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Abstract.
Background: In Alzheimer’s disease (AD), the gradual accumulation of amyloid-� (A�) and tau proteins may underlie
alterations in empathy.
Objective: To assess whether tau aggregation in the medial temporal lobes related to differences in cognitive empathy (the
ability to take others’ perspectives) and emotional empathy (the ability to experience others’ feelings) in AD.
Methods: Older adults (n = 105) completed molecular A� positron emission tomography (PET) scans. Sixty-eight of the
participants (35 women) were A� positive and symptomatic with diagnoses of mild cognitive impairment, dementia of the
Alzheimer’s type, logopenic variant primary progressive aphasia, or posterior cortical atrophy. The remaining 37 (22 women)
were asymptomatic A� negative healthy older controls. Using the Interpersonal Reactivity Index, we compared current levels
of informant-rated cognitive empathy (Perspective-Taking subscale) and emotional empathy (Empathic Concern subscale)
in the A� positive and negative participants. The A� positive participants also underwent molecular tau-PET scans, which
were used to investigate whether regional tau burden in the bilateral medial temporal lobes related to empathy.
Results: A� positive participants had lower perspective-taking and higher empathic concern than A� negative healthy
controls. Medial temporal tau aggregation in the A� positive participants had divergent associations with cognitive and
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emotional empathy. Whereas greater tau burden in the amygdala predicted lower perspective-taking, greater tau burden in
the entorhinal cortex predicted greater empathic concern. Tau burden in the parahippocampal cortex did not predict either
form of empathy.
Conclusions: Across AD clinical syndromes, medial temporal lobe tau aggregation is associated with lower perspective-taking
yet higher empathic concern.
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INTRODUCTION

In Alzheimer’s disease (AD), the progressive
accumulation of amyloid-� (A�) plaques and tau
neurofibrillary tangles [1–3] can manifest as sev-
eral distinct clinical syndromes [4]. Although the
topography of A� aggregation in the neocortex is
diffuse and not consistently related to symptoms
or disease progression [5–7], regional tau deposi-
tion closely aligns with cognitive deficits [8–13]
and atrophy (e.g., [14–16]) and predicts functional
decline [17] and clinical severity [18, 19] better
than A�. In AD, tau first aggregates in the brain-
stem (e.g., locus coeruleus) [20, 21] and medial
temporal lobes (MTL) [3, 22, 23]. In people with
mild cognitive impairment (MCI)—the clinical phase
that precedes functional impairment—and “typical”
dementia of the Alzheimer’s type (DAT), MTL
pathology often gives rise to episodic memory decline
[24]. “Atypical” AD clinical syndromes emerge when
pathological changes target other brain regions and
cause deficits in language, visuospatial processing, or
executive functioning [25, 26]. Whereas individuals
with prominent language and phonological process-
ing deficits may meet criteria for logopenic variant
primary progressive aphasia (lvPPA) [27], those with
predominant visual and spatial deficits may receive a
diagnosis of posterior cortical atrophy (PCA) [28].

Cognitive symptoms in AD have been well char-
acterized [24], but the changes in behavior and
emotion that also arise remain poorly understood
(e.g., [29–31]). Heightened social and emotional
sensitivity may contribute to the neuropsychiatric
symptoms that emerge in the symptomatic phase of
AD [32–38] and to the gains in negative emotional
reactivity, stress, and loneliness that characterize
the preclinical period [39–42]. Neuropathological
changes in AD may also affect how people under-
stand or respond to others and thereby alter cognitive
empathy (the ability to adopt the viewpoint of oth-
ers) as well as emotional empathy (the ability to
experience what others are feeling via physiolog-

ical and motor mirroring systems) [43]. Tests of
cognitive empathy often entail recognizing emotions
in others [44], but cognitive empathy also includes
perspective-taking abilities [45]. Although there is
some evidence that people with AD have lower
informant-reported perspective-taking than healthy
older adults [29], it is unclear whether this impair-
ment reflects more widespread cognitive deficits or
problems with mentalizing per se [46]. There is
accumulating evidence, in contrast, that emotional
empathy climbs in the early stages of AD, even when
people are cognitively asymptomatic. In our prior
research, we have found elevations in two forms
of emotional empathy—emotional contagion (a self-
oriented form of emotional empathy that can be
accompanied by feelings of distress) and empathic
concern (an other-oriented form of emotional empa-
thy that promotes prosocial actions) [47, 48]—in
people on an AD trajectory. While emotional con-
tagion is higher in MCI and AD than in healthy older
adults [49], empathic concern increases more over
time in cognitively healthy older adults with higher
cortical A� than in those with lower levels [50].

In people with AD, tau deposition in the MTL
may contribute to changes in empathy. Cognitive
and emotional empathy have largely distinct neu-
roanatomical underpinnings [43, 51], but both rely on
the MTL [51, 52]. Cognitive empathy, which allows
individuals to step outside of their own minds and to
take the perspective of another, often engages MTL
structures (primarily the entorhinal cortex and hip-
pocampus) as well as other regions in the default
mode network [43, 51–56]. Tau pathology in the
MTL, therefore, may disrupt perspective-taking as
the default mode network declines in AD [53–55,
57–59] but have the opposite effect on emotional
empathy. Unlike cognitive empathy, which does not
necessarily elicit changes in subjective experience
[51], emotional empathy evokes shared feeling states
between people by activating the MTL (primarily
the amygdala) and other structures in the salience
network [51, 60], a system that supports emotion
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generation and interoception [61–64]. In early AD,
default mode network dysfunction is accompanied
by heightened salience network connectivity, a func-
tional gain that relates to neuropsychiatric symptoms
in the clinical phase [65, 66] and increasing empathic
concern in the preclinical period [50]. While there is
some evidence that early tau deposition in the MTL
relates to heightened stress, anxiety, and depression
[41, 42], whether MTL tau aggregation also relates
to higher emotional empathy in AD is unknown.

Here, we investigated cognitive and emotional
empathy in AD clinical syndromes and their associa-
tions with MTL tau pathology. As neuropathological
changes in AD can give rise to a diverse set of
syndromes that vary in the extent to which they
affect the MTL [67, 68], we included participants
with a wide range of symptoms who met criteria
for MCI, DAT, lvPPA, or PCA. All participants with
AD were in the very mild to mild clinical stages of
disease and were A� positive (A�+) on molecular
positron emission tomography (PET) imaging. Given
that previous studies have found diminished cognitive
empathy and enhanced emotional empathy in people
along the AD continuum [29, 49, 50], we expected
that symptomatic A�+ participants would have lower
perspective-taking (a measure of cognitive empathy)
yet higher empathic concern (a measure of emo-
tional empathy) than A� negative (A�-) healthy older
controls. While elevated A� accumulation may set
the stage for empathy alterations in AD, regional
tau aggregation may play a critical role in shaping
empathy over the course of the disease. We hypoth-
esized that, just as the default mode and salience
networks show divergent functional changes in the
setting of AD pathophysiology [69–71], tau aggre-
gation in the MTL would also have opposing effects
on empathy. We expected that greater tau burden in
the entorhinal cortex and amygdala would relate to
lower perspective-taking but higher empathic con-
cern in A�+ participants. In contrast, we anticipated
that tau burden in the parahippocampal cortex, an
MTL region that is less involved in empathy but more
involved with cognition [72], would not relate to cog-
nitive or emotional empathy.

MATERIALS AND METHODS

Participants

A total of 105 older adults (48.0–85.5 years old)
recruited from the University of California, San Fran-
cisco (UCSF) Memory and Aging Center participated

in the present study. The sample included 68 symp-
tomatic participants who met criteria for MCI (n = 14)
[73], DAT (n = 33) [74], lvPPA (n = 10) [27], or PCA
(n = 11) [28] and 37 healthy older controls. In the MCI
group, 12 participants had an amnestic-predominant
presentation, and two had a non-amnestic, multi-
domain syndrome [73, 75]. The study was approved
by the UCSF Human Research Protection Program,
and informed consent was given by all participants,
or their surrogates, before participating.

Participants underwent multidisciplinary diagnos-
tic evaluations that included a neurological examina-
tion, neuropsychological testing, neuroimaging, and
an informant-based assessment of daily functioning
using the Clinical Dementia Rating Scale (CDR) [76].
The neuropsychological assessment included tests of
episodic memory, executive functioning, visuospatial
processing, language, and mood [77]. All symp-
tomatic participants had CDR total scores of 1 or less,
which suggests they were in the very mild to mild
stages of impairment. The healthy controls under-
went the same diagnostic evaluation as those in the
symptomatic group. They were free of current psy-
chiatric or neurological disorders, had a score of 0 on
the CDR (indicating no functional impairment), and a
score of 27 or greater on the Mini-Mental State Exam-
ination (MMSE), an assessment of overall mental
status [78].

Cognitive and emotional empathy

Informants rated participants’ current levels of
empathy using the Interpersonal Reactivity Index
(IRI), a multidimensional empathy measure [79].
Informants assessed participants’ behavior using a
scale of 1 (does not describe well) to 5 (describes
well). Each IRI subscale contains scores ranging from
7 to 35 where higher scores indicate greater levels of
empathy. Informant reports are a reliable technique to
evaluate empathy and personality in individuals who
are healthy [80, 81] and in those with dementia [29,
82].

In line with our prior work on AD [29, 49, 50], we
used the Perspective-Taking IRI subscale as our mea-
sure of cognitive empathy and the Empathic Concern
IRI subscale as our measure of emotional empathy.
While the Perspective-Taking subscale measures the
tendency to adopt others’ points of view (e.g., “Likely
to try to understand others better by imagining how
things look from their perspective”), the Empathic
Concern subscale evaluates other-oriented feelings
of compassion and concern (e.g., “Would show ten-
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der, concerned feelings for people less fortunate than
them”).

Molecular PET scan acquisition and processing

Amyloid-PET scans
Participants underwent A�-PET imaging with

either 11C-Pittsburgh compound B (PIB) or 18F-AV-
45 (Florbetapir) PET ligands. The A�-PET scans
were used to dichotomize A� levels into A�+ and
A�-, which indicated the presence or absence of
AD pathology following previous methods (e.g., [83,
84]). All participants in the symptomatic group were
A�+ as determined by a visual read [83, 85] of their
PIB (n = 67) or Florbetapir (n = 1) A�-PET scans at
the time of their empathy assessment (mean [M] = 8.4
days after IRI, standard deviation [SD] = 239.3 days).
All healthy controls were A�- on visual reads of their
Florbetapir (n = 36) or PIB (n = 1) A�-PET scans. An
additional 23 healthy controls had available empathy
data but were A�+, and thus were excluded. For the
A�- healthy controls, the A�-PET imaging occurred
after the empathy assessment (M = 6.5 years after IRI;
SD = 2.5 years), at which time they were still cogni-
tively normal and functionally intact.

Tau-PET scans
Symptomatic participants also underwent 18F-

AV-1451 (Flortaucipir) tau-PET imaging using
established protocols [10, 86, 87], and these scans
were used to correlate regional MTL tau aggre-
gation with empathy. Standardized uptake value
ratio (SUVR) values were calculated according to
previous methods [10, 86, 87], using PET data
acquired between 80- and 100-minutes post tracer
injection, and using the inferior cerebellum grey
matter as a reference region. Freesurfer segmen-
tation [http://surfer.nmr.mgh.harvard.edu; 88] was
performed to acquire regional values in right and
left MTL regions of interest (i.e., entorhinal cor-
tex, amygdala, and parahippocampal cortex) using
the Desikan-Killiany atlas. All the included imag-
ing data passed our visual quality control checks that
assessed the magnetic resonance imaging (MRI) to
PET scan registration and the Freesurfer segmen-
tation. The data were not partial volume corrected
because this entails making multiple assumptions,
and our previous work has shown that SUVR values
computed with and without partial volume correction
are highly correlated (r = 0.98) [89].

We hypothesized that the entorhinal cortex and
amygdala would relate to empathy in AD because

these structures are hubs in networks that support
empathy and typically have more tau signal than
the parahippocampal cortex [43, 51–56, 60]. The
parahippocampal cortex plays a central role in
contextual associations [72] and, while it can be
related to socioemotional behaviors (e.g., [90]), is
less critical for empathy. Thus, we included the
parahippocampal cortex as a control region within
the MTL as we did not expect tau burden in this area
would relate to empathy in AD. The tau-PET scans
were obtained in close proximity to the A�-PET
scans (M = 26.7 days after A�-PET scans, SD = 225.2
days) and empathy assessments (M = 35.1 days after
IRI; SD = 106.0 days).

Analyses

All analyses were conducted in R v.4.0.3 [91].

Empathy analyses
We used multivariate linear regression analyses

to compare the A�+ symptomatic and A�- healthy
control groups on perspective-taking and empathic
concern. Group (A�+ = 1, A�- = 0) was the indepen-
dent variable, and the perspective-taking or empathic
concern subscale score was the dependent variable.
Covariates of non-interest included gender, age at
IRI, and the contrasting IRI subscale score (i.e.,
the empathic concern score in the perspective-taking
analysis and the perspective-taking score in the
empathic concern analysis) to isolate the effects of
cognitive or emotional empathy in each model.

We next conducted exploratory multivariate linear
regression analyses to compare each clinical group
(MCI, DAT, lvPPA, and PCA) to the healthy controls
on perspective-taking and empathic concern (using
the same covariates as above). Follow-up Type-II
analyses of variance were conducted to determine
the significance of the fixed effects. Results were
considered significant if the p-values of the post hoc
pairwise comparisons survived Bonferroni correction
for four analyses (to account for pairwise compar-
isons between each clinical group and the healthy
controls).

Tau and empathy analyses
We conducted forward-selection hierarchical

regression models [92] using the MASS package
in R [93] to examine associations between regional
tau burden and empathy in the A�+ group. This
approach avoids problems with multiple comparisons
as it allowed the statistical program to determine the

http://surfer.nmr.mgh.harvard.edu
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regions in which tau SUVR accounted for a sig-
nificant amount of variance in empathy above and
beyond the covariates of non-interest that were forced
into the model in step one [94]. This is a conserva-
tive test of our hypothesis that the entorhinal cortex
and amygdala are important for empathy because
these regions must emerge as significant predictors
from a group of candidate predictor regions (i.e.,
tau SUVR in the entorhinal cortex, amygdala, and
parahippocampal cortex). To minimize collinearity
between homologous regions and to assess potential
effects of lateralization on emotion-related processes
[95], we ran separate hierarchical regression mod-
els in each hemisphere. Covariates of non-interest
included gender, age at IRI, CDR total score (to
account for disease severity), and the contrasting IRI
subscale (as described above). To account for the time
interval between the tau-PET scan and IRI assess-
ment, we computed a “time interval” variable (IRI
date – tau-PET scan date) for each participant and
included this variable as an additional covariate of
non-interest in these analyses. Only variables that
were significant predictors of empathy at p < 0.05
were eligible to enter the final regression model
whereas variables that did not account for signifi-
cant variance were excluded. All histograms and P–P
plots of standardized residuals for the final regres-
sion models demonstrated normally distributed error
terms, indicating that the assumptions of regression
models were met. All variables in the final regression
models demonstrated very weak collinearity with one
another such that variance inflation factors < 2.0.

RESULTS

Aβ+ and Aβ- groups had similar demographics
but different cognitive profiles

The A�+ symptomatic and A�- healthy control
groups were similar in age, gender, and education
(all p > 0.05). On average, the two groups were in
their mid-sixties, highly educated, and predominantly
White/European American. The A�+ participants
were in the very mild to mild range of functional
impairment, as measured by the CDR, and had lower
scores on neuropsychological tests of episodic mem-
ory, language, visuospatial processing, and executive
functioning than the A�- healthy controls. Depres-
sive symptoms were minimal across the sample but
somewhat higher in the A�+ than in the A�- group.
Follow-up analyses that compared the MCI, DAT,
lvPPA, and PCA groups to the A�- healthy con-

trols showed expected cognitive profiles with milder
deficits in MCI, episodic memory impairment in
DAT, language difficulties in lvPPA, and visuospatial
dysfunction in PCA. See Table 1.

Lower perspective-taking and higher empathic
concern in the Aβ+ group

There was a main effect of group on both
perspective-taking, b = –5.339, t(100) = –4.824,
p = 5.039 × 10–6, model adjusted R2 = 0.431,
n = 105 (Fig. 1A), and empathic concern, b = 3.550,
t(100) = 4.925, p = 3.344 × 10–6, model adjusted
R2 = 0.513, n = 105 (Fig. 1B), such that the A�+
participants had lower perspective-taking but higher
empathic concern than the A�- healthy controls.
There was also a main effect of gender in the empathic
concern regression model, b = 3.202, t(100) = 4.609,
p = 1.197 × 10–5, model adjusted R2 = 0.513,
n = 105, where women had higher empathic concern
than men, which is consistent with prior studies
(e.g., [45, 79]). In addition, there was a main effect
of perspective-taking in the empathic concern
model, b = 0.397, t(100) = 7.628, p = 1.419 × 10–11,
model adjusted R2 = 0.513, n = 105, and of empathic
concern in the perspective-taking model, b = 0.927,
t(100) = 7.628, p = 1.419 × 10–11, model adjusted
R2 = 0.431, n = 105, which suggested a positive
association between these two empathy subscales.

To investigate the role of gender in more detail, we
conducted additional analyses to examine whether
there was an interaction between group and gen-
der. These analyses (which included all the same
covariates as the previous models in addition to the
interaction term between group and gender) revealed
no interactions for either the perspective-taking,
interaction b = 0.612, t(99) = 0.284, p = 0.777, model
adjusted R2 = 0.426, n = 105, or empathic concern,
interaction b = –1.636, t(99) = –1.173, p = 0.243,
model adjusted R2 = 0.515, n = 105, models. All
findings in the original analyses remained signifi-
cant, however, including the main effect of group
on perspective-taking, b = –5.696, t(99) = –3.391,
p = 0.001, model adjusted R2 = 0.426, n = 105, and
empathic concern, b = 4.467, t(99) = 4.206, p = 5.715
× 10–5, model adjusted R2 = 0.515, n = 105, such that
A�+ participants had diminished perspective-taking
but elevated empathic concern relative to the A�-
healthy controls.

We next conducted a follow-up exploratory anal-
ysis of perspective-taking that compared each of the
A�+ clinical syndromes to the A�- healthy controls.
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Table 1
Group demographic and clinical data

Measures Groups
A�- A�+ Statistics MCI DAT lvPPA PCA

Healthy Symptomatic (A�- versus A�+)
Controls Participants

n= 37 68 14 33 10 11
Race/Ethnicity (n=)

Asian/Asian American 0 3 0 3 0 0
Black/African American 0 1 0 1 0 0
White/European American 35 58 10 28 9 11
Other 2 0 0 0 0 0

Gender (% female) 59.5 51.5 χ2(1, N = 105) = 0.62, p = 0.43 50.0 45.5e 40.0e 81.8c,d

Age at IRI: M (SD) 68.1 (5.9) 65.4 (9.1) t(99.68) = 1.84, p = 0.07 69.3 (7.7)d,e 67.6 (9.5)d,e 59.6 (7.6)a,b,c 59.0 (5.3)a,b,c

Education years: M (SD) 16.8 (1.6) 16.7 (2.8) t(101.95) = 0.10, p = 0.92 17.9 (3.3)e 16.6 (2.5)e 17.9 (2.4)e 14.5 (1.9)a,b,c,d

Handedness (left/right/ambidextrous) 2/35/0 5/45/1 χ2(2, N = 105) = 1.34, p = 0.51 1/7/0 2/22/1 1/8/0 1/8/0
Mini-Mental State Examination (/30): M
(SD)

29.5 (0.9) 21.9 (6.0)a t(70.99) = 10.19, p = 1.58 × 10–15 26.8 (3.1)a,c,d,e 21.0 (5.5)a,b 20.1 (8.3)a,b 20.5 (5.0)a,b

Clinical Dementia Rating Scale Score
(/3): M (SD)

0.0 (0.0) 0.7 (0.3)a t(67.00) = –19.98, p = 6.29 x10–30 0.5 (0.0)c 0.8 (0.2)a,b,d 0.6 (0.4)a,c 0.6 (0.3)a

Geriatric Depression Scale (/30): M (SD) 1.8 (2.3) 6.1 (4.1)a t(89.43) = –6.37, p = 7.96 × 10–9 3.9 (2.4)a,c 6.9 (4.5)a,b 6.3 (4.6)a 5.8 (3.6)a

Modified Trails Number Lines Correct:
M (SD)

14.0 (0.0) 11.0 (5.2)a t(47.00) = 4.09, p = 1.70 × 10–4 14.0 (0.0)c 9.7 (5.8)a,b 12.7 (3.3) 8.8 (6.7)

Modified Trails Errors: M (SD) 0.3 (0.6) 0.8 (1.0)a t(77.30) = –2.36, p = 0.02 0.3 (0.5)c 1.0 (1.2)a,b 0.5 (0.8) 0.8 (0.8)
Phonemic Fluency: M (SD) 14.3 (4.1) 10.2 (5.8)a t(82.23) = 4.00, p = 1.39 × 10–4 13.2 (2.9)c,d 10.2 (6.3)a,b 8.0 (5.4)a,b 8.9 (6.2)a

Semantic Fluency: M (SD) 22.1 (5.2) 12.0 (6.4)a t(85.71) = 8.52, p = 4.79 × 10–13 17.3 (5.1)a,c,d,e 10.8 (5.7)a,b 9.9 (7.6)a,b 11.9 (6.1)a,b

Design Fluency Correct: M (SD) 10.5 (3.4) 6.3 (3.5)a t(78.18) = 5.81, p = 1.29 × 10–7 9.1 (2.5)c,e 5.9 (3.2)a,b,e 8.1 (2.3)a,e 2.7 (2.4)a,b,c,d

Repetition (/5): M (SD) 4.8 (0.4) 3.6 (1.5)a t(80.82) = 6.10, p = 3.46 × 10–8 4.4 (1.1)d 3.8 (1.3)a,d 1.8 (1.5)a,b,c,e 3.4 (1.3)a,d

Digit Span Backward: M (SD) 5.5 (1.3) 3.8 (1.5)a t(79.81) = 5.80, p = 1.26 × 10–7 5.2 (1.1)c,d,e 3.7 (1.3)a,b 3.0 (1.0)a,b 3.1 (1.6)a,b

Benson Figure Copy 10-Minute Recall
(/17): M (SD)

13.3 (1.9) 4.3 (4.0)a t(93.80) = 15.12, p = 6.96 × 10–27 6.8 (4.1)a,c 2.7 (2.9) a,b,d 6.4 (4.7)a,c 4.3 (4.1)a

Benson Figure Copy (/17): M (SD) 15.6 (0.8) 12.3 (4.9)a t(72.89) = 5.38, p = 8.76 × 10–7 14.6 (2.1)e 12.9 (4.3)a,e 13.6 (3.9)e 6.1 (5.2)a,b,c,d

Modified Boston Naming Test Correct
(total/15): M (SD)

14.6 (0.6) 11.6 (3.6)a t(69.03) = 6.51, p = 1.00 × 10–8 13.9 (1.6)c,d,e 12.1 (3.0)a,b 9.8 (4.5)a,b 9.3 (4.1)a,b

Analyses included Pearson’s Chi-squared tests and Welch’s t-tests. aIndicates a significant pairwise difference in comparison with A�- healthy controls (p < 0.05). bIndicates a significant pairwise
difference in comparison with MCI (p < 0.05). cIndicates a significant pairwise difference in comparison with DAT (p < 0.05). dIndicates a significant pairwise difference in comparison with lvPPA
(p < 0.05). eIndicates a significant pairwise difference in comparison with PCA (p < 0.05). MCI, mild cognitive impairment; DAT, dementia of the Alzheimer’s type; lvPPA, logopenic variant
primary progressive aphasia; PCA, posterior cortical atrophy.
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Fig. 1. Lower perspective-taking, but higher empathic concern, in the A�+ symptomatic participants relative to the A�- healthy controls.
Multivariate linear regression analyses found that, compared to A�- healthy controls, the A�+ symptomatic group had A) lower perspective-
taking (b = –5.339, t(100) = –4.824, p = 5.039 × 10–6, model adjusted R2 = 0.431, n = 105) and B) higher empathic concern (b = 3.550,
t(100) = 4.925, p = 3.344 × 10–6, model adjusted R2 = 0.513, n = 105). Covariates of non-interest in these models included age at IRI,
gender, and the contrasting IRI subscale (i.e., empathic concern or perspective-taking). Raw perspective-taking scores and empathic concern
scores are shown in the figure.

In this model (which included the same covariates
as our original analyses), there was a main effect
of group, F(4, 97) = 7.571, p = 2.374 × 10–5, model
adjusted R2 = 0.449, n = 105. Bonferroni-corrected
post hoc analyses revealed lower perspective-taking
in the DAT, t(97) = –4.651, pBONFERRONI = 4.183
× 10–5, Cohen’s d = 1.157; lvPPA, t(97) = –4.176,
pBONFERRONI = 2.590 × 10–4, Cohen’s d = 1.579;
and PCA, t(97) = –2.658, pBONFERRONI = 0.037,
Cohen’s d = 0.974, groups than in A�- healthy con-
trols (Supplementary Figure 1A). Perspective-taking
in the MCI and A�- healthy control groups did not dif-
fer, t(97) = –1.726, pBONFERRONI = 0.350, Cohen’s
d = 0.556, however. There was also a main effect
of empathic concern, F(1, 97) = 56.497, p = 2.817 ×
10–11, model adjusted R2 = 0.449, n = 105, in line
with the previous analysis.

In a similar follow-up exploratory analysis of
empathic concern, there was also a main effect of
group, F(4, 97) = 6.437, p = 1.228 × 10–4, model
adjusted R2 = 0.507, n = 105. Bonferroni-corrected
post hoc analyses revealed higher empathic con-
cern in the MCI, t(97) = 2.825, pBONFERRONI

= 0.023, Cohen’s d = 0.889; DAT, t(97) = 4.763,
pBONFERRONI = 2.673 × 10–5, Cohen’s d = 1.180;
and lvPPA, t(97) = 2.996, pBONFERRONI = 0.014,
Cohen’s d = 1.177, groups than in the A�- healthy
controls (Supplementary Figure 1B). Empathic con-

cern in the PCA and A�- healthy control groups did
not differ, however, t(97) = 2.095, pBONFERRONI

= 0.155, Cohen’s d = 0.778. Additional main effects
included gender, F(1, 97) = 21.850, p = 9.518 × 10–6,
model adjusted R2 = 0.507, n = 105, and perspective-
taking, F(1, 97) = 56.497, p = 2.817 × 10–11, model
adjusted R2 = 0.507, n = 105, consistent with the pre-
vious analysis.

MTL tau burden had divergent associations with
perspective-taking and empathic concern in Aβ+
participants

Forward-selection hierarchical regression models
in the A�+ group revealed that greater tau burden
in the left amygdala (final model b = –6.349, final
model coefficient p = 0.003, final model R2 = 0.514,
R2 change from preliminary model = 0.074, final
model adjusted R2 = 0.466, n = 68; Fig. 2A) and right
amygdala (final model b = –6.305, final model coef-
ficient p = 0.009, final model R2 = 0.501, R2 change
from preliminary model = 0.060, final model adjusted
R2 = 0.451, n = 68; Fig. 2B) was associated with
lower perspective-taking. Other main effects included
empathic concern and the time interval between
participants’ tau-PET scans and IRI (significant in
both models), which suggested that a greater time
interval between the IRI assessments and the tau-
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Fig. 2. Tau burden in the amygdala had a negative association with perspective-taking, but tau burden in the entorhinal cortex had a positive
association with empathic concern. Forward-selection hierarchical regression models conducted in the A�+ group found tau burden in the
MTL was differentially related to empathy. Greater tau burden in the A) left (final model b = –6.349, final model coefficient p = 0.003, final
model adjusted R2 = 0.466, n = 68) and B) right amygdala (final model b = –6.305, final model coefficient p = 0.009, final model adjusted
R2 = 0.451, n = 68) related to lower perspective-taking. In contrast, greater tau burden in the D) left (final model b = 3.610, final model
coefficient p = 0.007, final model adjusted R2 = 0.518, n = 68) and E) right entorhinal cortex (final model b = 4.217, final model coefficient
p = 0.006, final model adjusted R2 = 0.520, n = 68) was associated with greater empathic concern. Panels C and F indicate perspective-taking
and empathic concern as they relate to tau burden in the bilateral amygdala and entorhinal cortex (tau burden in these bilateral regions
were calculated as weighted averages using the number of voxels present in each MTL region). Covariates of non-interest in these analyses
included gender, age at IRI, time interval in days between the tau-PET scan and IRI, CDR total score, and the contrasting IRI subscale
(i.e., empathic concern or perspective-taking). Plotted regressions reflect the predicted fits from the analysis models, while the scatterplots
indicate raw data grouped by diagnosis. MCI, mild cognitive impairment; DAT, dementia of the Alzheimer’s type; lvPPA, logopenic variant
primary progressive aphasia; PCA, posterior cortical atrophy.

Table 2
Forward-selection hierarchical regression analyses assessing the impact of tau burden in the left and right amygdala on perspective-taking.

Gender is coded such that men = 0 and women = 1

Left Amygdala Right Amygdala
Estimates Confidence Interval p Estimates Confidence Interval p

Intercept 5.354 –8.719 – 19.428 0.450 4.607 –9.796 – 19.009 0.525
Tau-PET SUVR –6.349 –10.526 – –2.171 0.003 –6.305 –10.963 – –1.646 0.009
Age –0.029 –0.170 – 0.112 0.682 –0.027 –0.170 – 0.116 0.706
Gender 0.735 –2.088 – 3.559 0.604 0.665 –2.200 – 3.530 0.644
Empathic Concern 1.065 0.747 – 1.382 <0.001 1.059 0.737 – 1.381 <0.001
IRI-PET Interval –0.015 –0.027 – –0.002 0.020 –0.014 –0.027 – –0.002 0.024
CDR Score –3.515 –7.903 – 0.874 0.114 –2.753 –7.311 – 1.804 0.232

PET scans related to lower perspective-taking. See
Table 2. Tau burden in neither the left nor the
right parahippocampal cortex predicted perspective-
taking.

Forward-selection hierarchical regression models
in the A�+ group found that greater tau burden in
the left entorhinal cortex (final model b = 3.610, final
model coefficient p = 0.007, final model R2 = 0.561,
R2 change from preliminary model = 0.056, final
model adjusted R2 = 0.518, n = 68; Fig. 2D) and

right entorhinal cortex (final model b = 4.217, final
model coefficient p = 0.006, final model R2 = 0.563,
R2 change from preliminary model = 0.059, final
model adjusted R2 = 0.520, n = 68; Fig. 2E) was asso-
ciated with greater empathic concern. Additional
main effects included perspective-taking (signifi-
cant in both models) and gender (significant in
the left hemisphere model), which suggested that
higher perspective-taking was associated with higher
empathic concern. See Table 3. Tau burden in nei-
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Table 3
Forward-selection hierarchical regression analyses assessing the impact of tau burden in the left and right entorhinal cortex on empathic

concern. Gender is coded such that men = 0 and women = 1

Left Entorhinal Cortex Right Entorhinal Cortex
Estimates Confidence Interval p Estimates Confidence Interval p

Intercept 10.120 2.267 – 17.973 0.012 9.448 1.383 – 17.514 0.022
Tau-PET SUVR 3.610 1.024 – 6.196 0.007 4.217 1.270 – 7.164 0.006
Age 0.048 –0.037 – 0.132 0.263 0.051 –0.033 – 0.136 0.228
Gender 1.722 0.060 – 3.384 0.043 1.531 –0.171 – 3.232 0.077
Perspective-Taking 0.379 0.263 – 0.495 <0.001 0.380 0.264 – 0.495 <0.001
IRI-PET Interval 0.007 –0.001 – 0.015 0.072 0.007 –0.001 – 0.014 0.073
CDR Score 0.975 –1.739 – 3.689 0.475 0.347 –2.401 – 3.094 0.802

ther the left nor the right parahippocampal cortex
predicted empathic concern.

DISCUSSION

The present study uncovered novel associa-
tions between MTL tau burden and empathy in
symptomatic A�+ participants. Compared to their
cognitively healthy A�- counterparts, A�+ partici-
pants with a broad range of cognitive symptoms had
diminished perspective-taking but greater empathic
concern. In exploratory analyses of the different clin-
ical syndromes, perspective-taking was lower in DAT,
lvPPA, and PCA (but not MCI) than in A�- healthy
controls while empathic concern in MCI, DAT, and
lvPPA (but not PCA) was higher. In the A�+ partici-
pants, regional tau burden had opposing associations
with empathy such that greater MTL tau pathol-
ogy was associated with lower cognitive empathy
yet higher emotional empathy. While greater MTL
tau aggregation in the amygdala related to lower
perspective-taking, greater MTL tau aggregation in
the entorhinal cortex related to higher empathic con-
cern. Tau aggregation in the parahippocampal cortex,
however, was not associated with either form of
empathy.

These findings build on our previous studies that
revealed enhanced emotional empathy in AD [49,
50]. Although perspective-taking may decline in
people with AD [29] as they lose their ability to
take another’s point of view [96, 97], emotional
empathy—a more automatic form of empathy that
does not require higher-order cognition—climbs.
Unlike emotional contagion, which can elicit self-
oriented feelings of distress or being overwhelmed
during negative emotional situations [48], empathic
concern focuses attention outward onto the needs of
others and promotes prosocial actions such as help-
ing and consolation [43, 47]. In a prior study, we
found greater gains in empathic concern over time

in A�+ than A�- cognitively healthy older adults
[50], which suggested there are enhancements in this
form of emotional empathy in the preclinical stages
of AD. In the present study, we expand on this work
by showing that empathic concern is also higher in
the clinical phase of AD. In general, symptomatic
A�+ participants had higher empathic concern than
A�- healthy controls, and follow-up pairwise com-
parisons revealed this difference was driven primarily
by elevations in the MCI, DAT, and lvPPA groups.
Although the emotional empathy enhancement in
PCA failed to reach significance, our results suggest
heightened emotional empathy is a common feature
of AD pathophysiology.

Our results suggest that, during the early symp-
tomatic phase of AD, tau deposition in the MTL
contributes to alterations in empathy. The MTL plays
important roles in empathy and other socioemo-
tional processes including perception of emotional
and social cues [98–101], emotion generation [63,
102], interpersonal sensitivity [103], and affiliative
behavior [104]. Often a prominent site of early
tau pathology in DAT and MCI [3, 22, 23], the
MTL is also affected in lvPPA and PCA, albeit
to a lesser extent [10, 105, 106]. Taken together
with our prior study that found empathic con-
cern gains in cognitively healthy A�+ older adults
[50], our research suggests that A� and tau may
both contribute to emotional empathy increases
in people on an AD trajectory. Previous research
has suggested that A� and tau interact through
both local and remote connections and that A�
deposition facilitates the spread of tau beyond
the MTL [107]. Just as the synergistic effects of
tau and A� lead to cognitive decline [108], they
may also drive empathy alterations in AD. We
speculate that tau accumulation in the MTL may
impede perspective-taking as the default mode net-
work declines in AD [109–113] but accentuate
empathic concern, a form of emotional empathy
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that depends on the salience network [51, 60].
Our findings are consistent with a picture of early
AD in which neuropathological changes in the
MTL and its connected networks [65, 66, 114]
lead to heightened social sensitivity and emotional
empathy.

The present study has several important limitations
to consider. First, our data were cross-sectional, and
we were unable to determine how longitudinal tau
aggregation relates to changes in empathy over time.
Neurofibrillary tau tangles in the MTL arise early
in the AD pathophysiological cascade [115–119]
and then spread to other vulnerable regions [107,
120–122]. Within the MTL, tau first aggregates in the
entorhinal cortex before spreading into the hippocam-
pus, amygdala, and parahippocampal cortex and then
affecting cerebral neocortical regions [3, 22, 23]. As
tau in the entorhinal cortex was associated with ele-
vated empathic concern, and tau in the amygdala was
associated with lower perspective-taking, our results
suggest the possibility that emotional empathy begins
to increase before cognitive empathy declines in those
on an AD course. Future longitudinal studies will be
needed to investigate this question in detail, how-
ever. Second, we quantified tau deposition in MTL
regions of interest, but these structures are comprised
of smaller subregions that differ in their functions
and connections [116, 123]. Whereas the basolateral
amygdala plays an important role in evaluating affec-
tive and social information [124], the central nucleus
generates affective responses via its connections to
subcortical pattern generators [125–129]. Human and
non-human animal studies of the entorhinal cor-
tex have found anatomical subdivisions [130–132]
such that the medial and lateral portions have dif-
ferent functions [133–136] and connectivity patterns
[135, 137–139]. As the limited spatial resolution
of PET did not allow us to differentiate between
amygdala nuclei or entorhinal subregions, we were
unable to determine whether tau burden in these
areas had unique associations with perspective-taking
or empathic concern. More fine-grained functional
or structural MRI analyses may help to resolve the
anatomical correlates of empathy change in AD.
Third, as we could not include task-free neuroimag-
ing in our study, we could not test whether expected
changes in default mode network or salience network
functional connectivity related to MTL tau burden
and empathy in this sample. Additional research is
warranted to address this question and to elucidate the
neural mechanisms underlying cognitive and empa-
thy alterations in AD.

With recent advances in AD biomarkers, studies
can now link cognitive and behavioral measures with
in vivo neuropathological changes in the brain and
body. Relatively little is known about emotions and
social behavior in typical and atypical AD syndromes
[140], but our findings contribute to an emerging
picture of the empathy changes that characterize
early AD. The results of the present study suggest
that lower perspective-taking and higher empathic
concern may be common features of AD patho-
physiology. As disease-modifying therapies become
increasingly available for people with AD, new clin-
ical outcomes will be needed to assess improvement,
stability, or decline. Empathy may be an overlooked
area of change in AD that, if evaluated with rigor,
could help to expedite detection and to improve mon-
itoring by offering an additional window into disease
progression.
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