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Hypothesis
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Abstract. Alzheimer’s disease is the leading cause of dementia in the world. It affects 6 million people in the United States
and 50 million people worldwide. Alzheimer’s disease is characterized by the accumulation of amyloid-� plaques (A�), an
increase in tau protein neurofibrillary tangles, and a loss of synapses. Since the 1990s, removing and reducing A� has been the
focus of Alzheimer’s treatment and prevention research. The accumulation of A� can lead to oxidative stress, inflammation,
neurotoxicity, and eventually apoptosis. These insults impair signaling systems in the brain, potentially leading to memory
loss and cognitive decline. Aniracetam is a safe, effective, cognitive-enhancing drug that improves memory in both human and
animal studies. Aniracetam may prevent the production and accumulation of A� by increasing �-secretase activity through
two distinct pathways: 1) increasing brain derived neurotrophic factor expression and 2) positively modulating metabotropic
glutamate receptors. This is the first paper to propose an evidence-based model for aniracetam reducing the accumulation
and production of A�.
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Aniracetam is a known cognitive enhancer
whose pharmacological mechanisms are not fully
understood. The main metabolites of anirac-
etam are N-anisoyl-�-aminobutyric acid (N-anisoyl-
GABA), 2-pyrrolidinone and anisic acid [1]. Anirac-
etam modulates metabotropic glutamate recep-
tors (mGluRs) and �-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA)-sensitive glutamate
receptors, and it increases cholinergic activity in the
hippocampus, prefrontal cortex, and striatum [2]. It
also protects against glutamate excitotoxicity [3].
Aniracetam, in combination with AMPA, increases
brain-derived neurotrophic factor (BDNF) [4], an
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important trophic factor in the brain that supports
healthy memory, neurogenesis, and synaptogenesis
[5]. A recent study from 2023 found that aniracetam,
when combined with perampanel, reduces inflamma-
tion, and increases BDNF [6]. Research in humans
and animals finds aniracetam has excellent safety,
tolerability, and few drug interactions, making it an
ideal candidate for the prevention and treatment of
Alzheimer’s disease (AD) [1, 7].

ALPHA-SECRETASE

The majority of AD drugs have attempted to treat
and prevent AD by reducing A� [8]. Many of these
drugs have attempted to inhibit �-secretase as a
means of reducing A� production [9]. Unfortunately,
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clinical trials using this approach have failed. Also,
because �-secretase and �-secretases both have
multiple substrates other than amyloid-� protein pre-
cursor (A�PP), they are not ideal for AD treatment.

Targeting �-secretase activity is attractive ther-
apeutically for AD because increasing �-secretase
cleavage of A�PP has multiple positive effects
regarding AD pathology [10]. First, cleaving A�PP
with �-secretase prevents A� liberation. Second,
�-secretase cleavage of A�PP produces sA�PP�,
which is known to be neuroprotective [11]. Specif-
ically, sA�PP� plays important roles in neuronal
plasticity and survival: 1) it protects hippocam-
pal neurons against excitotoxicity, 2) it protects
neurons from A� toxicity, and 3) it protects neu-
rons from hypoglycemic damage [12]. Third, there
may be other neuroprotective downstream effects
of upregulating �-secretase activity. For exam-
ple, �-secretase is involved in the regulation of
pro-inflammatory cytokines [13], and increasing �-
secretase may reduce inflammation. Inflammation is
a well-established risk factor for AD [14]. Because
of the multiple neuroprotective effects of �-secretase,
enhancing �-secretase activation is likely to help pre-
vent AD [15].

It is important to note that �-secretase has multiple
downstream substrates, and little is known about the
signaling pathways that may stimulate �-secretase
cleavage of A�PP [16].

Evidence suggests that aniracetam has the poten-
tial to increase �-secretase activity, thereby reducing
A� production, via two distinct pathways: first, by
increasing activity of BDNF, and second, by posi-
tively modulating metabotropic glutamate receptors
(mGluRs). Both BDNF and positive modulation of
mGluRs increase �-secretase activity and decrease
A� [17–19].

AMYLOID-� PLAQUES

Excess A� is believed to be a significant con-
tributor to the dysfunction that occurs in AD [20,
21]. Accumulation of A� damages neurons and
synapses and often contributes to neuroinflammation
[22, 23]. Specifically, A� can lead to oxidative stress,
inflammation, neurotoxicity, and eventually apopto-
sis. These insults impair signaling systems in the
brain, potentially leading to memory loss and cogni-
tive decline [24, 25]. Aniracetam, a known nootropic
and cognitive enhancer [1, 2, 26], has the potential
to reduce A� by facilitating the non-amyloidogenic

processing of A�PP by elevating �-secretase activity
via increasing BDNF and modulating mGluRs.

A� is a 39 to 43 amino acid peptide derived from
A�PP [27]. There are three known proteases that
cleave A�PP: �-, �-, and �-secretases. A� is created
when A�PP is cleaved by �-secretase and �-secretase
[23]. When A�PP is cleaved at the beta, gamma, and
caspase sites, the result is four peptides: sA�PP�
(soluble A�PP cleaved at the beta site), A�, Jcasp
(the juxtamembrane peptide cleaved at the caspase
site) and C31 (the final 31 amino acids of the pro-
tein) [28]. When A�PP is cleaved at the alpha site
by �-secretase, the result is sA�PP� (soluble A�PP
cleaved at the � site) and �CTF (carboxyterminal
fragment), an 83-amino acid chain which is sub-
sequently cleaved by �-secretase producing A�PP
intracellular domain (AICD) and P3 peptides [23,
29]. sA�PP� has neuroprotective properties [11, 30].
When A�PP is cleaved by �-secretase, the production
of A� is prevented. Therefore, increasing �-secretase
activity is a potential pathway for decreasing A�
production and accumulation, as well as increas-
ing neuroprotective sA�PP�. Indeed, brains of AD
patients are deficient in �-secretase [31], a deficiency
in �-secretase levels accelerates AD pathology [29],
and increasing �-secretase activity decreases A� pro-
duction [32, 33].

It is important to note that simply reducing A�
is not necessarily beneficial to cognition or helpful
in the treatment of AD. Many drugs that reduce A�
have failed to benefit humans in clinical trials. Since
2018, nine drugs that directly reduced A� have failed
in Phase III trials [8]. And not all drugs that elevate
�-secretase activity lower A� in vivo or show benefit
in clinical trials (e.g., Etazolate) [34]. There remain
many unknowns in the field of AD research and A�
biochemistry.

BRAIN DERIVED NEUROTROPHIC
FACTOR

Aniracetam increases BDNF [4]. Aniracetam is a
well-established positive modulator of AMPA recep-
tors [35–39], specifically in the dentate gyrus and
CA1 regions of the hippocampus [40]. Aniracetam
also slows the desensitization of AMPA recep-
tors and enhances synaptic plasticity [36, 41].
Aniracetam administered with AMPA increases
BDNF release and enhances BDNF gene expression;
AMPA+aniracetam increased BDNF levels 1.5-fold,
and levels remained elevated 6 hours later [4].
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Researchers have suggested that part of the efficacy
of aniracetam is its ability to increase BDNF, likely
through mGluR modulation and increased choliner-
gic activity [2].

There is a strong and consistent association
between increased BDNF and reduced levels of A�
[17, 18]. A 2017 study by Mark Mattson and col-
leagues found that BDNF reduces A� by enhancing
a pathway that involves �-secretase. Specifically,
researchers treated in vitro cultured cells with BDNF
and found a significant reduction in both A�40 and
A�42, compared to control cultures. Researchers con-
cluded that BDNF reduces A� levels by increasing
�-secretase activity. Interestingly, and surprisingly,
their research found that increasing �-secretase
cleavage of APP by increasing BDNF did not directly
increase ADAM10 [16].

A 2022 study found that BDNF helps regulate
A�PP processing, likely through �-secretase [42].
Indeed, treating cultures with BDNF decreased A�40
by 1.32-fold, decreased A�42 levels by 2.15-fold, and
increased sA�PP� by 1.50-fold [42]. Retinoic acid, a
trophic metabolite of vitamin A, when combined with
BDNF, increases sA�PP� production. Investigators
concluded that this increase was due to retinoic acid
and BDNF shifting A�PP processing in favor of the
neuroprotective �-secretase pathway [43].

Conversely, low levels of BDNF are associated
with an increased risk of AD. Indeed, those with AD
have significantly lower levels of BDNF in their blood
than healthy controls [44]. Some researchers specu-
late that BDNF may also decrease BACE1, which
would decrease �-secretase cleavage and reduce A�
liberation [43].

BDNF has other neuroprotective properties rele-
vant to AD outside of its ability to elevate �-secretase
activity and reduce A�. BDNF plays a crucial role
in supporting the function and survival of neurons
that deteriorate in the advanced stages of AD. BDNF
protects against excitotoxicity, promotes regenera-
tion of dendrites, and reduces apoptosis [45, 46]. A
2023 study found that BDNF helps protect both mito-
chondria and neurons. Specifically, BDNF was found
to improve mitochondrial function, protect neurons
from oxidative stress, and protect dendrites [47]. This
is highly relevant to AD because oxidative stress
and degeneration of mitochondrial function is associ-
ated with cognitive decline and increased risk of AD
[48–50].

In the human brain, BDNF exists in two forms:
the BDNF precursor, proBDNF, and mature BDNF.
Existing research has demonstrated a significant

reduction in both proBDNF and mature BDNF in
the brain during the late stages of AD. Specifically,
proBDNF is reduced by 30% in AD brains, and
mature BDNF is reduced by 62% in AD brains. This
decrease in BDNF is also associated with a decline
in cognition [51].

By enhancing BDNF expression, aniracetam
shows promise as a potential treatment for AD by
reducing A� plaque, enhancing mitochondrial func-
tion, and supporting the survival of neurons.

METABOTROPIC GLUTAMATE RECEPTORS

L-glutamate is the primary excitatory neuro-
transmitter in the central nervous system (CNS).
mGluRs, which are classified as neuromodulatory
receptors, offer a means for glutamate to regulate
cell excitability and synaptic transmission through
second messenger signaling pathways. Essentially,
mGluRs modulate synaptic transmission and neu-
ronal excitability throughout the CNS.

Glutamate and mGluRs may play an important role
in AD [52]. Modulating mGluRs may help with AD
in the following ways: 1) increase �-secretase activity
and reduce A� formation, 2) protect against excito-
toxicity, 3) reduce oxidative stress, and 4) enhance
neuroplasticity [53, 54].

Aniracetam has the potential to reduce A�
plaques by enhancing �-secretase activity by increas-
ing mGluR activity. Aniracetam potentiates mGluR
activity [2, 3, 55], and mGluR activation increases
A�PP processing into non-amyloidogenic A�PPs in
the hippocampus in rats [19]. Though other evi-
dence suggests mGluRs stimulation may increase A�
plaques [56].

The neurochemistry of aniracetam is not well
understood, and it is not known which specific
mGluRs aniracetam modulates. Group I mGluRs
activation increases �-secretase activity [57]. Group
III mGluRs activation facilitates non-amyloidogenic
cleavage of A�PP, may increase BDNF levels, and
helps remove extracellular A� via glial phagocytosis
[58]. Activating group III mGluRs may also increase
�-secretase and inhibit �-secretase expression [59].
Interestingly, downregulating Group 5 mGluRs may
have neuroprotective effects and may be helpful in
the treatment of AD [60].

Indeed, a 2020 article in the Journal of Alzheimer’s
Disease detailed the therapeutic potential of modu-
lating mGluRs for the treatment and prevention of
AD [53].
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SIDE EFFECTS

Aniracetam is well-tolerated in most clinical trials
and does not increase liver enzymes [1]. However, it
is not without side effects. The most common adverse
events reported with aniracetam use were unrest, anx-
iety, uneasiness, and insomnia. Other unwanted side
effects include urinary urgency, headache, vertigo,
mild stomach pain, nausea, diarrhea, and rash. In clin-
ical trials these effects were considered mild and did
not necessitate withdrawal from the study [1].

Aniracetam is well-tolerated in the majority of
clinical trials. One study of 109 elderly subjects took
aniracetam or placebo for six months. Researchers
wrote, “Tolerability of aniracetam was excellent”
[61]. Another study of 115 subjects took anirac-
etam or placebo for six months. Researchers reported
excellent tolerability [62].

Despite the high tolerability in clinical trials,
healthcare practitioners are reporting unpleasant side
effects in patients taking aniracetam. If the side
effects of aniracetam are significantly impairing
the quality of life, especially if they are impairing
sleep—which is essential to brain health and mem-
ory consolidation—it is important for the patient and
practitioner to determine if the cognitive-enhancing
and neuroprotective benefits of aniracetam are worth
enduring the side effects.

DISCUSSION

Aniracetam is a known cognitive enhancer and
positive modulator of AMPA receptors and mGluRs.
Multiple studies indicate that aniracetam likely
increases �-secretase activity by increasing BDNF
expression and positively modulating mGluRs. No
research could be found in human or animal studies
investigating the impact of aniracetam on A� accu-
mulation or production. To the author’s knowledge,
this paper is the first evidence-based model proposing
that aniracetam lowers A� production and accumu-
lation.

LIMITATIONS

There is much we do not know regarding AD
neurobiochemistry. Researchers generally agree that
cleaving A�PP with �-secretase will be neuroprotec-
tive by reducing A�. However, there remain multiple
unknown aspects of A�PP, �-secretase, and A� biol-
ogy. For example, which �-secretases effectively

cleave A�PP to produce neuroprotective sA�PP�,
and which ones do not? What are all of the down-
stream substrates of �-secretase, and what are the
impacts of chronically elevating �-secretase? To what
extent does modulating �-secretase affect levels of
inflammation (e.g., TNF)? Clinical trials lasting six
months report that aniracetam is well tolerated [61,
62], though this does not guarantee that there are no
long-term negative impacts of chronically upregulat-
ing �-secretase.

Indeed, increasing �-secretase activity may be a
double-edged sword. Cleaving A�PP with �- and �-
secretases does prevent the production of A�, and
it also creates the peptides sA�PP� and P3. While
sA�PP� has neuroprotective effects, P3 may be neu-
rotoxic. P3 has demonstrated neurotoxic effects in
vitro, specifically increasing neuronal apoptosis [63].
Recent research from 2020 found P3 to have amy-
loidogenic properties [64].

The biochemistry of aniracetam is not fully under-
stood. Aniracetam modulates mGluRs, but does
it modulate group I and/or group III mGluRs to
the point of increasing �-secretase expression and
increasing A� clearance? We do not know which
�-secretase (e.g., ADAM9, ADAM10, ADAM19)
aniracetam upregulates, nor which �-secretases
cleave A�PP. Does aniracetam as a monotherapy,
or used in tandem with other cholinergics or BDNF
agonists, significantly reduce A� and slow down the
progression of AD?

FUTURE RESEARCH

Because aniracetam has known cognitive and
behavioral benefits in humans with mild cognitive
impairment and early-stage AD [1, 61,65, 66], and
aniracetam has a high level of tolerability and safety,
human clinical trials could start immediately. I rec-
ommend starting with a 6-month crossover trial
in adults with mild cognitive impairment. Ideally,
researchers would measure cognition, serum BDNF
levels, and A� using PET scans, at baseline and
at every three months of the study. Subjects would
be given 1,500 mg/day of aniracetam, taken with a
source of fat to increase bioavailability (e.g., coconut
oil, olive oil, or with food). To reduce potential
side-effects, subjects could take a methylated B-
complex vitamin and 1,200 mg of Alpha GPC with
their aniracetam dose.

Further research is required to specify which
mGluRs aniracetam modulates and which specific �-
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secretase or secretases aniracetam activates. Future
animal studies could also investigate the down-
stream impact of chronically increasing �-secretase
activity. I recommend starting by investigating if a
daily dose of aniracetam (50 mg/kg) in rats signifi-
cantly increases BDNF expression and which specific
mGluRs groups aniracetam modulates.
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