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Abstract. Alzheimer’s disease (AD) and other forms of dementia are together a leading cause of disability and death in the
aging global population, imposing a high personal, societal, and economic burden. They are also among the most prominent
examples of failed drug developments. Indeed, after more than 40 AD trials of anti-amyloid interventions, reduction of
amyloid-3 (AB) has never translated into clinically relevant benefits, and in several cases yielded harm. The fundamental
problem is the century-old, brain-centric phenotype-based definitions of diseases that ignore causal mechanisms and comor-
bidities. In this hypothesis article, we discuss how such current outdated nosology of dementia is a key roadblock to precision
medicine and articulate how Network Medicine enables the substitution of clinicopathologic phenotypes with molecular
endotypes and propose a new framework to achieve precision and curative medicine for patients with neurodegenerative
disorders.
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INTRODUCTION
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despite countless hypotheses on possible pathome-
chanisms remain untreatable. One possible source of
failure is the stubborn clinging to the one disease-one
target-one drug dogma.

Virtually all existing drug development programs
for dementia have been based on the “proteinopathy”
concept, whereby proteins in an aggregated state (a
cross-beta sheet configuration also known as amy-
loid, such as amyloid-B (AB) plaques in AD and
Lewy bodies in DLB and PDD) shall cause the dis-
ease. As a consequence of this toxic gain-of-function
concept of aggregated proteins causing neurode-
generative diseases, removing them from the brain
should cure these diseases. The recent accelerated
approval of the anti-amyloid monoclonal antibod-
ies aducanumab and lecanemab by the US Food
and Drug Administration became the culmination
of this paradigm. The cumulative lessons of more
than 40 anti-A3 Alzheimer’s trials should have taught
us otherwise: 15 monoclonal anti-amyloid antibod-
ies significantly reduced amyloid and, surprisingly,
significantly worsened patients’ outcomes compared
to placebo. None of these trials was interpreted
as a rejection of the hypothesis. Instead, the 16th
and 17th anti-amyloid antibodies, lecanemab [1] and
donanemab [2], which met the statistical threshold
in the opposite direction, have been taken as a con-
firmation of the hypothesis [3], although this never
translated into clinically relevant benefits [4]. Instead,
reduction in soluble AR levels, as measured in cere-
brospinal fluid, is harmful to humans, and removal of
insoluble AP may lead to microhemorrhages, brain
atrophy, and death [5, 6]. The toxic A hypothesis
has become virtually unfalsifiable [7].

AP, however, has important physiological roles,
including neuroprotection. Thus, the loss of the sol-
uble and therefore functional form of AP, i.e., a
proteinopenia, may equally explain cognitive deficits
and atrophy and possibly better than any particu-
lar plaque load, even among carriers of autosomal
dominant AD-causing amyloid-beta protein precur-
sor (APP), presenilin 1 (PSENI), and presenilin
2 (PSEN2) mutations [8]. Many alternative causal
hypotheses for dementia have been proposed; how-
ever, in the face of a “resilient” amyloid hypothesis,
these have not received adequate support or buy-in
to be tested [9—13]. Collective evidence should have
sufficed to consider amyloid rather a downstream
consequence in cellular pathophysiology, a sign of
a range of biological stressors, not their cause.

Thus, the field of dementia—as those of many other
chronic diseases—is in need of a paradigm shift to

distance itself from using symptoms and pathology in
organs as anchoring disease definitions. We call for a
move from the current convergent clinico-pathologic
towards a divergent, organ-agnostic, and mechanism-
based disease nosology (Fig. 1). Even rare monogenic
diseases cause symptoms in more than one organ, thus
organ-based taxonomies make little sense and likely
obstruct innovation.

THE CURRENT OUTDATED
FRAMEWORK TO DIAGNOSE AND
TREAT DEMENTIA

The diagnosis of AD, DLB, PDD, PD, and other
neurodegenerative disorders have been based on the
combination of clinical descriptions and post-mortem
microscopic observations, the limited technologies
available in the 19th century. Even before Alois
Alzheimer described the famous case of Auguste
Deter in 1906, the prevailing approach was, and
still is, to artificially separate pathological conditions
within the same patient to be either in or outside the
brain and define them as distinct diseases. Prolific
work was carried on by Alois Alzheimer and contem-
porary psychiatrists in their search to define the links
between biology and a plethora of mental disorders.
The focus, however, has always been within the brain.
This brain-centric approach has been maintained by
the majority of clinicians and researchers to date,
but now halts conceptual progress in understanding,
preventing, and treating dementia.

A single pathology in the brain is the exception
rather than the rule. Real-world aging individuals,
with or without dementia, have mixed manifestations
of neuropathological markers in their brains, such
as AD markers, Lewy bodies, transactive response
DNA binding protein 43 kDa (TDP-43) inclusions,
and vascular pathologies, with almost 80% of these
individuals presenting with at least two of such neu-
ropathologies [14]. And in contrast with the model of
brain-centricity, these “dementia specific”’ markers
can be often found in organs outside the brain
[15], as for example AP aggregates documented in
skin, intestines [16], heart [17], and pancreas [18],
with hyperphosphorylated tau also found in the
last two.

Moreover, in clinical practice very rarely we find
patients with dementia without any other concurrent
diseases. Of all comorbidities, vascular disease and
metabolic abnormalities stand out and are frequently
observed preceding dementia [19-21]. More often
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Fig. 1. Shift from a brain-centric and neuropathology-based dementia nosology towards an organ-agnostic, mechanism-based nosology.
Network Medicine accounts for causal heterogeneity and the identification of the molecular endotypes leading to the syndrome of dementia.

than not, AD patients show morphological substrates
of cerebrovascular disease with matching risk fac-
tors such as hypertension and diabetes, pointing to
the existence of shared pathobiological mechanisms
with well-defined genetic and molecular underpin-
nings [22-28].

A NEW FRAMEWORK FOR DEMENTIA
BY NETWORK MEDICINE

The network of all human diseases linked through
shared risk genes, the diseasome, was a land-
mark demonstration of the similarities and overlaps
between dementias and other neurological pheno-
types to non-neurological disorders [29] (Fig. 2).

Since then, the mechanistic relationships among this
group of heterogenous phenotypes have been exten-
sively validated by multiscale disease networks based
also on shared genes, protein-protein interactions,
drugs, symptoms, and comorbidities [30—32]. These
mechanistic relationships thus provide the leads to
identifying causative molecular mechanisms under-
lying different subtypes of dementia.

Systems and network medicine approaches enable
the substitution of brain-centric umbrella defini-
tions of disease, such as AD, by shared mechanistic
endotypes. It is therefore useful to define endotype
and phenotype beforehand for clarity. An endo-
type is a molecular mechanism underlying one or
more phenotypes, which are, in turn, the functional
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Fig. 2. Schematic representation of a mechanism-based redefinition of dementia nosology for precision medicine. Dementia is an umbrella
term, comorbid with several non-neurological disease phenotypes. Their associated shared risk genes point to mutual mechanistic endotypes.
This then leads to molecular disease definitions allowing precision diagnosis and tailored therapeutic intervention. A) The Human Disease
Network, the diseasome, adapted from [23] and first presented in 2007 by Goh et al. [17], was a landmark for the field of network medicine
and disease research. It provided a novel perspective on the connections between various human diseases by their shared risk genes. B)
A diseasome-derived cluster of heterogeneous phenotypes indicates shared mechanisms between dementias and other neurological and
non-neurological disorders. C) A new framework to guide how we classify dementia by molecular endotypes, going from non-specific,
homogenized umbrella terms to the identification of the underlying heterogeneous molecular mechanisms, followed by the development of

mechanism-based diagnostic tools and precision and personalized treatment.
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(pathological) consequences, signs, or symptoms that
can be observed in an individual. Current criteria
for classifying dementias are phenotype-based, not
endotype-based. This means that they are based on
medical consensus about which signs and symp-
toms (such as brain atrophy, hyperintensities, tremor,
memory loss, hallucinations, type of proteinopathy,
etc.), age of onset, speed of progression, severity,
or other descriptive features best describe a condi-
tion. However, different mechanistic endotypes can
cause similar phenotypes of dementia but also dif-
ferent phenotypes in organs other than the brain.
For example, AD is not only highly related at the
causal level (shared risk genes) to other neurodegen-
erative diseases with common clinical features such
as leukodystrophy and amyotrophic lateral sclerosis,
but also to otherwise entirely distinct diseases such as
polycystic ovary syndrome, which cannot be under-
stood based on an organ-based disease taxonomy [33,
34]. These, and many other cases, are unlikely to
represent “‘comorbidities” but different phenotypic
expressions of the same common underlying mech-
anism, or endotype, in those affected. Exploiting
this concept for precision medicine requires how-
ever, both the identification of potential endotypes
and the availability of drugs that target the underly-
ing causal mechanism in the relevant individuals, not
organ-based symptom reduction across a clinically-
diagnosed population.

It is worth acknowledging that the past decade has
seen a marked increase in endotyping efforts aimed
at addressing a wide range of complex diseases and
syndromes in many other areas of medicine. These
include, but are not limited to, cancer [35], coronary
artery disease [36], asthma [37, 38], retinopathies [39,
40], chronic inflammatory diseases [41], sepsis [42],
and sepsis in the context of COVID-19 [43].

PRECISION ENDOTYPE-BASED
DIAGNOSTICS

Endotype identification starts by the definition of
disease modules. Currently, these can be best con-
structed from disease validated seed genes and their
neighbors in the human protein-protein interaction
network (the interactome). The resulting so-called
protein-protein interaction modules, the disease mod-
ules, are the basis also for a mechanism-based
redefinition of dementia and its endotypes. Though
not all the interactions between human proteins are
known and some of the known interactions are prone

to false positives (i.e., experimental artifacts), the
use of such disease modules on the interactome has
provided valuable insights on the unifying biologi-
cal processes and comorbidities across diseases and
allowed the identification of candidate treatments
targeting these modules [44, 45]. Recent advances
in deep learning-based protein structure prediction
[46] and large-scale sequencing and genome-wide
association studies across individuals [47, 48] are
expected to further improve the research gap in the
characterization of protein interactions towards a
more complete and refined disease module identifi-
cation.

One example of such a disease module is related to
reactive oxygen species (ROS) formation and cyclic
guanosine monophosphate (cGMP) signaling (the
ROCG disease module) [49]. A striking feature of
this ROCG module is that it includes two of the most
relevant AD risk genes, PSEN2 and apolipoprotein E
(APOE), and these interact directly with endothelial
nitric oxide synthase (NOS3), a master modula-
tor of vascular function. Indeed, non-physiological
ROS formation and dysfunction of cGMP signal-
ing have deleterious effects on the vasculature and
are key mechanisms underlying pathophysiologi-
cal features common to different types of dementia
such as chronic hypoperfusion, impaired neurovas-
cular coupling, and blood-brain barrier integrity. In
addition, mechanistic preclinical studies show that
disturbances of the functions of the proteins within
the ROCG module are upstream events causally
affecting traditionally dementia-associated markers
such as tau [50, 51] and AR [52, 53]. Thus, when
considering the hypothesis that not only this but
many other disease modules may lead to tau and
AR alterations widely found in the aged popula-
tion, one can understand why clustering individuals
based on such markers is preventing the identifica-
tion of the true causes of dementia at the individual
level.

PRECISION NETWORK
PHARMACOLOGY TARGETING
MECHANISTIC ENDOTYPES IN
DEMENTIA

Therapeutically, endotypes must not be reduced to
the one-target-one-disease or “magic bullet” treat-
ment approach. Disease modules are rather small
localized multi-protein signaling networks, typically
distinct from curated canonical signaling pathways.



52 M_.P. Pachado et al. / Re-Addressing Dementia by Network Medicine

Currently known disease-gene associations that lay
the foundation for describing disease modules typi-
cally reflect more common mechanisms across the
general disease population. By incorporating the
interactions of such common disease genes in the
network together with omics data from patients, one
can capture less frequently observed risk genes across
individuals that are convergent at the pathway level
and identify drug-target interactions for tailored ther-
apy in patients [54-56].

In addition, a network needs network pharmacol-
ogy, which is a different pharmacological approach
from traditional polypharmacy and means targeting
different proteins in the same disease module in
a synergistic manner. Lack of a mechanism-based
patient stratification and a single target approach,
for example, may explain why the phosphodiesterase
5 (PDES5) inhibitor sildenafil, which potentially
improves cGMP signaling within a defective ROCG
module, did not decrease AD risk in general [57].
In addition, not all patients with AD dementia-like
symptoms share the ROCG endotype. Therefore,
this new mechanism-based diagnostic and thera-
peutic framework for dementia will be best tested
in proof-of-concept adaptive clinical trials, where
interventions align with the relevant mechanistic
endotypes of those being treated [17].

In this context, numerous endotypes are yet
to be defined and validated for future network
pharmacology-based clinical trials. Potential new
disease modules include other relevant dementia risk
genes, and can be related for example to relevant
loss of function of proteins such as ABPP, Af,
other ABPP cleavage products (e.g., soluble ABPP
alpha and ABPP-intracellular domain), and PSEN1
which have essential physiological roles in synap-
tic plasticity, hippocampal neurotransmitter release
(e.g., soluble AB-mediated activation of a7-nicotinic
acetylcholine receptors), as well as maintenance
of metal ion homeostasis [58, 59]. An example
of another potential endotype could be related to
phosphodiesterase 4 (PDE4), with PDE4B [60] and
PDE4D [61] gene variants reported to be associated
with AD risk and disease progression. Interestingly,
PDE4D is a direct neighbor of APP and bridg-
ing integrator 1 (BIN1), also an important AD risk
gene, within the interactome, and its dysfunction is
hypothesized to result in dysfunctional cAMP signal-
ing affecting synaptic plasticity, cognition, regulation
of inflammatory processes and tau pathology [62,
63]. The construction of these and further disease
modules is the steppingstone towards a mechanism-

based approach to dementia endotypes. Importantly,
while in approximately 40% of the cases dementia
can be potentially preventable by lifestyle interven-
tions alone [64], network pharmacology stands to
benefit from the increasing recognition of endo-
types, disease modules, and their corresponding
precision diagnostic tools to usher an era of preci-
sion medicine for patients with neurodegenerative
disorders.

CONCLUSION

The path to precision clinical practice at the dawn
of network medicine is challenging but achievable
and starts with fundamentally rethinking how we
define diseases. Throughout the last decade, network
medicine has consistently demonstrated the patho-
biological similarities among certain comorbidities
(or phenotypes) and that these relationships can be
exploited to identify disease modules (endotypes)
and mechanism-based therapeutic strategies to treat
these conditions despite current knowledge gaps or
incomplete data [49]. The realization of such a con-
ceptual revolution, of course, requires a matching
level of methodological and technological readiness,
including the assembly of phenotype-agnostic study
cohorts, such as the CCBP, to determine endotypes
of relevance to individuals with different phenotypes
[65].

Above all, we need to recognize that we are dealing
with a new discovery pipeline, one that necessar-
ily must begin with genetics-based disease module
discovery, not direct drug discovery, and the iden-
tification and validation of functionally meaningful
and actionable (meaning treatable) molecular dis-
ease mechanisms, i.e., endotypes. Network-based
approaches [66—69] offer the tools to systematically
characterize the phenotypic heterogeneity observed
in individuals with dementia [70, 71]. Accord-
ingly, accounting for an individual’s comorbidities
and specific patterns of neuroimaging, genetic,
and molecular variability will be critical towards
endotype-driven clinical decision making [72, 73].
Open challenges include the selection of only relevant
and causal disease genes and reliable protein-protein
interaction databases to construct the dementia-
relevant signaling modules. Clinical diagnoses such
as AD, PD, and other umbrella classifications, have
clearly outlived their reductive usefulness for pre-
cision medicine. Their replacement with network
medicine-derived endotypes, precision diagnosis and
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therapeutics will lead to the end of ‘dementia’ as we
know it.
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