholesterol
levels [165, 179] due to, for example, mutations
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E. Area-Gomez and E.A. Schon / AD Pathogenesis: The MAM Hypothesis 1251

Table 1
AD risk genes associated with coding-region non-synonymous mutations

Gene Name MAM hypothesis-related function?

APOE Apolipoprotein E [367] Cholesterol efflux [169]; ApoE4 upregulates MAM function [166]
ABI3 ABI gene family member 3 [368] Reg plasma cholesterol in Abi3-KO mice [369]
CR1 Complement receptor type 1 (CD35) [370] Binds ApoE4 [371]
DOC2A Double C2-like domain-containing protein � [372] Cholesterol required for DOC2A-RAB27A interaction [373]
ABCA1 Phospholipid-transporting ATPase [181] Reg sterol sensing [374]; exports cholesterol [180]
ABCA7 Phospholipid-transporting ATPase [370] Cholesterol (?)/lipid transport [375], transports ceramide [376]
ATP8B4 Phospholipid transporting ATPase [377] Reg sterol transport in C. elegans homolog tat-2 [378]
MAPT Microtubule-associated protein tau[379] Reg by cholesteryl esters [261]
AKAP9 A-kinase anchor protein 9 [380] Reg phospho-tau [381] via cholesterol [293, 382]
ADAM10 Disintegrin & metalloprotease domain-cont prot 10 [383] �-Secretase; increases BACE1 and C99 [384]
BIN1 Myc box-dependent-interacting protein 1 [370] With CD2AP, reg endosomal recycling of BACE1 [385]
CD2AP CD2-associated protein [370] With BIN1, reg endosomal recycling of BACE1 [385]
GGA3 ADP-ribosylation factor-binding protein [386] Negative regulator of BACE1 [386]
NOTCH3 Neurogenic locus Notch homolog 3 [387] Cleavage regulated by �-secretase [388]
TM2D3 TM2 domain-containing protein 3 [389] Reg Notch/presenilin signaling in fly homolog almondex [390]
SHARPIN SHANK-associated RH domain interacting protein [391] Reg ferroptosis, mitophagy [392, 393] via MAM [394, 395]
MME Neprilysin [396] In lipid rafts [397]; degrades A� [398]; reg by AICD [399]
UNC5C Netrin receptor [400] In lipid rafts [401]

TREM2 Triggering receptor expressed on myeloid cells 2 [368] Reg by PS1 [402]; senses lipids [403], cholesterol [404]
CD33 Myeloid cell surface antigen CD33 [405] Reg TREM2 [406]
MS4A4A Membrane-spanning 4-domains subfam A memb 4A [407] Modulates TREM2 [407]
MS4A6A Membrane-spanning 4-domains subfam A memb 6A [370] Modulates TREM2 [407]
ADAM17 Tumor necrosis factor-� converting enzyme [408] �-Secretase; reg APP levels [408]; cleaves TREM2 [409]
CLU Clusterin (ApoJ) [370] In MAM [410]; binds ApoER2/VLDLR [411]; exports chol [412]
PLCG2 Phospholipase C-gamma-2 (PLC�2) [368] Synthesis of DAG and IP3, P522R mutant protective in AD [413]
PLD3 Phospholipase D; 5’−→3’ exonuclease [414] Reg C99, cholesterol levels via degraded mtDNA [415]
GRN Progranulin [416] Reg lysosomes and lipids (polyunsaturated TAGs) [417]
SORL1 Sortilin-related receptor (SorLA) [418] APP sorting [419]; reg BACE1 [420]; cut by �-secretase [421]
PICALM PtdIns-binding clathrin assembly protein [370] C99 autophagy [422, 423]; reg BACE1 [424], chol, LDLR [425]

EPHA1 Ephrin type-A receptor 1 [370] No obvious connection
GCAT Glycine acetyltransferase [426] No obvious connection
NME8 Thioredoxin domain-containing protein 8 [427] No obvious connection
PILRA Paired Ig-like type 2 receptor � [428] No obvious connection
ZCWPW1 Zinc finger CW-type PWWP domain protein 1 [429] No obvious connection

Gene functions connected to cholesterol (entries in red), MAM (blue), both cholesterol and MAM (green), or neither (black).

in ATP-binding cassette sub-family A member 1
(ABCA1), a cholesterol exporter [180] and AD risk
factor [181]; and 5) increased intracellular choles-
terol due to inefficient recycling of ApoE4-derived
lipoproteins [166]. Clearly, elevated C99 is toxic to
cells, no matter the source. Thus, another question
immediately arises: what is the nature of that toxic-
ity? To answer this question, we must take a slight
detour into the structure and function of the lipid raft
subdomain of the ER.

MAM: A LIPID RAFT IN THE ER

All the evidence marshalled above points to ele-
vated C99 as the trigger of the cellular defects seen in
AD, mediated by C99’s association with cholesterol
(and, a fortiori, with sphingomyelin; see below). In
fact, C99’s toxicity is proportional to its capacity to

form lipid rafts in the ER [53]. These ER-localized
rafts have a name reflective of their special nature and
special status in the cell: mitochondria-associated ER
membranes, or MAM [182].

MAM is a highly dynamic and transient subdomain
of the ER that communicates, both physically and
biochemically, with mitochondria [51, 182]. MAM
lies in close apposition to mitochondria (ranging
from ∼10–80 nm [183–185]) (Fig. 4A), facilitating
bidirectional crosstalk between the two organelles,
with specific molecules travelling relatively short
distances from the ER to mitochondria for some
molecules and in the opposite direction for others.
This apposition is mediated physically by pairs of
tethers, one on the ER cytoplasmic face and one
on the mitochondrial outer membrane (MOM), that
help bring the two organelles together. For exam-
ple, mitofusin-2 (MFN2), located both at the ER
and the MOM, dimerizes to align the two organelles
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[186], as do the pairs VAPB (vesicle-associated mem-
brane protein-associated protein B/C) - PTPIP51
(protein tyrosine phosphatase interacting protein
51) [187], and SIGMAR1 (sigma-1 receptor) -
VDAC (voltage-dependent anion channel) [51], with
tethering regulated, in an unknown fashion, by
MAM-localized PACS2 (phosphofurin acidic cluster
sorting protein 2) [188, 189]. By contrast, presenilins
are not physical tethers but are negative regula-
tors of apposition such that pathogenic mutations
modify presenilin structure to promote tethering via
alteration in the lipid composition of the MAM, as
described here. Importantly, both C99 [35] and �-
secretase activity [60–62] are localized to the MAM,
as is �-secretase activating protein (GSAP) [190].
Thus, the final step in the amyloidogenic pathway
to produce Aβ can take place only in the MAM [191].

MAM functions include phospholipid synthe-
sis [182, 192], cholesterol and steroid metabolism
[193, 194], sphingolipid (e.g., sphingomyelin and
ceramide) metabolism [35], glucose homeostasis
[195], calcium trafficking [51, 196, 197], and mito-
chondrial oxidative phosphorylation (OxPhos) [35]
and dynamics [186, 198]. MAM is also central to the
modulation of various other key cellular processes,
including the regulation of hypoxia [199], iron home-
ostasis [199, 200], ER stress [201], autophagy [202],
and inflammasome signaling [203]. We note that all
of these processes are disturbed in AD [28], implying
an intimate relationship between MAM function and
AD pathology [89, 204]. For example, calcium traf-
ficking between the ER and mitochondria, which is
perturbed in AD [205], involves more than 30 MAM-
localized proteins [206]. Of these, perhaps the most
prominent is the sigma-1 receptor (gene SIGMAR1)
[207], which is a key “gatekeeper” for the transfer
of Ca2+ from the ER to mitochondria [208], with
an interorganellar gap distance of only ∼7–15 nm
required for maximum transfer [196]. Similarly, 9
of the 10 enzymes of glycolysis, which is impaired
in AD [209], are localized to MAM [210] and the
tenth, hexokinase, is localized to the mitochondrial
outer membrane [211]. Autophagy is another cellu-
lar function intimately reliant on MAM [202, 212]:
not only are at least 5 autophagy-related proteins
localized to MAM, but MAM is required for the syn-
thesis of the phosphatidylethanolamine (see below)
that is required to build the phagophore [202]. Finally,
mitochondrial bioenergetics [35] and organelle mor-
phology and dynamics—most notably the balance
between organellar fusion and fission—which are
also altered in AD [213, 214], are MAM-mediated

functions. Also relevant to mitochondrial function,
hypoxia, which is a feature of AD [215], upregu-
lates BACE1 at the transcriptional level [216]. Given
this multiplicity of functions, it is highly likely that
MAM composition, not only its constituent proteins
and lipids, but even microRNAs [217], differs in dif-
ferent cell types, at different times, and in response
to different environments [218].

With respect to AD, C99 induces the formation
of MAM via its ability to bind and “cluster” choles-
terol, forming the raft, as described above. In turn,
several proteins are recruited to the MAM so as to
co-regulate multiple homeostatic pathways, some of
which have been described above (e.g., cholesteryl
ester synthesis via ACAT1 [219]). Alterations in the
regulation of MAM formation, as occurs in AD, per-
turbs these pathways. As examples, we will focus on
three key MAM functions relevant to AD: regulation
of phospholipids, sphingolipids, and cholesterol.

Altered phospholipid metabolism is a feature
of AD [220, 221]. Most of the cell’s phos-
phatidylethanolamine (PE) is synthesized in a salvage
pathway located at the ER-mitochondrial interface
(i.e., MAM): phosphatidylserine (PS) is synthesized
in the MAM by phosphatidylserine synthases [222];
PS then translocates to the mitochondria [223, 224]
where it is decarboxylated by phosphatidylserine
decarboxylase (PISD) [225] to form PE; PE then trav-
els back to the MAM, where it traffics to the rest
of the cell or undergoes further modifications [226]
(see Fig. 4B). The trafficking of PS from MAM to
mitochondria is a well-recognized measure of MAM
function [227]. In cells from both SAD and FAD
patients this pathway, and cellular PS and PE pro-
duction, are upregulated significantly [74].

Sphingolipid pathways are also altered in AD [228,
229]. In particular, the ceramide content in brains
and cells from AD patients and in AD cell models
is increased [55, 230–233] as a result of the upreg-
ulation of de novo ceramide synthesis [234] and of
the activity of sphingomyelinases (SMases) that con-
vert sphingomyelin (SM) to ceramide [231, 235].
MAM is involved in the regulation of sphingolipid
metabolism [236] and at least one neutral SMase in
mice likely resides at the MAM [237] (although the
homologous gene in humans is apparently a pseudo-
gene [238]). The ceramide that is enriched at MAM
[35, 239] (by ∼25% in mouse liver [54]), can displace
raft cholesterol [240, 241] while still maintaining the
liquid-ordered nature of these rafts [240]. In AD,
MAM-localized SMase activity is upregulated [35],
with a concomitant local increase in ceramide [35]
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Fig. 4. Schematic representation of the MAM subdomain of the ER. A) EM of rat hepatocytes showing MAM compared to
“free” ER (adapted from [185], with permission). B) Key MAM functions. ACAT1, acyl-CoA cholesterol acyltransferase-1; DGAT2,
diacyglycerol-O-acyltransferase-2; IP3R, inositol triphosphate receptor; MFN2, mitofusin-2; MCU, mitochondrial calcium uniporter; PISD,
phosphatidylserine decarboxylase; SCD1, stearoyl-CoA desaturase-1; VDAC, voltage-dependent anion channel. See text for details.

that increases MAM [242] and A�42 [243] forma-
tion and reduces mitochondrial bioenergetics [35,
244–248].

Finally, elevated serum cholesterol [249] and
altered cholesterol metabolism [230, 249–251] have
been well-documented in AD, as have been the
effects of increased cholesterol on A�PP metabolism
[152], including increased A� production [165, 252].
Importantly, elements of the cellular cholesterol
homeostatic machinery, including SREBP1 [253],
which interacts with C99 [254], and ACAT1 [255] are
localized in MAM. In cells from both SAD and FAD
patients, ACAT1 activity is upregulated significantly
[74], as is the accumulation of lipid droplets [74, 256,
257], including LDs within neurons [258]. Remark-
ably, ACAT1 activity is required for A� production
[115, 158–160, 259, 260]. Moreover, ACAT1-derived
CEs regulate not only A� production [159, 261] but
also tau production, by inhibiting the degradation
of phosphorylated tau [261]. Thus, MAM-localized
cholesterol metabolism plays a fundamental role in
the development of the two key neuropathological
hallmarks of AD: plaques and tangles.

The parallel alteration of cholesterol and sphin-
golipids is not coincidental, as the levels of these
two classes of lipids are positively co-regulated in
the cell [256, 262–265] and help to establish the for-
mation of lipid rafts [56]. Specifically, sphingomyelin
forms an “umbrella” around cholesterol (at a 1:1−1:2
ratio [263]), protecting it from interactions with water
at the membrane/cytoplasm interface [266, 267],
thereby initiating lipid raft formation (e.g., MAM).
This relationship between sphingolipids and sterols is
relevant to AD, as A�PP processing has been shown

to occur preferentially in lipid rafts [268] that also
contain C99 [269].

As mentioned above, C99 contains a cholesterol-
binding domain. Perhaps of equal significance, C99
also contains a sphingolipid-binding domain (SBD;
orange dot in Fig. 1A and sequence in Fig. 1B)
that binds to sphingomyelin [149]. Thus, these two
lipid-binding domains can potentially cooperate to
promote raft formation by attracting equal amounts
of cholesterol and sphingomyelin to C99. Moreover,
and perhaps not coincidentally, in keeping with the
dynamic nature of raft assembly and disassembly,
both the CBD and the SBD are located within the N-
terminal region of C99 such that cleavage of C99 by
�-secretase releases both domains as part of A� (see
Fig. 1). From this point of view, C99 helps assemble
the raft, whereas �-secretase, via C99 cleavage and
A� release and export [151], helps disassemble it.
Perhaps A� has its own role to play in the cell after
all [116, 270, 271].

GENETIC RISK FACTORS IN SAD ARE
ALSO CONSISTENT WITH ALTERED
MAM FUNCTION

It is clear that C99 levels can be elevated in the
familial form of AD, due to genetic mutations in
PSEN1, PSEN2, and APP that conspire to increase
C99, and hence cholesterol levels. But what about
sporadic AD, where these genes are normal? What
is the underlying pathogenetic process in SAD, and
does it differ from that in FAD [28]?

Besides the mutations in the nine genes associated
with cholesterol metabolism noted above (marked in
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red in Table 1), there are mutations in nine additional
SAD risk genes that are associated with MAM func-
tion (marked in blue in Table 1) and in eleven other
genes associated with both cholesterol metabolism
and MAM function (marked in green in Table 1).
Thus, of the 34 SAD risk factor genes on the list, 29
are consistent with the mechanism of AD pathogen-
esis that we propose here.

THE C99-CHOLESTEROL AXIS IN AD

These findings have led us to propose a model
that invokes perturbations in C99 and cholesterol
(i.e., disruption of the “C99-cholesterol axis”) as
potential players in a linked pathogenetic mechanism
leading to AD (Fig. 5). As in the normal situa-
tion (Fig. 3), after a threshold is exceeded [272],
excess PM cholesterol binds to full-length A�PP and
induces its internalization by endosomes [162] and
cleavage by BACE1 within endolysosomes to pro-
duce C99 which, owing to increased BACE1 activity
[273–275], is now elevated above normal levels [97].
At this point, the pathogenic pathways resulting in
AD diverge, but not along classical FAD-SAD lines,
as is commonly described. Rather, the divergence
is between the early-onset (EOAD) and late-onset
(LOAD) forms of the disease.

In EOAD (Fig. 5A), which includes all forms of
FAD (including Down syndrome) and those forms of
SAD associated with risk factors affecting C99 (e.g.,
the “blue” genes in Table 1), elevated C99 traffics to
the ER-raft (i.e., MAM) where, owing to FAD muta-
tions or to C99-related SAD risk factors, its cleavage
is incomplete (i.e., the mismatch between C99 level
and �-secretase activity is such that uncut C99 accu-
mulates above the desired setpoint level). The excess
of uncut C99 now attracts more cholesterol (by
∼40% in PS1/PS2-double knockout [DKO] MEFs
compared to wild-type MEFs [53]), resulting in the
formation of a more extensive raft domain containing
more “incoming” C99 that is also cleaved ineffi-
ciently, Moreover, the chronic formation of MAM
and the increased absolute amount of A� triggers
the upregulation of SMase activities [270], result-
ing in reduced sphingomyelin and elevated ceramide
levels [35], and a concomitant reduction in choles-
terol at the MAM, leading to the formation of longer
[74] and thinner [75, 276] MAM structures. Thus, in
“C99-driven” EOAD, the normal homeostatic loop
is replaced by a vicious cycle in which excess C99
drives raft formation while the growing “runaway”

raft recruits more �-secretase that is unable (or in the
case of Down syndrome, insufficient) to cleave all of
the C99 presented to it.

In LOAD (Fig. 5B), the C99-cholesterol axis is
also perturbed, but in a slightly different way. In the
majority of these patients, the disease is “cholesterol-
driven,” that is, risk factors (e.g., ApoE4) conspire to
increase the level of intracellular cholesterol above
normal levels [53, 277] and a subsequent increase in
MAM-localized cholesterol (by ∼100% in PS1/PS2-
DKO MEFs [53]) that in turn provokes an increase in
raft-localized C99. Note that in LOAD, �-secretase
is structurally normal but, coupled with a potential
insufficiency in its amount, activity, and/or orienta-
tion within the lipid raft, is nevertheless unable to
cleave the large amount of cholesterol-recruited C99
present, resulting in a slow but steady accumulation of
uncut C99. Once again there is a mismatch between
C99 level and �-secretase activity, only this time it
results in a “slowly-growing” raft that exceeds the
desired setpoint level.

While we believe that C99 plays a key role in
delivering cholesterol to the MAM via the vesicular
pathway, we note that a number of proteins involved
in the non-vesicular pathway for cholesterol traffick-
ing from the plasma membrane to the ER [272, 278,
279] are also localized to the MAM. These include
ADP-ribosylation factor 1 (ARF1) [280], oxysterol-
binding protein-related proteins-5 (ORP5) and –8
(ORP8) [223, 281], and Aster-B/GRAMD1B [282]
(which is abundant in brain [278]). Moreover, the
Aster proteins rely on phosphatidylserine for their
function [223, 283, 284], implying that no matter how
cholesterol enters the cell, MAM (and therefore C99)
likely plays a central role in intracellular cholesterol
trafficking [285].

Note that this analysis supports the idea that FAD
and SAD (or more properly, EOAD and LOAD) are
essentially two subtypes of the same disease [286],
and that both disorders share a common pathome-
chanism that differs only in age of onset, severity
of symptoms, and rate of progression. In sum, from
a mechanistic point of view, FAD and SAD are the
same disease.

In both cases, the cell makes heroic efforts to
reduce the inexorable increase in raft size (e.g., by
shutting down de novo cholesterol synthesis [53];
by upregulating SMase activity [35] to both increase
ceramide and reduce sphingomyelin levels (thereby
reducing cholesterol levels); by converting choles-
terol to cholesteryl esters that are stored in lipid
droplets [74]; by oxidizing cholesterol [287] [at least
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Fig. 5. The C99-cholesterol axis in AD. In AD, cholesterol and A�PP enter the cell as in the normal situation (see Fig. 3). However, (A)
in C99-driven early-onset AD (EOAD) - both FAD and those forms of SAD associated with underlying C99-related risk factors (see Table
1) - impaired �-secretase activity is insufficient to cleave all of the MAM-localized C99, leaving “excess” uncut C99 to accumulate in the
MAM raft above the “setpoint” level. The elevated uncut C99 attracts more cholesterol (and sphingomyelin), enlarging the raft that, in
turn, attracts even more C99 that, too, is cleaved sub-optimally. In this way, MAM homeostasis is disrupted in a vicious cycle in which the
raft grows inexorably and relatively rapidly (a “runaway” raft). B) In cholesterol-driven late-onset AD (LOAD) associated with underlying
cholesterol-related risk factors (see Table 1), the raft also grows, but for a different reason: the accumulation of excess intracellular cholesterol
binds to C99 and causes the raft to grow. Although �-secretase is functioning relatively normally and efficiently, it is present in an amount
insufficient to cleave all the C99 present in the MAM. The excess uncut C99 attracts more cholesterol, enlarging the raft while also generating
yet more uncut C99, resulting in the same type of vicious cycle seen in EOAD, albeit in a more slowly-growing raft. Green/red arrows,
increased/decreased levels. See text for details.

in the early stages [288], if not the late stages [289],
of the disease]; by exporting cholesterol [290]), and
succeeds admirably in staving off the inevitable for
decades.

WHAT ABOUT TAU?

Hyperphosphorylated tau, a common but incon-
sistent feature of AD (similar to A�), can aggregate
into tangles and disrupt cytoskeletal stability and
axonal trafficking. Cholesterol appears to play a key
role in inducing tau hyperphosphorylation, but the
exact mechanism is unclear, as it was reported that
tau hyperphosphorylation was stimulated by levels
of intracellular cholesterol that were both increased
(e.g., via the MAM-localized [291] transient receptor
potential cation channel TRPV4 [292]) and decreased
(e.g., via the cholesterol biosynthesis enzyme 24-
dehydrocholesterol reductase [DHCR24; also called
Seladin-1] [293]). Conversely, promotion of choles-
terol efflux reduced tau phosphorylation [294], as did

reduced MAM-mediated [255] cholesterol esterifi-
cation [261, 295]. More recently, it was found that
tau hyperphosphorylation disrupts ER-mitochondria
contacts at MAM [296]. Furthermore, inhibition of
BACE1, but not �-secretase, reduced phosphorylated
tau levels in FAD neurons [297, 298], indicating that
C99 was at the heart of this effect. While the exact
details still need to be worked out, these results clearly
speak to important roles for cholesterol metabolism
and MAM functionality in promoting and/or respond-
ing to tau pathology.

AN OVERALL MODEL OF AD
PATHOGENESIS: THE “MAM
HYPOTHESIS”

Based on the data and arguments presented above,
we propose a “MAM hypothesis” of AD pathogene-
sis [89, 204, 299–301]. It posits that in both familial
and sporadic AD, the functional cause of the disease
is massively increased ER-mitochondrial communi-
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cation and up-regulated MAM function that, in turn,
results in the phenotypes seen in AD, including the
plaques and tangles. The biochemical cause of AD
is MAM-mediated lipid dyshomeostasis driven by
increased intracellular cholesterol levels that result
from increased steady-state levels of the MAM-
localized cholesterol sensor C99 (in the case of
EOAD) or from the unregulated accumulation of
intracellular cholesterol that interacts with C99 (in
the case of LOAD).

An overall model of the MAM hypothesis of AD
pathogenesis is shown in Fig. 6. Specifically, in
FAD, A�PP processing is affected directly, with a
profound interrelationship between A�PP mispro-
cessing (i.e., increased C99 levels) and deranged
cholesterol metabolism, as described above. In SAD,
the same relationship between C99 and cholesterol
also holds true, but in a different way, as the genetic
predisposition to develop SAD runs on two parallel
tracks, one promoting the increase in cellular C99
levels (causing EOAD, as in FAD) and the other
promoting elevated intracellular cholesterol (caus-
ing LOAD). As in FAD, both perturbations operate
together and interact with each other to generate the
downstream MAM-mediated phenotypes, including
the plaques and tangles [261].

Note that both elevated C99 and elevated
intracellular cholesterol conspire to increase ER-
mitochondrial communication at the MAM (Fig. 6A)
that, in turn, gives rise to the biochemical, morpho-
logical, and clinical features of the disease (Fig. 6B).
Importantly, all of those features, including the
plaques and tangles, are downstream consequences
of the primary functional problem, which is upregu-
lated MAM function. This model helps explain why
clinical trials based on removing plaques and/or A�
have fared so poorly.

We noted above that the SAD risk factors (Fig. 6A)
fell into two categories: those that mainly affect
MAM function and those that mainly affect choles-
terol metabolism. Thus, one might expect that
clinically, SAD patients expressing MAM-related
risk factor genes would resemble FAD patients, with
a relatively early age of onset and a rapid disease
progression (i.e., EOAD), whereas those expressing
cholesterol-related risk factors would have a later
age of onset and slower progression (i.e., LOAD).
Remarkably, this may actually be the case, as it was
recently shown that the distribution of the age of onset
in �4-negative SAD patients is indeed bimodal, with
one onset peaking at age ∼57 years (i.e., EOAD)
and the other peaking at age ∼77 years (i.e., LOAD)

Fig. 6. A model of AD pathogenesis. A) Inherited mutations in
FAD (affecting C99 [in blue]), or genetic risk factors in SAD
(affecting either C99 [in blue] or intracellular cholesterol levels [in
red], or both [in green]; colors as in Table 1), converge to increase
ER-mitochondrial communication at the MAM. B) These pertur-
bations eventually give rise to the features of AD, as shown. See
text for further details.

[302], consistent with, but of course not proof of, this
supposition.

Thus, the MAM hypothesis invokes two key
interrelated elements that drive AD pathogenesis,
C99 and cholesterol, that converge at the MAM.
Taken together, we propose that both FAD and
SAD are caused by the same underlying and linked
pathogenetic processes—elevated C99 and increased
intracellular cholesterol. From this perspective, AD
is, at bottom, a lipid disorder, similar to what has
been proposed by others [115, 119, 168, 303–305]
but described here in somewhat greater detail.

CLINICAL IMPLICATIONS

How does upregulated MAM function lead to a
neurological disorder? In other words, how does
MAM upregulation impair neuronal functionality to
the point where cognitive functions are compro-
mised? We believe that the answer to this question lies
in MAM’s role as a center of cellular lipid metabolic
regulation, where multiple lipid classes are metab-
olized by MAM-localized enzymes. Lipids regulate
multiple basic brain functions [306], including action
potentials, synaptic vesicle release, endocytic trans-
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port, cellular signaling, and pathogen recognition
[307]. Many of these roles arise by virtue of the fact
that lipids are the principal constituent of cellular
membranes, where their different charges and shapes
modulate membrane properties. As such, lipids can
control the recruitment, conformation, and interac-
tion of membrane-associated proteins like receptors,
channels, and enzymes [308]. Lipids also regulate
membrane curvature, important for the budding and
fusion of vesicles containing neurotransmitters and
other cargo [309, 310]. They also regulate membrane
permeability and fluidity, which are largely depen-
dent on the fatty acid composition and degree of
saturation of constituent phospholipids [311]. Fur-
thermore, lipids, and cholesterol in particular, are
the primary constituents of myelin [312], which
ensheathes axons and enables efficient conductance
of action potentials. Finally, lipids represent a source
of energy storage and transport and can serve as reser-
voirs of bioactive signaling molecules. It is therefore
not surprising that lipid alterations can be drivers of
neurodegenerative diseases [313], which we propose
to be the case in AD.

THE MAM HYPOTHESIS HAS
EXPLANATORY POWER

The MAM hypothesis answers or explains many
(but by no means all) of the features of AD that are
not easily explained by the amyloid cascade. This
includes the elevated A�42:A�40 ratio, the altered
cholesterol, phospholipid, sphingolipid, calcium, and
glucose levels, the increased lipid droplet formation,
the reduced bioenergetics and altered mitochondrial
morphology, the role of many SAD genetic risk fac-
tors and of Down syndrome, the different severities
of various A�PP and presenilin mutations, the partial
elucidation of the dominant nature of the FAD muta-
tions and whether FAD and SAD are manifestations
of a single underlying disease process, the secondary
role of plaques and tangles, and the poor track record
of amyloid-based clinical trials.

The MAM hypothesis could also provide insight
regarding the preponderance of affected females
over males [314]. Both estrogen and progesterone
decrease profoundly in post-menopausal women
[315], and also decline in elderly men, but to a
lesser degree [316]. Notably, steroid synthesis, like
phospholipid synthesis, is a collaboration between
MAM and mitochondria: MAM-localized choles-
terol translocates to mitochondria [194, 317, 318],

where it is converted to pregnenolone. Pregnenolone
then translocates back to the MAM for synthesis
of the various steroid hormones [309], including
estrogen and progesterone, and for the synthesis of
pregnenolone esters by ACAT1 [319]. It turns out that
estrogen inhibits the transcription of BACE1 [320,
321], so its loss de-represses BACE1 activity [322],
increasing C99. Similarly, progesterone inhibits the
expression of ACAT1 and reduces MAM apposition
length [323, 324], so its loss de-represses ACAT1
activity, thereby perturbing cholesterol homeostasis
and also increasing C99. Thus, the age-related decline
in both hormones in brain [325, 326] in women (and
to a lesser degree in men) can upregulate MAM, trig-
gering AD in a “sex-biased” manner, with obvious
implications for hormone replacement therapy in AD,
a highly contentious topic [327, 328]. Moreover, the
decline in these hormones might help explain why
advancing age is the single most important determi-
nant of AD susceptibility [329].

Finally, the MAM hypothesis helps explain why
inhibiting either BACE1 [13] or �-secretase activity
[15] as approaches to treat AD would be ill-advised.
In the former case, BACE1 inhibition would result in
a severe reduction in C99 levels, thereby constraining
normal raft production, likely with deleterious con-
sequences. In the latter case, inhibiting �-secretase
would increase C99 production, the very outcome
that we should be trying to avoid. On the other hand,
if AD is caused by disruption of the C99-cholesterol
axis, reducing or preventing the accumulation of
intracellular cholesterol might be of therapeutic
value, for example, via the use of statins, a contro-
versial topic [330, 331]. However, we believe that
statins will likely be of limited utility, given that they
are designed to inhibit the activity of HMGCR, which
we have shown is already down-regulated in AD cells
[53]; also, statins must cross the blood-brain barrier
in order to be effective.

As is with works in progress, the MAM hypoth-
esis currently does not explain other features of
the disease. These include the relative paucity of
FAD mutations in PS2 compared to those in PS1;
the loss of olfaction as an early indicator of AD;
the brain-specificity and brain subregion-specificity
(e.g., hippocampus versus cerebellum; motor neurons
versus cortical neurons) of the clinical phenotype (but
see below); and the identification of risk genes that
currently do not fit into the MAM paradigm (e.g.,
entries in black in Table 1), to name but a few. Nev-
ertheless, it is reasonable, if optimistic, to state that
it is not inconceivable that they too will eventually
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be explained in a manner consistent with the MAM
hypothesis.

For example, for currently unclear reasons, there
is a discrepancy between the number of pathogenic
mutations in PS1 (more than 100) compared to
those in PS2 (only ∼5) (https://www.alzforum.org).
Although PS1 and PS2 are highly similar in struc-
ture (64% amino acid identity), they differ in their
�-secretase activities, substrates, and functions [28,
332]. Moreover, contrary to what is seen in the vast
majority of PS1 mutations [26], pathogenic mutations
in PS2 increase �-secretase activity [28] and presum-
ably reduce C99 levels, thereby posing a challenge to
the MAM hypothesis. However, PS2, but not PS1,
binds to MFN2, thereby promoting tethering of ER
to mitochondria, and FAD-mutant PS2 binds MFN2
even more avidly and enhances the degree of tether-
ing above normal levels [333, 334]. Thus, mutations
in PS2, coupled with the potential interactions of
PS2 with full-length MFN2 and/or its splice vari-
ants [335], could indeed mimic the effects of PS1
on enhanced ER-mitochondrial communication and
on the C99-cholesterol axis (brain cholesterol levels
are elevated in FADPS2 patients [336]), albeit via a
more circuitous route. Taken together, these findings
could explain why pathogenic mutations in PS2 are
not only relatively rare, but also result in a “milder”
form of AD compared to mutations in PS1 [28].

TISSUE SPECIFICITY

One problem that has dogged the field is that
of tissue specificity: APP, PSEN1, and PSEN2 are
housekeeping genes that are expressed in essentially
all tissues [257, 337, 338] (see also genecards.org),
and yet, FAD-causative mutations in these genes
cause overt pathology only in the brain. In one sense,
the issue of tissue specificity may be a red herring,
as lipid droplets accumulate in peripheral blood cells
from AD patients [257]. Moreover, AD-model mice
expressing ApoE4 exclusively in their livers evinced
enhanced AD-like amyloid pathology compared to
mice expressing ApoE3 [339], implying that there is
communication between the periphery and the brain
in AD, likely via a breach in the blood-brain bar-
rier. In addition, while MAM contacts ER “loosely”
(gap distance of ≥10 nm), liver mitochondria are also
contacted by tightly-adhering ER (“wrappER”) that
is distinct from MAM [340], with essentially no gaps
between the two organelles. WrappER mediates the
biogenesis of lipids and lipoproteins [341] and plays

an important role in cholesterol synthesis and traf-
ficking via three-way ER-mitochondria-peroxisome
contacts [342]. Taken together, these results are not
only consistent with the concept that AD is indeed
a lipid disorder, but also imply that in the context of
AD pathology, the C99-cholesterol axis may not be
confined to the brain.

And even within the brain there is regional speci-
ficity, as, for example, cerebellum is far less affected
in AD than is hippocampus [343], with tau pathol-
ogy spreading outwards from the entorhinal cortex
in a prion-like manner [344, 345]. Can the MAM
hypothesis shed any light on this paradox? One clue
may lie in the emphasis of the MAM hypothesis on
lipids, and especially on the role of cholesterol and
sphingomyelin in lipid raft formation. We note that
two of the earliest signs of AD are deficits in olfaction
[346] and episodic memory [347]. While the two phe-
nomena are apparently unconnected, there may be a
relationship between them at the cellular level, as the
olfactory bulb and the hippocampus are apparently
the only loci in the adult human brain that are capa-
ble of renewal by stem cells [348] (a subject of some
debate [349]). Given that 1) these newly-born cells
are the only ones that require de novo myelination by
oligodendrocytes, 2) two of the most abundant com-
ponents of myelin are cholesterol and sphingolipids
[350], and 3) both cholesterol biosynthesis [351] and
progesterone [352] are required for myelination, it is
possible that the aberrant MAM function described
here is particularly pronounced in oligodendrocytes
[353], either quantitatively (e.g., too little or too much
myelin) or qualitatively (e.g., altered myelin com-
position) or both [354]. This may lead to altered
neuronal conductance that is particularly pronounced
in, but clearly not limited to, these newly-born cells.

THE MAM HYPOTHESIS AND
NEUROINFLAMMATION

Our hypothesis proposes that higher levels of
internalized cholesterol trigger MAM formation and
subsequent modulation of metabolic enzymes. In the
context of microglia, we note that immune chal-
lenges induce the transport of cholesterol from the
plasma membrane to the ER [355], resulting in the
formation of MAM domains. In turn, MAM for-
mation in microglia induces the recruitment and
clustering of enzymes involved in the regulation
of bioenergetics (i.e., switching from OxPhos to
glycolysis [356, 357]) and lipids (including regula-

https://www.alzforum.org
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tion by TREM2 [triggering receptor expressed on
myeloid cells 2], a known AD risk factor that is
expressed exclusively in microglia [358]), thereby
adapting microglial metabolism and cellular mem-
branes to a pro-inflammatory state [357]. Once the
activation subsides, cholesterol removal from the ER
dissolves MAM’s structure, leading to a reversal of
the changes in mitochondrial metabolism and the res-
olution of inflammation. From this point of view,
the upregulation of MAM domains could explain
the pro-inflammatory phenotypes associated with
AD and help explain why cholesterol alterations are
frequently associated with the emergence of damage-
associate microglia (DAM) phenotypes.

THE MAM HYPOTHESIS HAS
PREDICTIVE POWER

The hypothesis predicts that since AD is fun-
damentally a lipid disorder due to altered lipid
homeostasis (most notably at the MAM), levels
of specific lipids should be altered in predictable
ways. To take but one example, MAM-localized
ACAT1 [255] has a marked predilection for gener-
ating cholesteryl esters containing unsaturated fatty
acids, especially those containing oleate (C18:1)
[359, 360]. Similarly, MAM-localized long chain
fatty acid-CoA ligase 4 (FACL4; gene ACSL4) [361],
used in the transfer of fatty acids to phospholipids and
sphingolipids, has a preference for C20:4 and C20:5
[362]. On the A�PP processing side, the elevation
in C99, and the corollary reduction in A�, implies
that there should be an AD-specific increase not only
in the ratio of A�42:A�40, but also in the ratio of
C99:total A�. Thus, alterations in specific lipids and
in C99 levels should be pathognomonic of AD.

IMPLICATIONS FOR DIAGNOSIS AND
TREATMENT

The specific alterations in both lipid profiles and in
the C99:total A� ratio predicted by the MAM hypoth-
esis should be detectable in more easily-accessible
tissues, such as blood (e.g., in plasma/serum for
the lipids and the A�; in peripheral blood mononu-
clear cells for the C99). In fact, analysis of lipids
in AD blood has already been reported [363–365]
but the specificity and mechanistic interpretation of
those “agnostic” shotgun approaches have limited
their use as true and robust diagnostics. On the other
hand, a mechanism-based diagnostic scheme based

on the MAM hypothesis should be both more accurate
and more precise, by focusing on specific MAM-
mediated lipid species, combined with the predicted
elevated C99:A� ratio.

From the MAM point of view, it is clear that efforts
to treat AD by ameliorating downstream effects (e.g.,
by modulating calcium levels, increasing mitochon-
drial bioenergetics, reducing total A�, and the like)
will probably not work. On the other hand, two dif-
ferent approaches to treatment immediately present
themselves: 1) re-normalizing cholesterol homeosta-
sis, and 2) re-normalizing C99 levels. One can
imagine techniques to execute both approaches [366],
but these are beyond the scope of this review.
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