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Abstract. Alzheimer’s disease (AD) is the main cause of dementia in older age. The prevalence of AD is growing worldwide,
causing a tremendous burden to societies and families. Due to the complexity of its pathogenesis, the current treatment of AD
is not satisfactory, and drugs acting on a single target may not prevent AD progression. This review summarizes the multi-
target pharmacological effects of thiazolidinediones (TZDs) on AD. TZDs act as peroxisome proliferator-activated receptor
gamma (PPAR�) agonists and long-chain acyl-CoA synthetase family member 4 (ACSL4) inhibitors. TZDs ameliorated
neuroinflammation and ferroptosis in preclinical models of AD. Here, we discussed recent findings from clinical trials of
pioglitazone in the treatment of AD, ischemic stroke, and atherosclerosis. We also dissected the major limitations in the
clinical application of pioglitazone and explained the potential benefit of pioglitazone in AD. We recommend the use of
pioglitazone to prevent cognitive decline and lower AD risk in a specific group of patients.
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INTRODUCTION

Alzheimer’s disease (AD) is the main cause of
dementia in older age and its prevalence is grow-
ing worldwide. By 2050, the global prevalence of
dementia will triple [1]. Currently, pharmaceuti-
cal companies are attempting to develop AD drugs
mainly based on the amyloid cascade hypothesis.
However, many drugs targeting amyloid-� (A�)
failed to demonstrate clinical efficacy. Aducanumab,
an anti-A� antibody, was recently granted FDA
approval. Although it removes A� plaques in patients
with AD, it does not sufficiently improve brain func-
tion and cognition, nor prevent AD progression [2].
With the development of neuroimaging, neuropathol-
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ogy, and biomarkers, a growing body of evidence
suggests that AD is a neurodegenerative disease with
complex and multifactorial etiology [3, 4].

Typical pathological changes of AD include dif-
fuse precipitation of extracellular A� plaques and
intracellular neurofibrillary tangles (NFTs). A� pep-
tides are produced by sequential cleavage of A�
precursor protein (A�PP) by �-site A�PP cleav-
ing enzyme 1 (BACE1) and �-secretase complex.
They are released into extracellular space and aggre-
gated into oligomers and fibrils [5]. The 42-amino
acid form (A�1–42) of A� is its most toxic form,
which can directly damage neurons by binding to
neuron-specific receptors or altering membrane lipid
permeability [6, 7]. NFTs are the abnormal aggre-
gation of hyperphosphorylated tau proteins, which
hinder microtubules assembly and impair axonal
transport in synapses [8]. In 1991, Braak found that
the distribution pattern and packing density of A�

ISSN 1387-2877 © 2023 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms
of the Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

mailto:xuzhongxin@jlu.edu.cn
https://creativecommons.org/licenses/by-nc/4.0/


928 J. Yang et al. / Multi-Target Neuroprotection of Thiazolidinediones

peptides turned out to be limited for differentiation
of neuropathological stages. In contrast, NFTs exhib-
ited a characteristic distribution pattern permitting the
differentiation of six stages, which called Braak-like
pattern [9, 10]. The spatial and temporal pattern in the
appearance of these NFTs correlates with cognitive
decline as well as brain atrophy [3, 11, 12].

A growing number of studies have confirmed that
neuroinflammation plays an important role in the
pathogenesis of AD. The deposition of A� peptides
drives neuroinflammation by activating microglia.
When NLRP3 inflammasome assembles inside of
microglia, its activation will promote A� deposi-
tion and drive tau pathology. Meanwhile, microglia
are involved in the processing and spreading of tau
[13–15]. Pascoal found microglial activation and
tau accumulation colocalize in a Braak-like pattern
in the living human brain with positron emission
tomography brain imaging, and tau propagation path-
ways depended on the baseline microglia network
rather than the tau network. Their findings support
a model where an interaction between A� and acti-
vated microglia sets the pace for tau spread across
Braak stages [16].

Ferroptosis is a newly discovered programmed cell
death characterized by iron dyshomeostasis and lipid
peroxidation, which was reminiscent of AD. In addi-
tion to the accumulation of A� plaques, NFTs, and
neuroinflammation, AD patients show progressive
synaptic loss, and neuronal death, also high oxidative
stress that correlates with abnormal levels or overload
of brain metals [17]. Cortical iron has been shown
to be elevated in AD, the level of cortical iron was
strongly associated with cognitive decline in AD [18].
Cortical iron might propel cognitive deterioration by
inducing oxidative stress and ferroptosis, suggesting
anti-ferroptotic therapies may be efficacious in AD.

The complex pathophysiology of AD necessi-
tates the simultaneous pursuit of multiple targets
for successful treatment. However, multi-target drugs
generally have poor specificity and diminished effi-
cacy [19]. TZDs are a group of anti-diabetic drugs that
improve insulin resistance [20, 21]. TZDs, including
troglitazone, rosiglitazone, and pioglitazone, can sup-
press the inflammatory response and cell ferroptosis
with high target specificity. Therefore, in addition to
their use in diabetes, researchers administered TZDs
in the preclinical and clinical studies of AD. In addi-
tion to the pharmacological targets of TZDs, we
discuss the neuroprotective effects of TZDs on AD,
which is mainly mediated by inhibiting neuroinflam-
mation and ferroptosis.

PHARMACOLOGICAL TARGETS OF
TZDS

PPARγ

PPAR� is a member of the peroxisome
proliferator-activated receptors (PPARs) family,
which consists of three isoforms: PPAR�, PPAR�/δ,
and PPAR�. PPAR� functions in a ligand-dependent
manner [19, 22]. Endogenous polyunsaturated
fatty acids (PUFAs) act as the natural ligand of
PPAR�, with a low affinity. TZDs are exogenous
strong activators of PPAR� due to their high affinity
(Fig. 1) [23]. Through transactivation, agonist-bound
PPAR� positively regulates cell metabolic home-
ostasis, including adipogenesis, fat storage, insulin
sensitization, and cellular differentiation. Anti-
inflammatory properties of PPAR� are regulated by
transrepression, not transactivation.

Neuroinflammation is the immune response of
the central nervous system (CNS) to various harm-
ful stimuli. In AD, neuroinflammation is primarily
mediated by immune cells in the CNS. Activated
microglia, reactive astrocytes, and increased lev-
els of proinflammatory cytokines are involved in
neuroinflammation [24–26]. Agonist-bound PPAR�
inhibits neuroinflammation by antagonizing the func-
tion of inflammation-related transcription factors,
such as nuclear factor-κB (NF-κB), activator protein-
1 (AP-1), JAK/STAT, and nuclear factors of activated
T-cells (NFAT) [27–29]. Three principal transrepres-
sion mechanisms have been proposed. First, activated
PPAR� competitively binds most of the coactiva-
tors, making them unavailable for other transcription
factors. Second, PPAR� directly binds to other tran-
scription factors, preventing them from inducing gene
transcription. Third, PPAR� inhibits the activation of
mitogen-activated protein kinase (MAPK), thereby
inhibiting downstream transcription factors. Among
them, NF-κB is the main target for PPAR�, which is
involved in the expression of numerous inflammatory
factors and pro-inflammatory mediators (Fig. 2) [22].

ACSL4

Acyl-CoA synthetases (ACS) convert fatty acids
to their respective acyl-CoA-activated forms, which
are involved in energy metabolism and mem-
brane structure. Non-activated free fatty acids are
involved in the production of bioactive mediators
such as prostaglandins (PGs), leukotrienes (LTs), and
thromboxane (TX) [30]. Among the ACS family,
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Fig. 1. Timeline diagram depicting mechanism-based studies, clinical application, and clinical trials of TZDs.

Fig. 2. Neuroinflammation in the pathogenesis of AD. Soluble A� oligomers bind to A� receptors (A�-R) on microglia, which will be
subsequently internalized and degraded. Activated microglia secrete proinflammatory factors through NF-κB signaling pathway to amplify
microglial activation and phagocytosis. A� aggregation due to overproduction or impaired phagocytosis, continuously activates microglia
and astrocytes. M1 microglia and A1 astrocytes secrete proinflammatory cytokines (IL-1�, IL-6, IL-18, and TNF�), ROS, complement C3,
and neurotoxin, which can accelerate neuronal damage, expand inflammatory response, and promote A� deposition and NFTs formation.
Activated microglia participate in the spread of pathological tau through the exosome pathway.
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long-chain acyl-CoA synthetases (ACSLs) consume
a broad range of long-chain fatty acid substrates
from 10 to 22 carbons, as their substrate. ACSLs
consist of five ACSL isozymes, including ACSL1,
ACSL5, ACSL6, ACSL3, and ACSL4. They are
classified based on sequence homology and sub-
strate specificities. For instance, ACSL4 especially
prefers PUFAs [31]. The study found that TZDs could
specifically inhibit ACSL4 in a PPAR�-independent
manner (Figs. 1 and 3) [32]. PUFAs refer to long-
chain fatty acids with more than two double bonds.
PUFAs are susceptible to lipid peroxidation because
of weak C–H bonds at the bis-allylic positions [33].

Ferroptosis is a recently identified form of non-
apoptotic cell death. Ferroptosis is caused by
iron-dependent peroxidation of lipids and plays an
important role in AD [34, 35]. Membrane phos-
pholipids containing PUFAs (PUFA-PLs) are pivotal
for ferroptosis. Blocking the peroxidation site of
PUFAs could prevent ferroptosis [36]. ACSL4 is
a key enzyme for ferroptosis, activating PUFA to
form PUFA-COA, which will be esterified to PUFA-
PLs. TZDs, as specific inhibitors of ACSL4, directly
inhibit PUFAs incorporation into cellular lipids in
a PPAR�-independent manner. 10 uM concentration
of troglitazone, rosiglitazone, or pioglitazone could
inhibit 85–95% function of ACSL4. Rosiglitazone
had the strongest inhibitory effect, comparable to
ACSL4 knockout, and effectively prevented ferropto-
sis [31, 32]. Unlike ACSL4 deletion, deletion of other
members of ACSL did not affect ferroptosis [31].

TZDS INHIBIT NEUROINFLAMMATION
IN AD

Cell players of neuroinflammation

Microglia
Microglia, the resident phagocytes of the CNS,

are widely distributed in the brain. Microglia are
the main driver of neuroinflammation. In physi-
ological conditions, microglia play an important
role in the maintenance and plasticity of neuronal
circuits and contribute to synaptic remodeling. Mean-
while, microglia use constantly motile processes to
find pathogens, cellular debris, or misfolded pro-
teins. Once activated by these pathological factors,
microglia initiate phagocytosis to maintain CNS
homeostasis [6].

The soluble A� aggregates in AD bind to cell-
surface receptors of microglia (Fig. 2), including
CD36, CD47, �6�1-integrin, and toll-like receptors

(TLRs). This receptor-ligand interaction activates
phagocytic uptake of A� by microglia. Internalized
A� fibers are degraded by lysosomal proteases [37,
38]. Microglial activation simultaneously induces a
variety of phenotypes. The classic M1 phenotype
of microglia, also known as the proinflammatory
phenotype, is characterized by increased secre-
tion of proinflammatory cytokines, such as TNF�,
IL-1, IL-6, IL-12, and IL-18. M1 microglia also
release reactive oxygen species (ROS) and nitro-
gen oxide (NO) with less phagocytosis. The classic
M2 phenotype of microglia, also known as the anti-
inflammatory phenotype, releases anti-inflammatory
cytokines, such as IL-4, IL-10, IL-13, and trans-
forming growth factor-� (TGF-�). M2 microglia
has outstanding phagocytosis ability, with no toxic
products. The M1 and M2 are the extremes of
microglial phenotype. There may be a series of tran-
sitional phenotypes, which collectively participate in
local immune responses in the brain [39, 40]. Acti-
vated microglia upregulate NLRP3 inflammasome
and release IL-1� and IL-18 through NF-κB signaling
pathway [13, 41]. IL-1� is a potent proinflamma-
tory cytokine, which binds to the IL-1� receptor
(IL-1R) on neurons and glial cells, activates the
classical NF-κB and MAPK signaling pathways,
thereby upregulating itself and other proinflamma-
tory cytokines, such as TNF-� and IL-6 (Fig. 2) [42].
In addition, IL-1� induces an M1-like phenotype of
microglia to release more proinflammatory factors
and ROS [6].

Similar to the effect of PPAR� activation on
mononuclear macrophages in peripheral tissues,
TZDs inhibit the nuclear translocation of NF-κB
by activating PPAR�, and induce microglia trans-
formation from the proinflammatory M1 to the
anti-inflammatory M2 phenotype in the CNS [43].
Consistently, pioglitazone decreased the expression
of IL-1�, IL-6, and TNF-�, and promoted the
expression of IL-4, IL-10, and TGF-� in neuroin-
flammation [44, 45]. The expression of NLRP3 and
IL-1� significantly decreased following treatment
with pioglitazone, which protected neurons against
microglial NO [46, 47]. Furthermore, pioglitazone
upregulated the expression of the microglial cell-
surface scavenging receptor, CD36, and enhanced A�
phagocytosis [48, 49].

Astrocytes
Astrocytes are the most important supporting cells

in CNS. They are involved in a variety of phys-
iological functions, including secretion of trophic
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molecules, regulation of brain microenvironment,
maintenance of blood-brain barrier (BBB) integrity,
and normal function of synapses [50]. Zamanian et
al. used inflammatory and ischemia models to induce
two different types of reactive astrocytes and found
that inflammation-induced reactive astrocytes upreg-
ulated a variety of “harmful” genes, named type A1
astrocytes, while ischemia-induced reactive astro-
cytes upregulated a variety of “beneficial” genes,
named type A2 astrocytes [51].

In neuroinflammation, microglia induce A1 astro-
cytes by releasing three main cytokines, IL-1�,
TNF�, and complement component subunit 1Q (C1q)
[52]. A1 astrocytes cannot support neuronal survival,
outgrowth, synaptogenesis, and phagocytosis [50].
Similar to M1 microglia, A1 astrocytes upregulate
inflammatory markers such as TNF�, IL-1�, IL-6,
ROS, and complement component C3 through NF-κB
signaling pathway. Complement C3 activates neu-
ronal C3aR to disrupt the morphology and function
of dendrites [53]. Moreover, complement C3 can be
specifically used as a marker of reactive A1 astro-
cytes [52]. A1 phenotype simultaneously secretes a
neurotoxin that can induce apoptosis in neurons and
oligodendrocytes (Fig. 2) [25].

A1 astrocytes reside around A� plaques. Rosigli-
tazone significantly reduced the intensity of glial
fibrillary acidic protein (GFAP) staining and the num-
ber of A1 astrocytes and promoted the functional
recovery of astrocytes [54–56]. Pioglitazone down-
regulated IL-1�, IL-6, TNF-�, COX2, and iNOX
in astrocytes through the PPAR�/NF-KB pathway,
thereby alleviating neuroinflammation [57–59].

Neuroinflammation regulate Aβ and tau
pathology

In the early stages of AD, microglia release inflam-
matory cytokines and chemokines to recruit more
microglia and astrocytes for phagocytic degradation
of A�. However, when A� accumulation exceeds
the phagocytosis capacity of microglia, or when the
phagocytosis capacity of microglia is impaired due
to the presence of APOE4 or TREM2 variants, A�
accumulates in the extracellular space and directly
damages neurons (Fig. 2) [60, 61]. Normal astrocytes
can degrade A� by releasing proteases, which play
an important role in A� clearance. Impaired function
and atrophy of reactive astrocytes might contribute to
reduced clearance of A� [62]. The proinflammatory
factors secreted by activated microglia and reactive
astrocytes can promote A�PP synthesis and BACE1

expression, thereby enhancing A� deposition [63,
64]. Due to the continuous positive feedback loop
between A� and neuroinflammation, chronic inflam-
matory response activates microglia and astrocytes in
AD [26].

Radiotracer detection method revealed active
neuroinflammation in the tau aggregation area
[65]. Proinflammatory factors released by activated
microglia and reactive astrocytes play an important
role in tau pathology. It was demonstrated that tau-
hype phosphorylation and aggregation depend on
NLRP3 inflammasome in mice treated with intrac-
erebral A� [14]. In a mouse model of AD with IL-1�
overexpression, it was found that IL-1� promotes
tau phosphorylation through p38-MAPK and glyco-
gen synthase kinase 3 (GSK-3�) signaling pathways
[66, 67]. TNF-�-treated neurons induce tau aggre-
gation through ROS generation. Similarly, activated
microglia co-cultured with neurons induce tau aggre-
gation (Fig. 2) [68]. Current findings support that
pathological tau seeds can spread between neurons
and induce hyperphosphorylated tau aggregation in
normal neurons [69]. Activated microglia remove
pathological tau seeds and cell debris in the inter-
stitial fluid. Some will be degraded, and the others
will be re-released in exosomes (Fig. 2). Inhibition
of exosome synthesis or depletion of microglia can
significantly restrain the spread of pathological tau,
suggesting that microglia may participate in the pro-
gression of pathological tau through exosome release
[70].

TZDs improve AD by regulating
neuroinflammation

TZDs were first used for AD after discovering that
non-steroidal anti-inflammatory drugs (NSAIDs) can
activate PPAR� [71]. Epidemiological studies have
found that long-term use of NSAIDs can significantly
reduce the risk of AD [72]. Subsequently, animal
studies confirmed that long-term administration of
ibuprofen significantly reduces soluble A�1–42 levels
and cortical A� plaques and prevents microglial acti-
vation in 11-month-old Tg2576 mice [73]. PPAR�
antagonist also attenuated the protective effect of
ibuprofen on A� deposition [63]. Given that NSAIDs
may inhibit neuroinflammation and disease progres-
sion in AD by activating PPAR�, TZDs, as strong
activators of PPAR�, are potential candidates for
treating AD [74].

Heneka et al. compared the efficacy of pioglita-
zone and ibuprofen in 10-month-old A�PP V717I
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mice. Both treatments significantly reduced the num-
ber of activated microglia and reactive astrocytes,
downregulated COX2, iNOS, and BACE1, and pre-
vented A�1–42 deposition in the hippocampus and
cortex (Fig. 1) [74]. Similarly, in mice overexpress-
ing mutant human A�PP, rosiglitazone activated M2
microglia to promote its phagocytic ability, reduce the
expression of proinflammatory markers, and remove
A� plaques and neuropil threads containing phos-
phorylated tau in the hippocampus [75]. Pioglitazone
blocks A�-triggered hyperphosphorylated of tau and
the subsequent synaptic loss [76]. In addition to
improving AD pathology and inflammation in the
brain, pioglitazone and rosiglitazone both improved
spatial memory impairment in mice induced by A�
[48, 56].

It has been found that TZDs can also affect
AD pathology through PPAR�-dependent non-
inflammatory pathways. Researchers identified a
PPAR�-responsive element (PPRE) in the BACE1
gene promoter, which controls BACE1 expression.
PPAR� could be a repressor of BACE1, since over-
expression of PPAR� or treatment with pioglitazone
reduces BACE1 expression and intracellular A� lev-
els, while PPAR� depletion enhances BACE1 gene
promoter activity [77]. Cyclin-dependent kinase 5
(CDK5) is a serine /threonine kinase with many
important roles in neuronal development. Enhanced
CDK5 activity was observed in mice models of
AD, which may be related to A�-induced dendritic
spine loss. Pioglitazone inhibited CDK5 activity by
decreasing p35 protein level, and improved neuronal
long-term potentiation deficit [78, 79].

TZDS INHIBIT FERROPTOSIS IN AD

Discovery of ferroptosis and ACSL4

Previous studies have used high-throughput
screening to identify a small molecule compound,
Erastin, with a selective lethal ability for RAS
mutant tumor cells (RAS-selective lethal, RSL) [80].
Erastin initiated non-apoptotic cell death associated
with increased levels of intracellular ROS. It is an
iron-dependent lethal mechanism that can be pre-
vented by iron chelation [81]. In 2012, Dixon et al.
named this specific cell death induced by erastin as
ferroptosis. It was found that erastin inhibits cys-
tine/glutamate antiporter systemXc–, which results
in cystine uptake disorders and impaired glutathione
(GSH) synthesis, and ultimately iron-dependent cell
death. Ferrostatin-1 (Fer-1) can effectively inhibit

erastin-induced ferroptosis but has no significant
effect on cystine and glutathione levels. It mainly
reduces the levels of lipid ROS and it is speculated
that lipid ROS may be crucial for ferroptosis [34].
Further studies revealed that Fer-1 has a lipophilic
N-cyclohexyl, which can protect specific membrane
PUFAs against ferroptosis-inducing conditions, such
as cystine and glutathione depletion. Fer-1 inhibits
oxidative damage of membrane PUFAs and resists
cell ferroptosis; thus, lipid peroxidation products are
the proximate executioners of ferroptosis [35].

RSL3 can also induce ferroptosis, but unlike
erastin, it does not depend on systemXc– pathway
[81]. RSL3 does not change GSH level and may
directly regulate GSH downstream pathway. One
consequence of GSH depletion could be glutathione-
dependent peroxidases (GPXs) inactivation. Using
GSH as an essential cofactor, GPXs catalyze the
reduction of peroxide to water or to the corresponding
alcohols. It has been suggested that GPX4 is a cen-
tral regulator of ferroptosis and the direct target of
RSL3. GPX4–/– mice developed acute renal failure
and significantly increased cellular lipid peroxidation
[36, 82, 83]. This is consistent with previous studies
showing that GPX4 specifically reduces lipid per-
oxidation [84]. Meanwhile, a novel small molecule
compound liproxstatin-1 (Lip-1) inhibited RSL3-
induced ferroptosis in renal tubular epithelial cells
and remarkably prolonged the survival of GPX–/–

mice [82]. Like Fer-1, lipophilic free radical-trapping
antioxidants, inhibit ferroptosis through a potent
reduction of lipid peroxidation [85].

Using a haploid cell line with retroviral-mediated
mutations, two specific gene mutations with sig-
nificant enrichment in ferroptosis-resistant cells,
ACSL4 and lysophosphatidylcholine acyltransferase
3 (LPCAT3), were found [86]. Doll et al. applied
two approaches: microarray analysis of ferroptosis-
resistant cell lines, and a genome-wide CRISPR
gRNA library screen. Both approaches identified
ACSL4 as a pro-ferroptosis gene and a critical
determinant of ferroptosis sensitivity. Acsl4–Gpx4
double-KO cells could be passaged for more than 10
days, which is opposite to previous studies conclud-
ing that no cell lines can survive ex vivo without GPX4
[31]. During PUFAs biosynthesis, ACSL4 preferen-
tially catalyzes arachidonic acid (AA)/adrenic acid
(AdA) to form acyl-CoA derivative AA/AdA-CoA,
which is esterified to phosphatidylethanolamines
(PE) by LPCAT3. It has been found that AA/AdA-
CoA containing PE is the preferred substrate for
lipid peroxidation in ferroptosis. The content of PE-



J. Yang et al. / Multi-Target Neuroprotection of Thiazolidinediones 933

AA/ AdA in ACSL4 knockout cells was significantly
lower than that in WT cells. Loss of ACSL4 sig-
nificantly inhibited RSL3-induced lipid peroxidation
PE-AA/AdA-OOH, whereas LPCAT3 knockout only
showed a slight protective effect [87].

AD and ferroptosis

As early as 1997, it was reported that oxidative
damage mediated by iron accumulation is involved
in the pathogenesis of AD [88]. The autopsy indi-
cated that iron distribution in the frontal cortex of AD
patients is significantly different from that in aging
brains without AD [89]. According to NFTs and A�
plaque levels of the inferior temporal cortex in the
autopsy brain, AD neuropathology was divided into
low and high pathology scores. The results showed
that in subjects with high pathology scores, the corti-
cal iron level was strongly associated with cognitive
decline in AD, but there were no significant correla-
tions with non-AD dementia or with increased AD
proteinopathy in the absence of dementia. There is
a hypothesis that iron does not merely accumulate
with AD pathology but rather potentiates degenera-
tion once the pathology is sufficiently severe [18].
The exact relationship between iron accumulation
and the development of AD was not understood until
the discovery of ferroptosis, which provided new evi-
dence for the involvement of iron accumulation in the
cognitive impairment of AD.

Iron and AD
Ferroptosis is iron-dependent regulatory cell death.

Iron chelator deferoxamine can inhibit ferropto-
sis [34]. Hepatocyte ferroptosis occurred in mice
fed with a high-iron diet and in gene knockout-
mediated iron overload mouse models [90]. Iron
is a highly redox-reactive metal, and the Fenton
reaction is involved in lipid peroxidation by pro-
ducing hydroxyl radicals. In addition, lipoxygenases
(LOXs), iron-containing enzymes, selectively cat-
alyze lipid peroxidation by an iron redox reaction
[82, 87].

Iron homeostasis is exquisitely controlled in neu-
rons because of their high metabolic activity. By
modulating iron uptake, storage, utilization, and
efflux, neurons maintain an optimal intracellular iron
balance [91]. Iron homeostasis imbalance in AD leads
to iron accumulation in the hippocampus and cor-
tex. Ferroportin (Fpn) is the only known protein that
exports intracellular iron in mammals [92]. It was
found that Fpn expression is significantly lower in

the hippocampus of the AD brain than in the nor-
mal brain, resulting in decreased iron efflux capacity
and increased iron accumulation in neurons [93, 94].
Elevated levels of ferritin were found in AD brain,
providing strong evidence for iron accumulation [95].
Fpn conditional knockout mice developed AD-like
hippocampal atrophy, memory deficits, and typical
ferroptosis characteristics, confirming that iron accu-
mulation is involved in AD pathogenesis through
ferroptosis [94]. Fpn is regulated by A�PP in neu-
rons. A�PP possesses ferroxidase activity, oxidizing
Fe2+ into Fe3+ and interacting with Fpn to export iron
[96]. Tau affects the A�PP translocation to the cell
surface. Pathological loss of soluble tau can prevent
A�PP trafficking to the cell surface in AD, resulting
in reduced iron efflux, which causes iron accumula-
tion and ferroptosis (Fig. 3) [97].

Lipid peroxidation and AD
The core reaction of ferroptosis is lipid peroxida-

tion, and most ferroptosis inhibitors act as lipophilic
radical-trapping antioxidants. Lipid peroxidation can
occur through non-enzymatic and enzymatic path-
ways. The non-enzymatic pathway initiates by the
Fenton reaction, which utilizes Fe2+ in the labile iron
pool (LIP) to react with hydrogen peroxide (H2O2),
resulting in the production of hydroxyl radicals
(OH•). These radicals remove a bisallylic hydro-
gen atom from PUFA-PLs to form a carbon-centered
phospholipid radical (PL•). Subsequent reactions
with molecular oxygen produce phospholipid per-
oxyl radical (PLOO•), which removes hydrogen from
other PUFAs, forming lipid peroxidation PLOOH and
the fresh PL•. PLOOH can react with Fe2+ to gen-
erate PLO•, which damages the peroxidation chain
reaction together with PL•, propagating PLOOH on
the lipid membrane (Fig. 3) [98, 99]. The primary exe-
cutioner of the enzymatic processes are LOXs, which
catalyze the dioxygenation of PUFAs to produce lipid
peroxidation. LOXs-mediated PUFAs oxidation can
exert a lethal effect during certain conditions (GSH
depletion) [36].

Lipid peroxidation is common in the brain due
to high oxygen utilization and high PUFA levels
[100]. The evidence of ferroptosis lipid peroxi-
dation, including structural mitochondrial atrophy
and increased levels of lipid peroxidation products
4-hydroxynonenal (4-HNE) and malondialdehyde
(MDA), was found in AD brain by histopathology
[95]. The ferroptosis inhibitor, Lip-1, can effectively
reduce neuronal death in the hippocampal dentate
gyrus and improve learning and memory impair-
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Fig. 3. Neuronal ferroptosis mechanism in AD. Overexpressed ACSL4 is activated and catalyzes AA/AdA to AA/AdA-CoA, which is
then esterified to PE by LPCAT3. Decreased iron export and increased expression of ferritin promote neuronal iron accumulation. Fe2+
in LIP, via the Fenton reactions or ALOXs, catalyzes the production of phospholipid hydroperoxides (PLOOH) and phospholipid radicals
(PL•, PLO•, and PLOO•), leading to neuronal ferroptosis. Neuronal ferroptosis can be prevented by cyst(e)ine–GSH–GPX4 axis and
NADH-FSP1-CoQ10 axis.

ment in AD mice [94]. Peroxidation of membrane
lipids can disturb cell membrane integrity, decrease
membrane flexibility, increase membrane permeabil-
ity, and finally affect material transport and signal
conduction. In addition, lipid peroxidation may also
occur in mitochondria, endoplasmic reticulum, and
lysosomes, the organelles rich in phospholipid mem-
branes, leading to cell dysfunction and death [101].
PLOOH can be decomposed into toxic derivatives,
such as 4-HNEs and MDA, forming covalent elec-
trophilic products with biological macromolecules,
such as DNA, lipids, and proteins. They act as the
secondary messengers of oxidative stress. They are
also severely cytotoxic [33, 102].

Anti-lipid peroxidation system and AD
In physiological conditions, cells constantly pro-

duce ROS and lipid peroxidation products, which
are removed by the antioxidant system. Exces-
sive lipid peroxidation often leads to ferroptosis.
Cyst(e)ine–GSH–GPX4 axis is the main negative
regulator of lipid peroxidation. Cystine/glutamate
antiporter systemXc– is composed of the light-chain
subunit, SLC7A11, and the heavy-chain subunit,
SLC3A2. Light-chain subunit, SLC7A11, is respon-
sible for cystine/glutamate transpor. SystemXc–

uptakes cystine by exchanging extracellular cys-
tine for intracellular glutamate, and rapidly reduces

it to cysteine. Cysteine is involved in GSH syn-
thesis, which is catalyzed by glutamate cysteine
ligase. Cystine uptake by systemXc– is the rate-
limiting step in GSH synthesis [103]. GSH, the
cofactor of GPX4, is a crucial antioxidant, which
has two forms: reduced GSH and oxidized GSSG.
In physiological conditions, GSH is an electron
donor for GPX4. As GPX4 is synthesized, selenium
replaces the sulfur of cysteine to form selenocys-
teine (Sec). Active selenol (-SeH) can be oxidized by
PLOOH to selenic acid (-SeOH), and then reduced
by GSH, which provides two electrons for oxidized
GPX4. Glutathione-disulfide reductase (GSR) pro-
duces GSH from GSSG [104]. Meanwhile, PLOOH
is reduced to the corresponding phospholipid alcohol
(PLOH) (Fig. 3) [104, 105].

Another GPX4-independent pathway is medi-
ated by the NADH-FSP1-CoQ10 axis [106]. The
N-terminus of FSP1 contains a canonical myristoy-
lation, which binds to the lipid bilayers. On the
cell membrane, FSP1 reduces CoQ10 to CoQ10-H2,
which captures lipid free radicals and cooperates with
GPX4 to resist lipid peroxidation (Fig. 3) [107].

AD is accompanied by excessive lipid peroxida-
tion. There were lower levels of GSH and GPX4
in AD pathology and animal models, which corre-
late with cognitive dysfunction [94, 95, 108]. Higher
SLC7A11 levels were observed in the AD brain com-
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pared with the normal brain, which can be related
to compensatory intake of cystine to potentiate the
anti-lipid peroxidation system [95]. Mutations in
presenilin 1 and 2 cause autosomal dominant famil-
ial Alzheimer’s disease (FAD). It was found that
PS can regulate selenium uptake to promote GPX4
expression and inhibit ferroptosis. PS mutations can
disrupt selenium uptake, suppress GPX4 expression,
and increase cell sensitivity to ferroptosis. Therefore,
presenilin mutations in FAD may promote neurode-
generation by weakening the anti-lipid peroxidation
system [109]. GPX4 conditional knockout mice also
showed cognitive impairment and hippocampal neu-
ron loss. On the contrary, AD mice overexpressing
GPX4 improved significantly, suggesting that ferrop-
tosis plays an important role in AD [110–112].

TZDs inhibit ACSL4 to protect AD from
ferroptosis

Accumulating evidence indicates that ferroptosis is
an ACSL4-dependent cell death process. ACSL4 acti-
vation is dependent on dimerization and regulated by
phosphorylated kinases, which include protein kinase
A (PKA) and protein kinase C (PKC), a group of
Ser/Thr kinases. When Acsl4 was phosphorylated by
PKA, its activity was significantly increased com-
pared to the activity of non-phosphorylated Acsl4.
On the contrary, PKC phosphorylation caused a sig-
nificant reduction in the Acsl4 activity [113]. Zhang
identified phosphorylation of Thr328 is critical for
the activation of ACSL4. One of the five isoforms of
PKC, PKC�II could sense the initial lipid peroxida-
tion, directly phosphorylated and activated ACSL4 at
Thr328 to increase PUFA-containing phospholipids
and promote ferroptosis [114].

The effect of ACSL4 on ferroptosis depends on
multiple factors. It has been reported that CD8+T
cells can promote tumor cells ferroptosis and medi-
ate anti-tumor immunity by releasing IFN� [115].
Further studies revealed that IFN� binds to cell sur-
face receptors and activates JAK/STAT1 signaling
pathway to regulate the expression of interferon reg-
ulatory factor 1 (IRF1). IRF1 upregulates ACSL4
expression by binding to its promoter region, thereby
promoting ferroptosis [116]. In addition, it was found
that ACSL4 promoter region has abundant GC boxes,
which have a high affinity for the transcription fac-
tor SP1. Under hypoxic conditions, upregulation or
downregulation of SP1 in intestinal adenocarcinoma
cells similarly increased or decreased the expression
of ACSL4 [117].

It has been found that the expression of ACSL4
and SP1 is significantly higher in A�PP/PS1 mice
hippocampal neurons than in wild-type mice, In
addition, inhibition of ACSL4 or SP1 effectively pre-
vented A�-induced ferroptosis of neurons [118, 119].
TZDs specifically inhibit ACSL4-mediated PUFAs
activation and lipid peroxidation. Studies have shown
that pioglitazone effectively improves cognitive dys-
function by inhibiting lipid peroxidation [120].
Modulating lipid peroxidation and lipid metabolism
disorder alleviated cognitive impairment in AD mice
[110, 121]. ACSL4 inhibition by TZDs has also
been demonstrated in other diseases. In ischemia-
reperfusion injury models, including intestinal, lung,
brain, and myocardial ischemia models, TZDs or
ACSL4 knockout improved ischemia-reperfusion
injury by downregulating abnormally overexpressed
ACSL4 expression and inhibiting ferroptosis [117,
122–124]. Similarly, TZDs alleviated acute kidney
injury and improved rhabdomyolysis by inhibiting
ACSL4 [125, 126]. Given the importance of ferrop-
tosis in AD and its dependence on ACSL4, ACSL4
may be a potential target in AD.

CLINICAL TRIALS OF PIOGLITAZONE
IN CNS DISEASES

In 1997, the first TZD, troglitazone, was approved
in the United States for the treatment of type 2 dia-
betes. Subsequently, two other TZDs, rosiglitazone
and pioglitazone, were successively introduced into
the market in 1999. However, because of hepatotox-
icity troglitazone was withdrawn from the market in
2000, and rosiglitazone was banned in Europe and the
United States in 2010 due to the high risk of myocar-
dial infarction (Fig. 1). Only pioglitazone is still used
in clinics [127]. Therefore, in terms of clinical trials,
this review mainly describes the use of pioglitazone
in CNS diseases.

AD

In an early prospective randomized controlled
study, patients with mild AD and type 2 diabetes were
treated with pioglitazone or placebo. Both groups also
received donepezil and had good glycemic control.
The results showed that pioglitazone improved cog-
nitive function and regional cerebral blood flow in
the parietal lobe, but the plasma ratio of A�40/42 did
not significantly change. This study included only 42
cases [128].
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In 2014, Read reported an elderly patient with
early AD who took a higher dose (45 mg–60 mg) of
pioglitazone. Pioglitazone significantly delayed cog-
nitive decline. During the 4-year observation period,
the MMSE score showed cognitive improvement
and remained constant while taking 60 mg of piogli-
tazone. When they attempted to reduce the dose
to 30 mg, the MMSE score suddenly dropped and
improved after adjusting the dose to 45 mg. These
findings suggest that pioglitazone may delay cogni-
tive decline in a dose-dependent manner in the early
stages of AD [129].

A prospective cohort study compared the incidence
of dementia between non-diabetic subjects, diabetic
patients not using pioglitazone, diabetic patients with
prescriptions of <2 years of pioglitazone, and diabet-
ics with ≥2 years of pioglitazone. The results showed
that diabetic patients without the use of pioglita-
zone had a 23% increase in dementia risk. The use
of pioglitazone was associated with a lower risk of
dementia, and this protective effect depended on the
duration of use. The risk of dementia among diabetic
patients with <2 years of using pioglitazone was com-
parable to those of non-diabetic subjects. The risk
of dementia after long-term use of pioglitazone (≥2
years) was 47% less than that among non-diabetic
subjects [130].

In a prospective cohort study with metformin as
a first-line glucose-lowering regimen, there was a
decreased risk of dementia in those taking pioglita-
zone compared with those taking other second-line
glucose-lowering drugs such as sulfonylureas, acar-
bose, and insulin [131]. A network meta-analysis
measured the effects of 6 hypoglycemic agents on AD
and mild cognitive impairment (MCI). It showed that
pioglitazone 15–30 mg, intranasal insulin 40 units,
and sitagliptin 100 mg all significantly improved
cognition compared with placebo. In addition, piogli-
tazone 15–30 mg demonstrated the greatest efficacy
[132].

For measuring the safety and efficacy of piogli-
tazone among non-diabetic subjects with AD, an
18-month, phase II clinical trial was conducted by
Takeda Pharmaceuticals. Twenty-five subjects com-
pleted the study and 45 mg/day of pioglitazone was
well tolerated, with no significant effect on blood
glucose levels, hemoglobin levels, or other blood bio-
chemistry [133]. The TOMMORROW study (Fig. 1)
was a randomized controlled study consisting of dia-
betic subjects ≥65 years of age and without cognitive
impairment. Participants at high risk of MCI ran-
domly received low-dose pioglitazone (0.8 mg/day)

or placebo. The study started in 2013 and terminated
in 2018 after failing to meet the expected efficacy.
Low doses of pioglitazone did not delay the onset of
MCI nor increase the risk of adverse events [134].
The negative results obtained in the TOMMORROW
study were related to the use of a lower dose of
pioglitazone. In addition, this study did not mea-
sure biomarkers, which might affect the effectiveness
analysis of the drug.

Ischemic stroke

Ischemic stroke has a high recurrence risk and
is the second most common vascular event after
myocardial infarction (MI) [135]. Pioglitazone was
found as effective as an intensive lipid-lowering
strategy in preventing stroke recurrence [136, 137].
A meta-analysis measured the preventive effect of
pioglitazone on secondary stroke. It included three
randomized controlled studies and found that the
use of pioglitazone in patients with stroke, insulin
resistance, prediabetes, and diabetes mellitus was
associated with a lower risk of recurrent stroke
(decreased by 32%) and future major vascular events
(decreased by 25%) [138].

The PROactive study, a randomized controlled
trial (Fig. 1), included patients with type 2 diabetes
who had evidence of macrovascular disease. They
received oral pioglitazone or placebo in addition to
their glucose-lowering drugs and other medications.
After 34 months, pioglitazone significantly reduced
the incidence of the primary composite outcome com-
pared with placebo [139]. The second study was
published two years later, which showed that piogli-
tazone significantly reduced the recurrence rate of
stroke and cardiovascular events in diabetic patients
with prior stroke [140].

Another randomized double-blind controlled trial,
the IRIS study (Fig. 1), included non-diabetic sub-
jects with insulin resistance and recent ischemic
stroke or TIA. The primary outcome was recurrent
stroke or MI. After 4.8 years, the primary outcome
occurred in 9.0% of participants in the pioglitazone
group and in 11.8% of participants in the placebo
group, and the difference was statistically significant
[137]. Multiple secondary analyses of the IRIS study
were performed. These analyses found that piogli-
tazone was effective for the secondary prevention
of ischemic stroke or TIA and significantly reduced
stroke recurrence [141]. After stratifying patients
according to their compliance, the results showed that
pioglitazone had a better preventive effect on primary
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outcomes in subjects with acceptable compliance
[142]. Another study stratified patients according
to their cardiovascular risk factors and showed that
patients at high risk of stroke or MI achieved a greater
benefit from pioglitazone [143].

Two retrospective studies confirmed the effect of
pioglitazone on the secondary prevention of stroke
among diabetic patients with ischemic stroke [144,
145]. Pioglitazone may also have a good preven-
tive effect for primary stroke prevention. Two recent
retrospective studies showed that pioglitazone dose-
dependently decreased the risk of new-onset ischemic
stroke in patients with type 2 diabetes [146, 147].

Carotid atherosclerosis (coronary artery)

Pioglitazone has been found to delay the pro-
gression of carotid and coronary atherosclerosis in
diabetic patients. As measured by ultrasound, carotid
intima-media thickness (CIMT) was highly corre-
lated with future risk of cardiovascular events and
was a strong predictor of ischemic stroke and MI. Two
randomized controlled studies compared the effects
of pioglitazone and glimepiride on CIMT in patients
with type 2 diabetes [148, 149]. In the CHICAGO
study (Fig. 1), participants were asked to adjust
their statin dose to meet American Diabetes Asso-
ciation goals before the study. The results showed
in the presence of blood pressure and blood glu-
cose control and adequate use of statins, pioglitazone
significantly delayed CIMT progression compared
with glimepiride. Another study showed that piogli-
tazone also decelerated the progression of CIMT in
patients with prediabetes [150]. The PERISCOPE
study compared pioglitazone with glimepiride on
coronary atherosclerosis in patients with diabetes.
Intravascular ultrasound was used to assess the vari-
ation in plaque size (Fig. 1). With comparable levels
of blood glucose, the changes in percent atheroma
volume and maximum atheroma thickness from base-
line to study completion increased in the glimepiride
group and decreased in the pioglitazone group. It
shows the benefits of pioglitazone in delaying coro-
nary atherosclerosis in patients with type 2 diabetes
and coronary artery disease [151].

Atherosclerosis is an inflammatory disease. Each
plaque contains numerous macrophages, which
weakens plaque stability. In 18F-fluorodeoxyglucose
positron emission tomography (18F-FDG-PET)
imaging, FDG uptake was correlated with
macrophage abundance in plaques. The application
of FDG-PET can help identify the inflammatory

activity in atherosclerotic plaques [152]. Compared
with glimepiride, pioglitazone could attenuate FDG
uptake in carotid and coronary atherosclerotic
plaques in patients with impaired glucose tolerance
or diabetes [153, 154]. In another study comparing
statin alone with the combination of statin and
pioglitazone, FDG intake was slightly but not
significantly lower in the combination group after 3
months of treatment [155].

The vascular endothelium regulates vascular wall
homeostasis by maintaining normal vascular tonicity
and modulating platelet aggregation and leukocyte
adhesion. Endothelial dysfunction is critical for the
development of atherosclerosis. Studies have found
that pioglitazone improved endothelial vasodilatation
in non-diabetic patients, independent of its effect on
insulin sensitivity and inflammation [156, 157].

Pioglitazone also altered the lipid profile in the
CHICAGO and PERISCOPE studies, with a signifi-
cant increase in high-density lipoprotein cholesterol
(HDL-C) levels and a significant decrease in triglyc-
eride levels [149, 151]. The favorable effects of
pioglitazone on the triglyceride/HDL-C ratio cor-
related with delayed atheroma progression [158].
The effect of pioglitazone on low-density lipoprotein
cholesterol (LDL-C) was reflected in its influence on
LDL-C particle size. It was found that pioglitazone
can increase LDL-C particle size and reduce parti-
cle density, which is associated with slower plaque
progression [159]. Small and dense LDL-C particles
may promote plaque progression. The measurement
of LDL-C particles may be a supplementary risk pre-
dictor for people with low LDL-C levels [160].

LIMITATIONS OF CLINICAL
APPLICATION OF PIOGLITAZONE

Pioglitazone has shown numerous advantages in
the preclinical studies and clinical trials of AD with
insulin resistance. The clinical application and clin-
ical trials of pioglitazone are limited in non-diabetic
subjects with AD due to side effects. Since its
approval in the USA, a potential link between piogli-
tazone and bladder cancer has been the subject of
debate. A re-analysis of the PROactive study showed
a significantly increased risk of bladder cancer with
pioglitazone [161]. After conducting a review of
the safety of pioglitazone, the European Medicines
Agency (EMA) decided to maintain the marketing of
the drug, whereas the US Food and Drug Administra-
tion (FDA) warned about the possible increased risk
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of bladder cancer. A retrospective cohort study in the
UK reached the same conclusion, suggesting that the
use of pioglitazone is associated with an increased
risk of bladder cancer in patients with type 2 dia-
betes. The risk of bladder cancer increased with the
duration and dose of pioglitazone [162].

On the other hand, pioglitazone may contribute to
an increased risk of heart failure by increasing fluid
retention. However, the risk of fatal heart failure and
all-cause mortality did not increase, and the incidence
of cardiovascular events was significantly reduced
[163, 164]. In addition, pioglitazone can cause weight
gain by redistribution of adipose tissue, and increase
the risk of fracture [165, 166]. These adverse events
restricted the prescription of pioglitazone, although
the overall risk-benefit balance is strongly in favor of
prescribing pioglitazone [167].

In patients with diabetes or insulin resistance, the
reduced risk of AD with pioglitazone was related not
only to its suppressive effects on inflammation and
lipid peroxidation but also to its stabilizing effect on
glucose metabolism in the brain [134]. The TOM-
MORROW study was conducted to investigate the
efficacy of pioglitazone on non-diabetic patients with
AD. In order to achieve good tolerability and safety,
a low dose of pioglitazone (0.8 mg/day) was used
in the TOMMORROW study. However, low doses
of pioglitazone did not delay the onset of MCI in
high-risk participants. Previous animal studies sug-
gested that the effect of pioglitazone can be enhanced
in a time- and dose-dependent manner [19]. Piogli-
tazone cannot effectively pass through BBB, and
higher doses of pioglitazone are usually used in ani-
mal studies to achieve effective concentrations across
the BBB. Pioglitazone is an efflux transporter sub-
strate on BBB, preventing pioglitazone from reaching
effective concentrations in the brain. The applica-
tion of lower doses of sustained-release tablets in
the TOMMORROW study might keep the transporter
in an unsaturated state, and insufficient concentra-
tions of pioglitazone in the brain may be a key
factor limiting its efficacy in AD. To address the
poor BBB permeability of pioglitazone and its dose-
dependent peripheral side effects, intranasal nano
lipid carriers of pioglitazone have been formulated
for its targeted delivery to the brain [168]. Lerigli-
tazone, which is the active metabolite products of
pioglitazone, is under development by Minoryl for
the treatment of X-linked adrenoleukodystrophy (X-
ALD) and other neurodegenerative diseases due to its
adequate BBB penetration, good bioavailability, and
safety profile. Compared with pioglitazone, Leriglita-

zone increase 50% brain exposure ratio in mice [169].
In the ADVANCE study, a randomized, double-blind,
phase 2-3 trial of leriglitazone for preventing disease
progression in men with adrenomyeloneuropathy. It
was found that none of the clinically progressive cere-
bral adrenoleukodystrophy were occurred in patients
receiving leriglitazone [170]. As increasing the effec-
tive concentration of TZDs in the brain, there is still
a potential for TZDs in treatment of AD.

CONCLUSION

The growing incidence of AD has brought a
tremendous burden to societies and families. Peo-
ple are paying more attention to AD worldwide.
Many large pharmaceutical companies are devel-
oping drugs for AD; however, there has been no
breakthrough in improving the disease outcome.
Most of these drugs target A�. Although the patho-
genesis of AD is still controversial, it can be known
that AD is an intricate and multi-factorial patholog-
ical process. Drugs that act on a single target or
pathway may not be effective in halting AD pro-
gression. TZDs, as PPAR� agonists and ACSL4
inhibitors, play a dual role by their potent anti-
inflammatory and anti-ferroptosis properties. In the
preclinical studies of AD, TZDs simultaneously reg-
ulated various pathological pathways, effectively
inhibited chronic inflammation, and protected against
neuronal loss.

In clinical trials, as a treatment for type 2 diabetes,
TZDs effectively controlled blood glucose, improved
insulin resistance, and reduced the risk of AD in
patients with diabetes or insulin resistance. Low-dose
pioglitazone failed to show efficacy in non-diabetic
patients with AD. It may be necessary to reduce drug
side effects by optimizing drug carriers and improv-
ing drug targeting.

AD is the leading cause of dementia, followed
by vascular dementia. Autopsy studies found that
mixed dementia mediated by these two causes also
accounted for a high proportion, which should not be
ignored in the treatment of patients who have non-
categorized dementia. Clinical trials of pioglitazone
have shown its efficacy in the prevention and treat-
ment of arteriosclerosis and ischemic stroke, making
it, especially a suitable candidate for mixed dementia.

Currently, among TZDs, only pioglitazone is still
used in clinical practice, but many clinicians are
discouraged by the increased risk of obesity, frac-
tures, heart failure, and bladder cancer. Although the
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results of clinical trials are confusing, the use of
pioglitazone for preventing cognitive decline is still
a possible long-term option. A careful selection of
patients is helpful. Patients with prediabetes or insulin
resistance, those with increased risk of myocardial
infarction and ischemic stroke, mixed dementia, low
risk of heart failure and bladder cancer, can obtain the
utmost benefit from pioglitazone.
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