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Abstract.

Background: There is increasing evidence from animal and clinical studies that network hyperexcitability (NH) may be
an important pathophysiological process and potential target for treatment in early Alzheimer’s disease (AD). Measures of
functional connectivity (FC) have been proposed as promising biomarkers for NH, but it is unknown which measure has the
highest sensitivity for early-stage changes in the excitation/inhibition balance.

Objective: We aim to test the performance of different FC measures in detecting NH at the earliest stage using a computational
approach.

Methods: We use a whole brain computational model of activity dependent degeneration to simulate progressive AD pathol-
ogy and NH. We investigate if and at what stage four measures of FC (amplitude envelope correlation corrected [AECc],
phase lag index [PLI], joint permutation entropy [JPE] and a new measure: phase lag time [PLT]) can detect early-stage AD
pathophysiology.

Results: The activity dependent degeneration model replicates spectral changes in line with clinical data and demonstrates
increasing NH. Compared to relative theta power as a gold standard the AECc and PLI are shown to be less sensitive in
detecting early-stage NH and AD-related neurophysiological abnormalities, while the JPE and the PLT show more sensitivity
with excellent test characteristics.

Conclusions: Novel FC measures, which are better in detecting rapid fluctuations in neural activity and connectivity, may
be superior to well-known measures such as the AECc and PLI in detecting early phase neurophysiological abnormalities
and in particular NH in AD. These markers could improve early diagnosis and treatment target identification.
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INTRODUCTION

There is increasing evidence that a disturbance in
the balance between excitation and inhibition (E/T)
in neural circuits plays an important role in the
pathophysiology of Alzheimer’s disease (AD) [1, 2].
Animal studies have shown that amyloid-f3 (AB) can
disrupt synapses, and give rise to network hyperex-
citability (NH), epileptiform discharges in local field
potentials and EEG recordings, and epileptic seizures
[3-5]. Hyperexcitability in its turn may promote fur-
ther deposition of AP, creating a vicious circle [6].
The other pathological protein involved in AD, phos-
phorylated tau, has also been implied in disruption of
the E/I balance [7]. These findings in animal models
of AD haveraised the question to what extent NH may
also play arole in patients with AD. There is evidence
that AD patients have a higher likelihood of suffer-
ing from epilepsy [8]. This prevalence may still be
underestimated, since some types of seizure are dif-
ficult to detect clinically and may only be diagnosed
with special electroencephalography (EEG) record-
ings [9]. NH may not only manifest itself as a higher
likelihood of clinical seizures but may also be associ-
ated with a higher incidence of interictal epileptiform
discharges (IEDs). There is now increasing evidence
from EEG and magnetoencephalography (MEG) that
IEDs occur more frequently in AD compared to
healthy subjects [10]. AD patients with IEDs have a
worse disease course with more rapid progression of
cognitive decline that AD patients without IED [11].
An important question is whether IEDs in AD, even
in the absence of clinical seizures, should be treated
with anti-seizure medication. One small clinical trial
with levetiracetam in AD could not show an effect on
the primary endpoint but did reveal a positive effect
on the Stroop interference naming subscale and the
virtual route learning test in a subset of patients with
IED [12].

There is an urgent need for sensitive and reliable
biomarkers of hyperexcitability in AD, both for gain-
ing a better understanding of the pathophysiology, but
also to identify at an early-stage patients who might
benefit from treatment directed at restoring the E/I
balance. Epileptiform discharges in EEG or MEG
recordings are the clinical gold standard for hyper-
excitability, but their prevalence is low, and proper
recognition is very much observer dependent. The
yield may be increased with long term EEG mon-
itoring, or the use of MEG instead of EEG, but
these approaches are demanding for patients, expen-
sive and not always generally available [11, 13-15].

Several alternative measures of NH which can be
computed from EEG or MEG recordings have been
proposed [16—18]. Functional connectivity (FC) are
very promising candidates as biomarkers of NH since
connections between distance brain regions consist
mostly axons of excitatory neurons. In a recent MEG
study, it was shown that AD patients with epilep-
tiform discharges may have a higher FC in the low
frequency bands (2-8 Hz) and a lower FC in the alpha
band [19]. FC in the gamma band has also been
related to epileptiform discharges in a MEG study
in subjects with mild cognitive impairment (MCI)
[20]. Studies using computational brain models have
shown that systematic changes in the E/I balance are
reflected in FC measures computed from simulated
EEG/MEG time series [21, 22]. These studies sug-
gest the potential value of FC as a biomarker of NH.
However, the relation between E/I balance and FC is
not straightforward, and may not be the same for all
FC measures. Which FC measure is most sensitive to
the earliest changes in the E/I balance in developing
AD is currently unknown.

In the present study we want to compare the ability
of four different FC measures to detect early phase
AD-related neurophysiological abnormalities, in par-
ticular emerging hyperexcitability. As an objective
benchmark for this comparison, we use the activity
dependent degeneration (ADD) model of evolving
structural and functional network changes in AD [23,
24]. This is a whole brain computational model which
generates simulated EEG/MEG time series. AD-
related structural and functional network changes are
simulated by having high firing rates of excitatory
neurons slowly weakening all synapses in the brain
network. This ADD model can replicate many of the
key features of developing abnormalities along the
AD spectrum such as progressive slowing, a transient
phase of hyperactivity and hyperconnectivity, and
disruption of network architecture with preferential
damage to highly connected hubs [23]. We aim to test
the ability of FC biomarkers to distinguish between
output of the ADD model and control data without
ADD at different time points along the disease course.
We compare this performance against relative theta
power, which is sensitive to early changes in AD and
has been related to a disturbed E/I balance in a recent
model study [25].

We investigate the corrected amplitude envelope
correlation (AECc) and the phase lag index (PLI)
since these are well established FC measures with
known test-retest reliability in EEG and MEG record-
ings of AD patients [26, 27]. In addition, we consider
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arecently introduced measure, the joint permutation
entropy (JPE), which characterizes variability of local
dynamics in addition to interregional connectivity
[28]. A recent MEG study showed that the JPE per-
forms well in comparison to the current gold standard
of relative theta power in the classification of subjec-
tive cognitive decline versus MCI [29]. As a fourth
biomarker we investigate a new measure, the phase
lag time (PLT), a modification of the PLI which is
less dependent upon epoch length and may be better
able to capture rapid fluctuations in FC.

MATERIALS AND METHODS

The neural mass model

The brain is modeled as a network of coupled brain
regions, or regions of interest (ROIs). The activity
of each brain region is described with a neural mass
model. We used a neural mass model originally intro-
duced to describe the alpha rhythm and employed in
many more recent studies to study a wide range of
normal and pathological EEG and MEG phenomena
[30-32]. Each neural mass consists of reciprocally
coupled populations of excitatory and inhibitory neu-
rons, which are characterized in terms of their mean
membrane potentials and spike densities (spikes/s). In
each population an impulse response function is used
to convert the incoming spikes to changes in the mean
membrane potential. This impulse response function
is linear but has a memory which reflects the shape of
excitatory and inhibitory post synaptic potentials. The
mean membrane potential is subsequently converted
to the outgoing spike density with a (static) nonlinear
sigmoidal function. All neural masses receive input
to their excitatory neurons from the thalamus. Time
series of the mean membrane potential of the excita-
tory populations are used as the output of the model.
These time series are assumed to reflect regionally
generated EEG or MEG signals.

Connections between neural masses

In agreement with previous studies, the excita-
tory neurons of the neural masses are connected
to each other according to a structural connectivity
matrix [31]. In the present study, in line we previous
work, we used a network of 78 interconnected neu-
ral masses. The structural connectivity matrix was
based upon the diffusion tractography data of a group
of healthy subjects [33]. This is a binary graph where
connections are either present or absent. In the model

this unitary connection strength can be adjusted by
multiplying it with a strength parameter S.

Activity dependent degeneration algorithm

The ADD algorithm was introduced to simulate
progressive changes in brain networks during the
development of AD [23, 24]. The model rests upon
a single assumption: excessive firing causes synaptic
damage. This idea was implemented by computing
for each neural mass at each point in time a loss
function:

loss = efd‘maxAct 1)

Here d is a parameter that determines the speed
of degeneration and maxAct is the highest firing rate
of the excitatory neurons in the last 20 time steps
(of 2ms.). Next, the strength of all synapses in the
model (between excitatory and inhibitory popula-
tions in each neural mass; between thalamus and the
excitatory neurons in all masses and between exci-
tatory populations of all coupled neural masses) is
decreased by multiplying it with loss.

Running the model

To investigate the consequences of ADD the model
is started with a set of initial parameter values which
correspond to the healthy state. Next, a series of
consecutive epochs is generated, corresponding to
progressive disease induced changes. Each epoch has
a length of 4,096 samples at a sample frequency
of 500 Hz. For each epoch 5,000 samples are used
for the system to reach a stable state. Note the
presence of two separate time scales: within each
epoch very small changes are happening every 2 ms
according to formula (1). The numbers of subse-
quent epochs represent larger changes happening at
longer timescale. It is known that the ADD model,
implemented in this way, can explain several impor-
tant features of progressive AD-related structural
and functional network changes: (i) selective dam-
age to highly connected “hub” nodes; (ii) progressive
slowing characterized by decreasing frequency and
increased power in low frequency bands; (iii) a tran-
sient state of increased firing rates of excitatory
neurons, high oscillatory power and increased FC
between the brain regions; (iv) a disruption of brain
network organization [23]. In this study, the aim was
to use the ADD as a benchmark to test and compare
putative biomarkers for early-stage AD-related neu-
rophysiological abnormalities. For this reason, we did
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Activity Dependent Degeneration model

iseafirodfieemactioofimatarfinme

3

Excitatory neurons

Functional connectivity

Excitatory neurons

Structural connectivity

Inhibitory neurons

/A B

Inhibitory neurons

m =0

Thalamus

Fig. 1. General scheme of the activity dependent degeneration (ADD) model. The brain is modeled as a network of coupled brain regions.
The activity of each brain region, corresponding to the two blue squares to the left and the right, is described by a neural mass model. This
considers the average activity (mean membrane potential and mean firing rates in spikes/s) of reciprocally interconnected populations of
excitatory and inhibitory neurons, indicated by the red and green boxes within the larger blue boxes. Within each population incoming action
potentials are converted to changes in mean membrane potential by a dynamic linear function. Membrane potentials are converted to spike
densities by a static nonlinear (sigmoidal) function. Excitatory neurons of different brain regions are coupled to excitatory neurons of other
brain regions, where the presence and strength of such connections is based upon an underlying structural connections matrix (example
shown in the middle of the figure). All brain regions receive excitatory input to their excitatory neurons from the thalamus. The output of
the model consists of time series of membrane potentials of the excitatory population of each of the brain regions. As shown in yellow in
the right brain region ADD is implemented by coupling the firing rates of the excitatory population to weakening of all synapses, excitatory

as well as inhibitory, present in the system.

not change anything to the original parameter settings
of the model. A schematic overview of the model can
be seen in Fig. 1. Mathematical details can be found
in previous papers [23, 32]. An overview of the model
parameters and the initial values is shown in Table 1.

Functional connectivity measures

We investigated four FC measures for their
performance as biomarkers of early-stage neuro-
physiological abnormalities in AD, in particular
increasing NH, and compared these to relative theta
power, since this has been shown to be one of the most
reliable neurophysiological biomarkers in early AD
[34, 35]. We selected the AECc and the PLI since
these measures have been used in several previous

studies and have been shown to be robust and repro-
ducible in EEG as well as MEG recordings [26, 27].
To this we added the JPE which has been shown
to perform better than the AECc and PLI, and at
least as good as the relative theta power in a small
previous study in subjects with subjective cognitive
decline and MCI [29]. Finally, we also investigated
a new measure, the PLT, a modification of the PLI
which is better able to capture rapid fluctuations in
connectivity and is less sensitive to epoch length.
As a first step data were filtered in the delta
(0.5-4 Hz), theta (4-8 Hz), alpha (8—13 Hz), and beta
(13-30 Hz) frequency bands. Next, for the computa-
tion of the AECc, PLI, and PLT, for each channel, the
analytic signal was determined using a Hilbert trans-
form as described previously [21, 36]. The analytical
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Table 1

Overview of model parameters and initial values
Parameter Interpretation Initial value
Sample frequency 500 Hz
Sample time 2 ms
Epoch length 4096 samples
Pt Thalamic input 550 spikes/s
Noiselevel Fluctuations of thalamic input around mean 1.0
Ampl Amplitude of EPSP 1.6 mV
Amp2 Amplitude of IPSP 32mV
Al Shape parameter of EPSP 555!
Bl Shape parameter of EPSP 605 s~!
A2 Shape parameter of IPSP 27.5s7!
B2 Shape parameter of IPSP 55571
G Shape parameter of sigmoidal function relating membrane potential to firing rates 25571
Q Shape parameter of sigmoidal function relating membrane potential to firing rates 0.34mv—!
Vdl Threshold potential for converting membrane potential to firing rates for excitatory neurons 7 mV
vd2 Same as above for inhibitory neurons 7 mV
Cl1 Connection strength excitatory to inhibitory populations 32
C2 Connection strength inhibitory to excitatory populations 3
S Coupling strength between neural masses 1.5
d Speed of ADD process 0.01

EPSP, excitatory post synaptic potentials; IPSP, inhibitory post synaptic potentials; ADD, activity dependent degeneration.

signal z; is complex-valued with x; a real time series
and X, its corresponding Hilbert transform:

Zr =X +i% = Atei(p’ ()

The Hilbert transform of x; is obtained via integra-
tion as follows:

Xt

1 o]

x=—-PV [ dr 3)
T Ixt—7T

where PV refers to the Cauchy principal value. The
Hilbert transform [3] is related to the original sig-
nal by a [1/2]mr phase shift that does not alter the
spectral distribution (it can be computed by perform-
ing a Fourier transform, shifting all the phases by
[1/2]m, followed by an inverse Fourier transform).
From equation (2), both the instantaneous amplitude
A and the instantaneous phase ¢; can be obtained:

@; = arctan 2 “)
Xt

where ¢ is the phase at time t (in radians) and

amplitude envelope; = \/x,2 + yt2 (®)]

is the amplitude envelope or instantaneous ampli-
tude at time t. The (uncorrected) amplitude envelope
correlation AEC is defined as the Pearson correla-
tion of the amplitude envelopes of pairs of simulated
time series. Correction for volume conduction can
be done by pair-wise orthogonalization of the data
before the AEC is computed [26, 27, 37]. We refer to
this corrected version of the AEC as the AECc.

To compute the strength of phase synchronization
between pairs of signals we used the phase lag index
(PLI) which is not sensitive to volume conduction
[36]:

PLI; j = |sign [sin (¢;)]| (6)

Here sign is the signum function which returns 1 if
the argument if positive and —1 otherwise, and ¢; j is
the instantaneous phase difference between oscilla-
tors i and j. While the PLI is robust against detection
of spurious of FC due to volume conduction, it is not
optimal to capture rapidly fluctuating phase leading
/ lagging relations, and depends upon epoch length
[38]. To deal with these problems we consider a mod-
ified measure, the phase lag time (PLT) which is
defined as the average duration (in s) of phase leading
/ lagging relations between two signals. It is defined
as follows:

PLT; j=1—¢" (7

Here T is the average duration (in sec.) of an inter-
val between two successive sign changes of the phase
difference. In the case of volume conduction, the
phase difference and the PLT will be zero.

We also computed the joined permutation entropy
(JPE) as a measure of FC that is also sensitive to
variability of the local signals. For a detailed descrip-
tion of the measure, we refer to [28, 29]. Briefly, the
computation of the JPE starts with representing the
time series in each channel as a sequence of discrete
ordinal patterns or symbols. Each pattern consists of
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n amplitude values separated by a time lag tau. As
in our previous study we use a time lag of 1, and a
pattern length of 4. Next, the n amplitudes in each
pattern are ranked / ordered from the highest (1) to
the lowest (n). This results in n! different possible
ordinal patterns. In the case of two different signals,
there are in total n! * n! different combinations of pat-
terns. To correct for the spurious influence of volume
conduction symmetric and anti-symmetric patterns in
the two channels are excluded [39]. Finally, the JPE
is computed as the Shannon information entropy of
the resulting matrix of co-occurring ordinal patterns:

H(n)==> p(log p(m) ®)

Where n corresponds to the pattern length of 4,
and the summation is over all entries of the matrix
of co-occurring patterns, excluding the (anti) sym-
metric patterns. JPE was normalized between 0-1
by dividing it by its maximum value, i.e., log(n! *
n! —2n!+1)%. As a last step, we inverted the sign to
have a measure that increases with increased coupling
strength and decreases with lower coupling strength:

H )
log(n! *n! —2n!+ 1)

JPEjy, = C))
For convenience in the rest of the paper we always

assume the sign reversal, and use “JPE” to refer to
the JPE;,y.

Software and statistical analysis

Modeling of the network of neural masses, imple-
mentation of the ADD algorithm, filtering of the
simulated time series, computation of band power
and all FC measures were done with BrainWave
(version 1.2.12), which can be downloaded from
https://github.com/CornelisStam/BrainWave.git.
Statistical analyses (permutation tests; FDR; ROC
plots, sensitivity, specificity, and accuracy) were also
done with BrainWave.

RESULTS

Spectral features and evolution of E/I balance in
the ADD model

In the present study, we aimed to use the ADD
model as a benchmark for comparing a number of
proposed FC biomarkers of early changes in AD in
particular with respect to abnormalities in the E/I
balance. The original paper introducing the model

describes transient changes in total oscillatory power,
firing rates of excitatory neurons and FC [23]. For the
purpose of the present study more detailed informa-
tion on changes in the underlying structural network,
spectral properties, such as relative power in the theta
band, and the actual E/I balance was needed to con-
firm its suitability as a benchmark.

How the structural network changes due to the
weakening of the connections guided by the ADD
algorithm is shown in Fig. 2. In Fig. 2A and B, the ini-
tial, healthy structural network is shown in transversal
and sagittal views. The strength of all initial connec-
tions is 1. Next, connections have been weakened
under influence of the ADD algorithm (according
to formula [1]). Figure 2C and D show which con-
nections have been weakened most compared to the
initial network. The largest damage can be seen in
the posterior parietal and occipital areas, but the
damage extends along the cingulum to the medial
frontal regions. The situation at a later time, 7= 10,
is shown in Fig. 2E and F. Here we observe a fur-
ther progress in weakening of connections in parietal
occipital areas, cingulum, and medial frontal cortex.
In addition, the damage now starts to extend into the
temporal regions.

For this reason, the temporal evolution of relative
power in arange of frequency bands as well as a mea-
sure of the dominant frequency were determined for
the ADD model (Fig. 3). In the early phase, up to
about epoch number 15, model output is dominated
by oscillatory activity in the alpha 1 band (810 Hz)
with a dominant frequency of about 8.5-9 Hz. In this
phase relative power in the other bands is relatively
low. Starting at about epoch 15 a number of changes
occur: there is a slowing of the oscillatory activity
with a decrease of the dominant frequency (to about
6-6.5 Hz), a strong decrease in alpha 1 power, and an
increase in theta band power, from about 0.05 initially
to more than 0.30 around epoch 50. Smaller increases
are also observed in alpha 2, beta, gamma, and, at a
later stage, delta power. The early increase in rela-
tive theta power, followed by a decrease in median
frequency and a late increase in delta power are in
agreement with spectral changes along the AD spec-
trum [40]. Changes in the higher frequency bands
may be influenced by the emergence of a peak in the
spectrum due to higher harmonics of the oscillatory
activity.

Next, we considered the temporal evolution of
the firing rates of the excitatory neural populations
(E) and the inhibitory neural populations (I). From
these firing rates we computed a measure, normal-
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Loss of structural connectivity due to activity dependent degeneration

Initial connections Connection loss T=5 Connection loss T=10

Fig. 2. Spatial and temporal pattern of changes in structural connections in the global brain network induced by the ADD algorithm. A)
Connections between brain regions in initial, healthy network, transversal view. B) Same network, sagittal view. C) Connections which have
shown the strongest decrease in connection strength induced by the ADD algorithm at 7=35, transversal view. D) Same network, sagittal
view. E) Connections with the strongest loss at 7'= 10, transversal view. F) Same network, sagittal view.

Relative power during ADD evolution

Relative power
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Fig. 3. Time course of median frequency, and relative power in delta, theta, alphal, alpha2, beta, and gamma bands during the activity
dependent degeneration (ADD) disease/damage algorithm. Curves are based upon frequency analysis of the simulated 78-channel MEG
time series of 200 epochs of a single run of the ADD model. The early, healthy state is characterized by a high median frequency, high power
in the alphal band, and low power in the other bands. Over time the medians frequency decreases, the alphal power decreases, and power
in the other frequency bands, in particular in the theta band, increases. After about 100 time steps a stable state is reached.
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ADD firing rates: evolution over time
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Fig. 4. Time course of firing rates (spikes / sec.) of excitatory and inhibitory neurons, and E/I balance, averaged over all 78 neural masses,
corresponding to the same model run as Fig. 3. The firing rate of the excitatory neurons shows an increase to a highest value around time step
60, followed by a gradual decline, and a final value below the initial value. The inhibitory neurons have much higher firing rates initially,
and show a steady, approximately exponential decline before they reach a more or less table plateau at the end of the simulation. The E/I
balance, computed as the ratio of the firing rates of excitatory neurons divided by the sum of excitatory and inhibitory firing rates, shows an

almost linear increase from the start until it reaches a plateau after about 100 timesteps.

ized between 0 and 1, of the E/I balance as follows:
E/(E +1). The results shown in Fig. 4 reproduced the
initial increase (till about epoch 50-60) and subse-
quent decrease of excitatory firing rates, in agreement
with the results reported in Fig. 5 of [23]. Somewhat
surprisingly, we now observe that the inhibitory firing
rates are initially much higher than the excitatory fir-
ing rates (75 spikes/s., as compared to 30 spikes/s for
the excitatory population) and subsequently show a
consistent, approximately exponential decrease. The
measure of the E/I balance computed from these fir-
ing rates shows an almost linear increase from a value
of 0.3 in the very beginning, until it reaches a plateau
of about 0.6 at about epoch number 100, with only a
minimal decrease afterwards (0.57 at epoch number
200). This is an important result since it shows that
the activity-induced degeneration, as implemented
in the original ADD model, does in fact induce an
early, and progressive increase in the E/I balance.
This, in combination with the increase in theta and
delta power, and the decrease in dominant frequency,
makes the ADD model a useful benchmark to inves-
tigate the performance of proposed biomarkers for
early AD-related neurophysiological abnormalities.

Further support for the validity of the ADD model
based upon a comparison to empirical MEG record-
ings indifferent stages along the AD continuum can
be found in the Supplementary Material.

Sensitivity of FC biomarkers to changes in the
ADD model

Twenty independent runs of the ADD model (ADD
condition) and 20 independent runs without activity
induced synaptic changes (Control condition ‘Con’)
were used to compare the performance of the four
FC measures: AECc, PLI, JPE, and PLT. For each
measure we computed the significance of the differ-
ence between the ADD and Con files as a function
of time (number of epochs since start of the model,
where higher epoch number corresponds to a more
progressed / later disease stage). For comparison we
also include the performance of relative theta power
which has been shown to be one of the most robust
biomarkers of early-stage AD [34]. The main results
are shown in Fig. 5. In the delta band the AECc did not
detect any significant differences between the ADD
and Con conditions. The PLI could detect the dif-
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Detection of activity dependent degeneration by biomarkers
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Fig. 5. Sensitivity of biomarkers to detect progressive changes over time in ADD model. Statistical differences in several biomarkers (relative
theta power, AECc, PLI, JPE, and PLT) are computed for two data sets (ADD: 20 files corresponding to separate runs of the ADD algorithm
and 20 files of normal activity without ADD), for time steps from 1 to 10. The significance (p-value of difference in mean over all ROIs,
FDR corrected) is plotted as a function of time step for all measures and 10 timesteps in four frequency bands. A) Results for the delta band
(0.5-4 Hz). Results for relative theta power are shown in all plots with a striped line for reference. AECc shows no significant results for any
time step. PLI is significant from timestep 8 on. JPE and PLT are significant from timestep 2 on. B) Results for the theta band (4-8 Hz). The
curves of AECc and PLI show a declining trend for later timesteps but no significant effects with the exception of the PLI for timestep 6.
Both JPE and PLT are significant from timestep 2 on. C) Results for the alpha band (8-13 Hz). The AECc only shows a significant effect at
timestep 10. The PLI first becomes significant from timestep 6, the JPE from timestep 3 and the PLT from timestep 6. D) Results for the
beta band (13-30 Hz). The AECc and the PLI show a declining trend but no significant results except for the AECc at timestep 8. The JPE

is significant from timestep 3 and the PLT from timestep 2 on.

ference from epoch 8 onwards. Relative theta power
could detect the changes in the ADD condition from
epoch 5 onwards. JPE already detected the differ-
ence from epoch 2 onwards, and the PLT from epoch
3 onwards. A very similar pattern was observed for
the theta band (Fig. 5B). Here the AECc and PLI
did not detect the difference between ADD and Con
conditions, with one outlier for the PLI in epoch 6.
In contrast, both JPE and PLT detected the differ-
ence between ADD and Con from epoch 2 onwards.
For the alpha band the results were slightly different:
the AECc only detected the difference at epoch 10.
The PLT was slightly worse than the relative theta
power and detected the difference from epoch 6 on.

PLI and JPE behaved very similar and showed signif-
icant results from epoch 3 on. Finally, the beta band
showed a pattern rather similar to the delta and theta
bands: AECc (with an outlier in epoch 8) and PLI
were not able to detect differences between the ADD
and Con conditions, while the JPE showed a signif-
icant difference from epoch 3 on, and the PLT from
epoch 2 on. Overall, the results show that the classic
measures AECc and PLI detect the ADD process at
a later stage than the newer measures JPE and PLT in
most frequency bands. Performance of relative theta
power is intermediated between the classic measures
on the one hand, and the new measures on the other
hand.
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Fig. 6. Detailed results for FC markers in theta band (4-8 Hz) at timestep 7=5. Shown are the mean values (shading 2 standard errors of
the mean) of functional connectivity measures for each of the 78 ROIs for the set of 20 ADD and 20 Con files. A) Results for AECc. No
significant differences between ADD and Con after FDR correction. B) Results for the PLI. No significant differences between ADD and
Con after FDR correction. C) Results for the JPE. The blue curve, corresponding to the ADD group, shows higher values than the red curve,
corresponding to the Con group. Significant differences after FDR correction are indicated with gray shading. D) Results for the PLT. The
ADD group has lower values than the Con group (red line). Significant differences after FDR correction are indicated with gray shading.

To illustrate the spatial distribution, direction and
magnitude of these effects more detailed results for
the theta band at epoch 5, where the results for the
different measures are clearly diverging, are shown
in Figs. 6 and 7. Figure 6 shows for all four measures
and for all 78 AAL ROIs examined the mean value (2
* SEM in shading) of the FC measures (blue = ADD,
red =Con). Gray shading corresponds to significant
differences (permutation tests; FDR corrected for
number of ROIs) at the ROI level. For the AECc and
PLI there is an almost complete overlap between the
ADD and Con conditions, with no significant dif-
ferences. For the JPE we see a significantly higher
FC for the ADD group in almost all ROIs, with a
few exceptions (notably AAL region 29/68: Heschl’s
gyrus). For the PLT the ADD condition shows lower
FC for almost all regions, again with a few excep-
tions (notably AAL region 29/68: Heschl’s gyrus).
The ROC plots corresponding to Fig. 6 are shown in
Fig. 7. At the optimal cut-off the AECc has a sensi-
tivity of 0.105, a specificity of 1.0, and accuracy of

0.575 and an area under the curve (AUC) of 0.51. The
PLI has a sensitivity of 0.316, a specificity of 0.905,
an accuracy of 0.625 and an AUC of 0.564 at the opti-
mal cut-off of 0.24. The JPE has a sensitivity of 1.0,
a specificity of 0.889, and accuracy of 0.944 and an
AUC of 0.902 at the optimal cut-off of 0.46. Finally,
at an optimal cut-off of 0.16 the PLT has a sensitivity
of 1.0, a specificity of 0.952, an accuracy of 0.975
and an AUC of 0.928. The analysis with ROC plots
thus confirms that the AECc and PLI perform hardly
above chance level in detecting early neurophysio-
logical abnormalities in the ADD condition, whereas
the JPE and PLT show very good performance in
classifying the ADD and Con conditions.

DISCUSSION

The aim of the present study was to compare a
number of FC measures which could be used as
biomarkers of disturbed E/I balance in early AD.
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Fig. 7. ROC plots corresponding to Fig. 5. For each of the four functional connectivity measures the sensitivity of the mean connectivity
is plotted as a function of 1-specificity. Sensitivity, specificity and accuracy at the point of maximal accuracy are shown in each plot in the
lower right corner. The area under the curve and the cutoff value at the point of maximum accuracy are also shown in the lower right corner.

We showed that a previously introduced ADD model
of early AD displays the progressive slowing of the
oscillatory activity and the progressive increase of
the E/I balance, and thus could serve as a benchmark
for testing the FC biomarkers. Compared to relative
theta power, frequently used FC measures such as
the AECc and PLI performed worse in detecting the
progressive abnormalities in the ADD model com-
pared to a healthy reference state. In contrast, the
JPE and the PLT, a proposed improvement of the PLI,
generally performed better in detecting early neuro-
physiological abnormalities compared to the AEC
and PLI, as well as the relative theta power. These
results suggest first that novel measures, such as the
JPE and PLT are promising biomarkers for detecting
early-stage neurophysiological abnormalities, in par-

ticular NH. In addition, we have demonstrated that
using a computational model of progressive struc-
tural and functional network changes in AD could be
an objective and effective way to compare future new
biomarkers.

Usefulness of the ADD model as a benchmark for
comparing FC measures

In the present study we were interested in compar-
ing the performance of FC biomarkers in detecting
neurophysiological abnormalities, and in particular
NH in the earliest possible disease stages using a
whole brain computational model. The ADD model
assumes that excessive firing of excitatory neurons
progressively damages all synapses in neural net-
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works [23]. As has been shown previously, this
simple scenario can reproduce many of the key fea-
tures of progressive structural and functional network
changes in AD such as progressive loss of struc-
tural connections, slowing of oscillatory activity, a
transient phase of increased activity and FC, and
disruption of spatial temporal patterns of network
organization with preferential damage of highly con-
nected hub nodes [23]. However, in the original
study a transient increase in firing was reported only
for excitatory neurons, and changes in different fre-
quency bands over time were not described in detail.
In the present study we show that the ADD model
produces a gradual decrease in median frequency and
relative alphal power, and an increase in theta and
delta power which are in line with spectral changes
along the AD spectrum [41]. Furthermore, by tak-
ing both excitatory as well as inhibitory firing rates
into account, we could now show that the E/I bal-
ance in the model shows a steady increase from the
beginning, until a steady state is reached in a fairly
late stage. This confirms that ADD is a good model of
progressive NH. It should be noted that the increasing
E/I balance is an emergent property of the ADD sce-
nario, and not simply the result of setting an explicit
E/I balance parameter. Other whole brain models of
AD have been proposed in recent years [21, 42—
45]. In these models, parameters were often chosen
based upon a fit of the model to empirical functional
and structural connectivity, and sometimes data on
of pathological proteins in a small number of states
along the AD spectrum. While these models provide
insight in possible mechanisms, often they do not
have the high temporal resolution of the ADD model
and are therefore less suitable as a testbench for the
performance of FC biomarkers of hyperexcitability.

Amplitude envelope correlation

Compared to other measures of FC, the AEC is
often considered to be one of the most robust mea-
sures of FC in EEG and MEG data, in particular if
it is corrected for volume conduction [37, 46, 47].
The AECc shows a clear and reproducible loss of FC
in the alpha and beta, but not the theta band in AD
patients compared to subjects with subjective cogni-
tive decline [26, 27]. It has been suggested that the
AECc could be a biomarker that shows abnormali-
ties in the earliest stages of AD [48]. However, in the
present study the AECc did not perform very well
compared to relative theta power and other FC mea-
sures. In the delta band the AECc never detected the

differences between the ADD and Con data, and in
the other bands it only detected differences at a much
later time point than the other measures. It is not yet
clear what caused the disappointing performance of
the AECc in the present study. We used the AECc
with correction for volume conduction, even though
the ADD model generates time series for each region
without any volume conduction effects. Use of the
uncorrected AEC might have improved the perfor-
mance but would make it more difficult to relate the
results to those of empirical studies which mostly use
the AECc. It could be that the relatively short epochs
(8.192 sec.) in the present study were less optimal in
combination with the AEC [27, 38]. Other features
of the ADD model, such as the choice of the struc-
tural connectivity matrix, and absence of conduction
delay between the brain regions, and the choice of the
neural mass model and its initial parameter settings
could also play a role. However, all measures were
tested on the exact same model, so it remains unclear
why the AECc would perform less than the other
measures. While this problem should be addressed
in future studies, for now the conclusion is that the
AECec is less sensitive to the earliest changes in AD
than relative theta power and other FC biomarkers.

Phase lag index

The PLI is a measure of phase synchronization that
is corrected for volume conduction or field spread.
Several studies have shown changes in FC in AD and
MCI, in particular in the alpha and beta band, using
the PLI [49, 50]. Compared to the AEC the PLI may
be better in reproducibly detecting increased connec-
tivity in the theta band [26, 27]. However, compared
to other FC measures the PLI may be more sensitive
to noise and the effects of epoch length [38, 46, 51].
Of note, the weighted PLI, a corrected version of the
PLI that was introduced to make the measure less sen-
sitive to noise, suffers from the problem that it reflects
both the strength of the phase synchronization as well
as the magnitude of the phase difference [52]. In the
present study the PLI performed slightly better than
the AECc, but worse than the relative theta power and
the other FC measures in all bands except the alpha
band. In the alpha band the PLI performed compa-
rable to all other measures with the exception of the
AEC which performed worse than all other measures.
The relatively short epochs in the present study could
explain perhaps part of the superior performance of
the PLI compared to the AECc. In view of the sensi-
tivity to noise of the PLI it can be understood why its
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performance is optimal in the alpha band, where the
signal to noise ratio is highest in the early stages of
the ADD scenario. The inferior performance of the
PLI compared to the JPE and PLT could be due to its
inability to capture rapid fluctuations in FC, which
will be discussed in more detail below.

Joint permutation entropy

The JPE is a recently introduced measure which is
sensitive to both the strength of the coupling between
two time series (corrected for volume conduction)
as well as the variability of the individual signals
[28, 29]. The motivation for this measure is the idea
that signal variability might reflect the E/I balance of
the underlying neural networks [53]. In a pilot study
the JPE performed at least as good as the current
gold standard, relative theta power, in the classifi-
cation of resting-state MEG recordings in the theta
band of subjects with subjective cognitive decline or
subjects with MCI [29]. The present study lends fur-
ther support for the possible usefulness of the JPE
as a biomarker of early changes in AD. The JPE
could detect differences between the ADD and the
Con condition at an earlier stage than all other mea-
sures in all frequency bands (with the exception of the
PLT in the beta band). In the theta band at timestep
5 the JPE has a sensitivity of 1.0, a specificity of
0.889, and an accuracy of 0.994. These test char-
acteristics are very promising for a biomarker, but
they are likely to be overly optimistic since they were
obtained in a computer simulation under perfectly
controlled conditions. A disadvantage of the JPE and
related measures based upon ordinal patterns is that
they require the choice of several parameters, in par-
ticular the time-delay fau and embedding dimension
d. In the present study we have restricted ourselves
to the parameter choice used in our previous study
[29]. However, it is not known whether this choice
is optimal, and whether different choices have to be
made for different frequency bands.

Phase lag time

The PLI is a reliable measure of phase synchro-
nization corrected for volume conduction, but it is
sensitive to noise and may be less suitable to capture
rapid fluctuations in phase leading/lagging relations
between time series. Here we considered a modifica-
tion of the PLI, the PLT, which is the time between
two consecutive zero crossing/sign changes of the
instantaneous phase difference. This parameter-free

measure is related to other measures that capture rapid
changes in phase synchronization [54-56]. An in-
depth description of the measure will be given in a
forthcoming paper. Here we focus on the potential
of the PLT as a biomarker for early changes in AD.
In almost all frequency bands with the exception of
the alpha band the PLT was better than the AECc,
PLI and relative theta power, and slightly worse or
slightly better (in the beta band) compared to the
JPE. In the alpha band the PLT was much better
than the AEC, and only slightly worse than the other
measures. In the theta band for time step 5 the PLT
had very good test characteristics: sensitivity = 1.0,
specificity =0.952, and accuracy = 0.975. This classi-
fication performance is at the same level as that of the
JPE, and much better than that of the AECc and PLI.
Importantly, the PLT always seems to perform sub-
stantially better than the PLI from which it is derived.
This suggests that this modification which helps to
deal with rapid fluctuations in phase leading/lagging
relations improves performance as a biomarker for
early AD and NH. However, while these results are
promising, they need to be confirmed by application
of the measure to empirical recordings of subjects in
the earliest phases of the AD spectrum.

Strengths and weaknesses

An advantage of using a computational model
of progressive neurophysiological abnormalities for
testing and comparing candidate biomarkers is the
fact that we have exact control over the gold stan-
dard. All the relevant properties of the model, such
as the exact E/I balance, are known at all time points.
Such a level of control over the gold standard is diffi-
cult to achieve in empirical datasets of subjects along
the AD spectrum, where for instance the true E/I bal-
ance is not known. The downside of using a model
as a benchmark is that all models are unavoidably
gross simplifications of the nature and variability of
the actual pathological processes underlying progres-
sive AD. Another limitation, in addition to the level of
biological detail is that the specific type of model used
in this study, a network of coupled neural masses,
could have influenced the results. A challenge for
future work is to improve the model by investigat-
ing which level of detail is necessary, and which
mechanisms—such as ADD—have to be assumed in
order to replicate empirically observed properties of
structural and functional brain networks along the AD
spectrum. Obvious targets for future improvements
are the resolution of the brain atlas, the choice of
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the structural connectome and the inclusion of vol-
ume conduction and time delays. Another interesting
extension would be the incorporation of some mech-
anism of plasticity, as previously proposed to explain
the emergence of modular structure of brain networks
and the recovery after brain damage [57]. However,
whether in its present form, or after future improve-
ments, we have shown that the ADD model presents
a useful benchmark for testing putative biomarkers
for early AD-related neurophysiological abnormal-
ities and disturbed E/I balance. The present study
shows that the JPE and PLT are promising biomark-
ers of early neurophysiological changes in AD, and
in particular NH, which should be further explored in
clinical datasets

Conclusions

In conclusion we have shown how a whole-brain
computational model of progressive structural and
functional network changes in AD can be used as
an objective benchmark for the comparison of pro-
posed biomarkers for NH in the earliest disease stage.
We could replicate the observation from empirical
studies that AECc and PLI are less sensitive to early
neurophysiological abnormalities than relative theta
power. However, we could also show that novel mea-
sures such as the JPE and the PLT, introduced in
this study, display superior performance in detecting
early-stage neurophysiological abnormalities. These
novel FC biomarkers are promising candidates for
use in empirical studies aimed at detecting the earliest
phase of NH.
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