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Abstract.
Background: Late-onset Alzheimer’s disease (LOAD) is the most common type of dementia, but its pathogenesis remains
unclear, and there is a lack of simple and convenient early diagnostic markers to predict the occurrence.
Objective: Our study aimed to identify diagnostic candidate genes to predict LOAD by machine learning methods.
Methods: Three publicly available datasets from the Gene Expression Omnibus (GEO) database containing peripheral
blood gene expression data for LOAD, mild cognitive impairment (MCI), and controls (CN) were downloaded. Differential
expression analysis, the least absolute shrinkage and selection operator (LASSO), and support vector machine recursive
feature elimination (SVM-RFE) were used to identify LOAD diagnostic candidate genes. These candidate genes were then
validated in the validation group and clinical samples, and a LOAD prediction model was established.
Results: LASSO and SVM-RFE analyses identified 3 mitochondria-related genes (MRGs) as candidate genes, including
NDUFA1, NDUFS5, and NDUFB3. In the verification of 3 MRGs, the AUC values showed that NDUFA1, NDUFS5 had
better predictability. We also verified the candidate MRGs in MCI groups, the AUC values showed good performance. We then
used NDUFA1, NDUFS5 and age to build a LOAD diagnostic model and AUC was 0.723. Results of qRT-PCR experiments
with clinical blood samples showed that the three candidate genes were expressed significantly lower in the LOAD and MCI
groups when compared to CN.
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Conclusion: Two mitochondrial-related candidate genes, NDUFA1 and NDUFS5, were identified as diagnostic markers for
LOAD and MCI. Combining these two candidate genes with age, a LOAD diagnostic prediction model was successfully
constructed.

Keywords: Alzheimer’s disease, biomarker, late-onset Alzheimer’s disease, immune cells, machine learning, mild cognitive
impairment, mitochondria related genes

INTRODUCTION

Alzheimer’s disease (AD), the most common form
of dementia, is characterized by memory loss and
cognitive impairment. Most cases occur after the age
of 65, constituting late-onset AD (LOAD), while less
than 5% of all cases occur earlier than age 65, which
is termed early-onset AD (EOAD) [1]. The current
leading hypotheses, the amyloid and tau propagation
hypotheses, state that pathological tau and amyloid-
� (A�) deposits are involved in triggering cascade
reactions that occur in the cerebral cortex of patients
with AD [2–4]. However, the underlying mechanism
remains unclear, and many failures in clinical tri-
als based on A� plaques or tau tangles have led to
doubt on the hypotheses [5]. In addition to these two
mainstream hypotheses, other hypotheses such as the
cholinergic [6], mitochondrial cascade and related
hypotheses [7–10], synaptic degeneration [11], and
inflammatory [12, 13] hypotheses are also important
possible explanations for the mechanisms underlying
AD.

The onset of AD is insidious [2, 14], and many
pathological changes occur before reaching clini-
cal diagnostic criteria [15, 16]. Early detection and
treatment of the disease are of great significance for
delaying the development of dementia and improv-
ing its prognosis. Mild cognitive impairment (MCI)
is an important component of predementia. People
with MCI have subtle symptoms, such as problems
with memory, language, and thinking, and these prob-
lems may not interfere with their ability to carry
out everyday activities [14]. The cumulative demen-
tia incidence in individuals with MCI older than 65
years who are monitored for two years is 14.9% [17].
Early screening and intervention for MCI is of great
significance in the progression of dementia.

The current biological staging model for AD is
based on the A�-tau-neurodegeneration (ATN) clas-
sification system, which assesses three biomarkers:
A�, tau pathology, and neurodegeneration or neu-
ronal injury [18]. Blood-based markers have emerged
as a promising tool for the diagnosis of AD and
for improving the design of clinical trials. The

A�42/A�40 ratio and phosphorylated tau have shown
potential as blood-based AD biomarkers [19]. How-
ever, detecting plasma A� and tau presents several
challenges, including the expense and slow detection
methods such as mass spectrometry and immunoas-
say, and potential inaccuracies in measurement due to
pre-analytical processing and analytical performance
[20].

Genetic and genomic analyses are becom-
ing increasingly important in biomedical research
because they can reveal the potential modes of action
and mechanisms of diseases at the molecular level
[21]. At present, there have been some bioinformatics
studies on differential gene expression in peripheral
blood cells of patients [22–25], including ferroptosis
[23] and immune factors [24]. However, most stud-
ies have not specifically analyzed gene expression in
LOAD, the main subtype of AD.

To explore and identify potential biomarkers of
LOAD, public datasets GSE63060, GSE63061, and
GSE140829 from the National Center for Biotechnol-
ogy Information (NCBI) Gene Expression Omnibus
(GEO) database were used. Using differential expres-
sion analysis, least absolute shrinkage selection
operator (LASSO), and support vector machine
recursive feature elimination (SVM-RFE) analysis,
two candidate mitochondria-related genes (MRGs)
were identified and used to establish a LOAD pre-
diction model. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) anal-
yses were used to further investigate biological
processes and pathways. Then, the cell-type iden-
tification by estimating relative subsets of RNA
transcripts (CIBERSORT) algorithm was applied to
calculate the immune infiltration of LOAD samples.
The workflow of this study is shown in Fig. 1.

MATERIALS AND METHODS

Data acquisition

The peripheral blood gene expression data used
in this study were obtained from the NCBI GEO
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Fig. 1. The workflow of the analysis, including data extraction, processing, and analysis.

database [26]. As LOAD typically occurs after the
age of 65, samples from individuals ≤65 years of
age were excluded from the analysis. Ultimately,
we used three data series for analysis: GSE63060
annotated by GPL6947, which included 134 LOAD
samples, 80 MCI samples, and 94 cognitively normal
(CN) samples; GSE63061 annotated by GPL10558,
which included 133 AD samples, 104 MCI samples,
and 131 CN samples; and GSE140829 annotated by
GPL15988, which included 168 AD samples, 116
MCI samples, and 229 CN samples. All samples were
obtained from individuals over 65 years of age. To
perform our analysis, we randomly split the LOAD
and CN samples in each data series into 3 : 1 as train-
ing and validation groups, respectively. We assigned
all 300 MCI samples to the MCI validation group.

The studies involving human participants were
reviewed and approved by the Ethics Committee of
the Ruijin Hospital affiliated to the Shanghai Jiao
Tong University School of Medicine (2018-No.204).

Differential expression analysis

Differential expression analysis of LOAD and
CN samples was performed using the “limma” R
package [27]. Differentially expressed genes (DEGs)

(p adjust < 0.01) were obtained, volcano plots of the
DEGs were created using the “pheatmap” [28] and
“ggplot2” R packages.

Bio-functional analysis

To investigate which biological pathways the
DEGs in LOAD are involved, we conducted
functional enrichment analyses. Using R package
“clusterProfile” [29] and “enrichplot” [30] R pack-
ages, GO analysis which focuses on three levels
including cell component (CC), biological process
(BP), and molecular function (MF), and KEGG anal-
ysis which is mainly used for pathway enrichment
analysis were performed on the DEGs.

LASSO and SVM-RFE analysis

To further identify the diagnostic candidate genes
for LOAD from these DEGs, we performed the
following two machine learning methods for fur-
ther screening. LASSO regression analysis was fitted
using the “glmnet” package [31], set the “family”
parameter as “binomial” and the “alpha” as 1, the
cross-validation parameter “nfolds” was adjusted to
10. SVM-FRE is a sequential backward selection
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algorithm based on the maximum interval principle
of SVM. It trains the sample through the model, then
sorts the score of each feature, removes the feature
with the minimum score, and then trains the model
again with the remaining features until selects the
required number of features. The SVM-RFE classi-
fiers from R packages “e1071” [32], “kernlab” [33],
and “caret” were adopted for the classification anal-
ysis of the selected candidate genes in the diagnosis
of AD.

Identification of MRG candidates

In this study, MRGs refer to the genes that
encode proteins located in any part of the mitochon-
dria including the mitochondrial membrane, stroma,
cristae, and mitochondria-associated endoplasmic
reticulum. The MitoCarta 3.0 database included
1,136 human mitochondria-located genes [34, 35],
and the MRGs list was downloaded for subsequent
analysis (Supplementary Table 1).

Immune infiltration and immune-related factors

To evaluate the immune infiltration of LOAD
peripheral blood, we applied the CIBERSORT algo-
rithm. CIBERSORT [36] performed deconvolution
analysis based on the principle of linear support vec-
tor regression, and there were 22 types of immune
cells provided, including plasma cell, B cell, T cell,
and myeloid cell subpopulations. We used this algo-
rithm to analyze the gene expression data of the
training set and calculate the relative proportions of
each type of immune cells in each sample. Spearman
correlation analysis was used to analyze the correla-
tion between candidate genes and immune cells.

Model construction and evaluation

To assess the ability of candidate genes to
distinguish disease states, the receiver operating char-
acteristic curve (ROC) was plotted by “pROC” [37].
ROC could reflect the trend of sensitivity (FPR) and
accuracy (TPR) of the model when different thresh-
olds were selected, and the value of the area under the
curve (AUC) can be used as an evaluation index. We
tested the AUC of candidate genes on the training set
data, and subsequently tested them on the MCI and
LOAD validation set data. In order to improve the
accuracy of disease diagnosis, we combined the two
candidate genes with the highest accuracy and age
to construct a multi-factor disease prediction model,

which was assessed in 3 ways. In addition to the ROC
method, calibration curve was plotted to present how
close the actual incidence is to the predicted incidence
calculated by LOAD prediction nomogram. Consid-
ering the impact of false positives and false negatives
on patients, the concepts of threshold probability and
net benefit are introduced in decision curve analy-
sis (DCA), which was used to assess the benefit of
patients using our predictive model in the clinic.

qRT-PCR validation of the candidate genes

Peripheral blood samples of 8 participants who
were CN, 8 patients with LOAD, and 10 patients
with MCI were acquired for qRT-PCR to verify the
expression of candidate genes. Diagnosis was based
on NIA-AA Research Framework [14]. Participants
were over 65 years old and underwent neuropsy-
chological assessments, including Mini-Mental State
Examination (MMSE), Montreal Cognitive Assess-
ment (MoCA), and Clinical Dementia Rating Scale
(CDR). Brain magnetic resonance imaging and
PET-CT in LOAD and MCI were performed to
help diagnose. This study was approved by the
Ethics Committee of the Ruijin Hospital affiliated
to the Shanghai Jiao Tong University School of
Medicine (2018-No.204). The RNAprep Pure Hi-
Blood Kit (DP443, TIANGEN) was used to extract
total RNA, RNA quality was determined by TGem
Plus full-wavelength spectrophotometer (OSE-260-
02, TIANGEN), A260/280, A260/230 absorbance
ratios of purified RNA between 2.0–2.2, 1.8–2.2
respectively for subsequent experiments. RNA was
then reverse-transcribed to cDNA and qRT-PCR was
performed with the 2×Hieff® PCR Master Mix
(10102ES08; Yeasen). GAPDH was used as an inter-
nal reference and the primers used are listed in
Table 3. Relative mRNA expression was calculated
using the ��Ct method.

Statistical analyses

The chi-square test was adopted for categorical
data (expressed as a percentage), and measure-
ment data were analyzed by t-test (represented by
a mean±SEM). A logistic regression algorithm and
SVM-RFE were used to construct the prediction
model. All statistical analyses were performed using
R language software (version 4.2.1) and Graph-
Pad Prism 9. Statistical significance was defined as
p < 0.05.
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RESULTS

The DEGs in LOAD were related to mitochondria

To identify DEGs related to LOAD, we down-
loaded the GSE63060, GSE63061, and GSE140829
datasets from the NCBI GEO public database,
selected samples > 65 years old to match the age of
onset of LOAD, and then randomly split each data
series into 3 : 1 as training and validation groups. In
total, there were 353 people who were CN and 322
patients with LOAD in the training group, and 101
people who were CN and 113 patients with LOAD
in the validation group. To explore the biomarkers of
LOAD, we first obtained DEGs from training group
(p adjust < 0.01), 78 DEGs were obtained (Supple-
mentary Table 2), and a volcano plot of these DEGs
is shown in Fig. 2A. Most of the genes with altered
expression were downregulated (blue dots), and inter-
estingly, 40% of the TOP 10 downregulated genes
were related to mitochondria (green dots), which sug-
gested that mitochondria-related genes (MRGs) were
associated with LOAD.

Pathway enrichment of DEGs was associated
with mitochondrial function

To determine the potential biological roles of the
selected DEGs, we performed enrichment analy-
sis. Figure 2B shows the top 15 KEGG pathways
(ribosome-related pathways were excluded due to
low specificity), in which oxidative phosphorylation
pathways changed significantly (q-value<0.0025).
The selected DEGs are also involved in disease
such as AD, Parkinson’s disease, prion diseases,
and multiple neurodegenerative diseases. GO anal-
ysis showed that the top 10 pathways changed
significantly, and after excluding the ribosome-
related pathways, the remaining altered pathways all
involved the mitochondria (Fig. 2 C). Target genes
were associated with the aerobic electron trans-
port chain (ETC), adenosine triphosphate (ATP)
synthesis coupled electron transport in BPs, respi-
ratory chain complex, mitochondrial respirasome,
respirasome, and inner mitochondrial membrane
protein complex in CCs. In addition, DEGs were
involved in MFs such as electron transfer activ-
ity and nicotinamide adenine dinucleotide (NADH)
dehydrogenase (ubiquinone) activity. Interestingly,
the two pathway enrichment analyses both pointed
to mitochondrial function changes in LOAD, which
indicated that mitochondrial dysfunction played an

important role in molecular biological processes of
LOAD.

Two MRGs were identified as candidate genes
for LOAD and MCI

To screen for the most significant genes that can be
used as candidate genes for the diagnosis of LOAD
in the selected DEGs, machine learning methods,
including feature screening through LASSO regres-
sion and SVM-RFE were performed. The results of
the LASSO analysis are shown in Fig. 3, which high-
lighted that the model had minimal cross-validation
error when �= 21, and 21 genes were identified
as signature genes in LOAD by LASSO analysis
(Fig. 3A, B). Simultaneously, we used the SVM-RFE
algorithm to evaluate the characteristic genes, which
showed that the model incorporating 31 genes had
the best accuracy (Fig. 3 C). Thus, SVM-RFE yielded
31 candidate genes. In addition, 40% of the TOP 10
downregulated genes were related to mitochondria,
and two pathway enrichment analyses were involved
in mitochondrial function, indicating that there were
significant changes in MRGs in LOAD. Based on
previous DEGs and enrichment analyses, we decided
to focus on MRGs. To define the MRGs from
our previous results, 1,136 mitochondria-located
genes were downloaded from MitoCarta3.0. We then
selected common genes from the LASSO analy-
sis, SVM-RFE analysis, and MRGs. Finally, the
common three MRGs, including NDUFA1 (NADH:
ubiquinone oxidoreductase subunit A1), NDUFS5
(NADH dehydrogenase (ubiquinone) Fe-S protein
5), and NDUFB3(NADH: ubiquinone oxidoreduc-
tase subunit B3) were regarded as candidate genes
for the ongoing study (Fig. 3D). The results showed
that the LOAD predictive accuracies (AUC values)
of the three candidate genes were 0.703 (NDUFA1,
Fig. 4A), 0.701 (NDUFS5, Fig. 4B), and 0.594
(NDUFB3, Fig. 4 C) in the training group. NDUFA1
and NDUFS5 had better predictability, but NDUFB3
was not effective. Next, we used the data from the
validation group to verify the AUC of the two better-
performing candidate genes, the expression of both
genes was reduced in LOAD (Fig. 5A, B), and the
AUC values of NDUFA1 and NDUFS5 were 0.687
and 0.682 (Fig. 5 C), respectively.

We were curious whether these candidate genes
were altered in the MCI stage, which is the pre-
AD stage. Therefore, we collected samples from all
patients with MCI over 65 years old in the GSE63060,
GSE63061, and GSE140829 datasets to test our
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Fig. 2. Differentially expressed analysis. A) The volcano shows the top 10 genes significantly changed in LOAD groups, red dots and blue dots
represent upregulated and downregulated genes in the LOAD group respectively, while green dots represent downregulated mitochondria-
related genes in the LOAD group. LOAD, late-onset Alzheimer’s disease. B) TOP 15 enriched KEGG pathways among LOAD DEGs.
KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes. C) TOP 10 enriched GO pathways among
LOAD DEGs. Ribosome-related pathways were removed due to low disease specificity. GO, Gene Ontology; BP, biological process, CC,
cellular component; MF, molecular function.

hypothesis. In the analysis, 300 MCI samples were
included. Similar to the results of LOAD, both genes
were downregulated in MCI (Fig. 5A, B), and the
AUC values of NDUFA1 and NDUFS5 were 0.668
and 0.652 (Fig. 5D), respectively. The number of par-
ticipants and the AUC values in each group were
summarized in Tables 1 and 2. The above results
indicated that the two candidate MRGs had high accu-

racies as single factors to predict both LOAD and
MCI.

Immune infiltration and immune-related factors
changed in LOAD

Studies have shown that the pathogenesis of AD
may be related to the infiltration, interaction, and
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Fig. 3. Selection of diagnostic biomarkers and identification of candidate genes. A, B) The 21 genes that met the diagnostic criteria were
determined by LASSO analysis. A) The horizontal axis represents the log value of the gene lambda, and the vertical axis represents the
independent gene’s coefficient. LASSO, least absolute shrinkage and selection operator. B) CIs with different values of lambda. C) 31
characteristic genes were identified by SVM-RFE algorithm. The horizontal axis represents the number of genes included, and the vertical
axis represents the error of cross validation. SVM-RFE, Support Vector Machine Recursive Feature Elimination. D) Venn diagram of MRGs
extracted from LASSO and SVM-RFE methods. MRG, mitochondria-related gene.

Fig. 4. ROC curves and corresponding AUC values for the training groups. The ROC curves of NDUFA1 (A), NDUFS5 (B), and NDUFB3
(C), AUC values were 0.703, 0.701, and 0.594 respectively.

dysfunction of immune cells [38, 39]. Studying the
characteristics of immune cell infiltration in LOAD
and the relationship between the candidate genes and
immune cells will help to increase our understanding

of the importance of immunity in LOAD and identify
potential diagnostic and therapeutic targets.

In this study, the CIBERSORT algorithm was used
to analyze 22 immune cell components in 322 LOAD
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Fig. 5. Expression and corresponding AUC value of candidate genes in the CN, LOAD, and MCI groups in validation groups. The expression
of NDUFA1 (A) and NDUFS5 (B) was significantly lower in LOAD and MCI. The ROC curves showed that the AUC values of NDUFA1
and NDUFS5 were 0.687 and 0.682 in the LOAD validation groups (C), and the AUC values of NDUFA1 and NDUFS5 were 0.668 and
0.652 in the MCI validation groups (D).

Table 1
The number of participants in each group

CN LOAD MCI

Training Group 353 322
Validation Group 101 113 300

samples and 353 CN samples, the results are shown
in the histogram (Fig. 6A). Immune cells with sig-
nificant differences between groups were presented
in a violin plot (Fig. 6B), which showed that the
LOAD group had significantly higher proportions
of regulatory T cells (Tregs) (p = 0.010) and gamma
delta T cells (p < 0.001), and lower proportions of

Table 2
The AUC values in each group

Training Validation Validation
on LOAD on MCI

NDUFA1 0.703 0.687 0.668
NDUFS5 0.701 0.682 0.652
NDUFB3 0.594

naüve B cells (p < 0.001) and resting CD4 memory T
cells (p < 0.001). The proportion of immune cells in
peripheral blood was altered in LOAD.

To further explore the relationship between the
candidate MRGs and immune cells, we performed



R. Yan et al. / MRGs to Predict LOAD and MCI S307

Table 3
Primer information

Primers Sequence

NDUFA1 F ATGTGGTTCGAGATTCTCCCC
R CCTGTGGATGTACGCAGTAGC

NDUFS5 F TGCACATGGAATCGGTTATACTC
R CCGAAGCAAACACTCTACGAAAT

NDUFB3 F TGCTGTCAGGCAGAAGAACAG
R CTTAGCCCTTTTGCAGCCAG

GAPDH F CTGGCCAAGGTCATCCATGAC
R CTTGCCCACAGCCTTGGCAG

correlation analysis and found that NDUFA1 was pos-
itively correlated with gamma delta T cells, resting
CD4 memory T cells, activated natural killer (NK)
cells, and monocytes, and negatively correlated with
Tregs, M0 macrophages, resting NK cells, activated
mast cells, and naüve CD4 T cells (Fig. 6 C). The
relevance between NDUFS5 and immune cells was
almost the same as NDUFA1, except that NDUFS5
not positively correlated with monocytes but was neg-
atively correlated with neutrophils (Fig. 7D). The
above results suggested that both candidate MRGs
were closely related to immune cell types.

Prediction model was successfully constructed

Age is an important risk factor for the onset of
AD. According to U.S. statistical data, the incidence
of AD increases sharply with age: 5.0% for peo-
ple aged 65 to 74 years, 13.1% of people aged 75
to 84, and 33.2% of people aged 85 or older [5].
To further improve the disease prediction accuracy,
independent predictors, including age, NDUFA1, and
NDUFS5, were selected to construct the LOAD pre-
diction model, which is presented as a nomogram
(Fig. 7A). The AUC of the prediction nomogram was
0.723 with all three factors and 0.708 without age
(Fig. 7B). The calibration curve of the LOAD nomo-
gram showed that the overall predicted probability
matched the actual probability very well (Fig. 7 C).
The DCA for the LOAD nomogram presented that
if the threshold probability were over 0.04, using
this LOAD nomogram to predict LOAD would bring
more benefits than risks for patients (Fig. 7D). Pre-
diction model was successfully constructed and the
evaluation indicators were good.

Differential expression of MRGs was verified by
qRT-PCR

To further verify the differential expression of the
candidate MRGs in LOAD, MCI, and CN, peripheral

blood samples were collected from Ruijin Hospital
for validation by qRT-PCR. We recruited 9 partic-
ipants who were CN, 8 patients with LOAD, and
10 patients with MCI. Patient information is shown
in Table 4, and all participants were over 65 years
old. Their blood samples were collected, and the
expression of the three candidate genes was veri-
fied by qRT-PCR. The results showed that all three
genes, NDUFA1 (Fig. 8A), NDUFB3 (Fig. 8B), and
NDUFS5 (Fig. 8 C) had lower expression in patients
with LOAD than CN. In addition, NDUFA1 and
NDUFB3 were significantly decreased in patients
with MCI when compared to CN, confirming our
conclusions from the public database. The results
supported three candidate MRGs as potential diag-
nostic markers for LOAD and MCI in individuals over
65 years of age.

DISCUSSION

In this study, we found that the differential expres-
sion of two MRGs, NDUFA1 and NDUFS5, in
peripheral blood can be used as diagnostic mark-
ers for patients with LOAD and MCI over 65 years
of age. A LOAD diagnosis model was successfully
constructed by combining the two candidate MRGs
with age. At the same time, changes were found in
the mitochondria-related pathways and immune cell
composition in the peripheral blood of patients with
LOAD.

The pathological mechanisms and etiology of AD
remain unclear, and there is a lack of convenient
and quick indicators for early screening and diag-
nosis. Although the main pathological changes of
AD occur in the brain, obtaining brain tissue for
research purposes is difficult while patients are alive,
and few patients with LOAD donate their bodies
for scientific research. Therefore, using brain tis-
sue sample indicators as biomarkers for early AD
diagnosis is not feasible. Instead, blood-based mark-
ers offer a promising, minimally invasive approach
for diagnostic purposes. The A�42/A�40 ratio and
phosphorylated tau have shown potential as blood-
based biomarkers for AD [19]. Plasma A�42/A�40
levels have been demonstrated to predict the status
of A� deposition in PET-CT. However, the util-
ity of these biomarkers is subject to the variability
in detection methods and cohort studies, resulting
in varying AUC values ranging from 0.64 to 0.87,
mostly between 0.7–0.8 [40–43]. Two large-scale
cohort studies reported AUC values of 0.89 versus
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Fig. 6. Immune infiltration between LOAD and CN. A) Relative proportion of peripheral blood infiltrates of 22 distinct subtypes of immune
cells in LOAD patients. B) Comparison of 22 immune cell types between CN and LOAD. Green represents normal and red represents LOAD.
C, D) The correlation of NDUFA1 (C) and NDUFS5 (D) with immune cells.
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Fig. 7. Model construction and evaluation. A) The LOAD nomogram was established for age and expression of NDUFA1 and NDUFS5 in
the cohort. B) ROC curve and corresponding AUC value. C) Calibration curves of the prediction nomogram in the cohort. D) Decision curve
analysis for the prediction nomogram.

Table 4
Patients information

CN MCI LOAD p
N 9 10 8

Age (y, mean ± SD) 72.8 ± 6.6 72.2 ± 4.1 73.4 ± 7.2 0.8189
MMSE score (mean ± SD) 29.8 ± 0.4 27.3 ± 1.8 20.5 ± 3.2 <0.0001
MoCA score (mean ± SD) 28.9 ± 0.9 22.5 ± 3.5 15.83 ± 2.3 <0.0001

MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; SD, standard
deviation.

0.72 [44] and 0.83 versus 0.76 [45] for p-tau217 and
p-tau181, respectively, in distinguishing between AD
versus non-AD. Our approach, based on transcrip-
tome analysis, has an AUC of 0.72 for distinguishing
between CN and LOAD, which is comparable to
the two classic plasma biomarkers mentioned above.
While the detection of plasma A� and tau is expen-
sive and subject to measurement variations caused by
pre-analytical processing and analytical performance
[20], our method offers a simple, practical, and cost-

effective alternative that can be applied on a large
scale in clinical settings.

Several studies have been conducted to screen
DEGs as biomarkers for AD, some of which directly
screened DEGs [25, 46], and some focused on the
specific fields related to the possible etiology and
pathology of AD, such as the immune microenviron-
ment [24], iron metabolism [23], and concomitant
diseases [22]. However, most studies did not dis-
tinguish between LOAD and EOAD. Compared to
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Fig. 8. qRT-PCR validation results. qRT-PCR was used to verify the expression of NDUFA1 (A), NDUFB3 (B), and NDUFS5 (C) in
CN, LOAD, and MCI. The experiments were performed in triplicate, and the data were expressed as mean ± SEM (*p < 0.05, **p < 0.01,
***p < 0.001; ns, no significance).

LOAD, EOAD has heterogeneous clinical mani-
festations [47], an aggressive clinical course [48],
different pathogenic mechanisms, and different gene
changes [49], which may have a confounding effect
on research results. At the same time, due to the
inclusion of EOAD, there were also some younger
individuals in the control group, which could not
accurately reflect differences due to LOAD. There-
fore, we believe that there is a need for more precise
biomarker exploration in the LOAD subgroup. In
studies of genetic diagnostic markers for AD, blood
and brain tissue samples are often used. There is an
interaction between immune cells in the blood and
central nervous system [50–52], and numerous stud-
ies on neurodegenerative diseases have found that
changes in the peripheral blood can indicate the state
of the disease to a certain extent [38, 53]. Considering
the practicability, simplicity, cost, and availability of
the samples, we chose blood samples for this study.

We used bioinformatic analyses to identify gene
expression changes in LOAD. Seventy-eight DEGs
were identified in the peripheral blood of patients with
LOAD. SVM–REF and LASSO algorithms were
performed to determine three candidate MRGs as
potential biomarkers for LOAD. After validation,
NDUFA1 and NDUFS5 were selected as the candi-
date genes for additional analyses. NDUFA1 is one
of the “accessory proteins” identified in complex I
[54]. Mitochondrial complex I is the primary entry
point for electrons in the electron transport chain and
is composed of core proteins and accessory proteins
that perform bioenergetic functions [55]. Accessory

proteins are not directly involved in catalysis but
mainly maintain the structural stability of the com-
plex and play a protective role in the response to
oxidative damage [56]. The loss of the NDUFA1-
encoded protein can cause complex-I deficiency,
inhibit caspase activation and apoptosis, and enhance
cell death induction [57]. Mutations in NDUFA1 may
play a role in early-onset dementia [58]. NDUFS5
is also an accessory subunit of mitochondrial com-
plex I [59]. The ND2-module is one of the seven core
mtDNA-encoded subunits in mitochondrial complex
I [60–63]. ND2 is critical for complex I assembly,
the presence of core ND2-module subunits is a nec-
essary condition for the stability of the complex [60].
Once the accessory subunits cannot enter the com-
plex properly, the cell energy loss will increase and a
large number of assembly factors will be required
to maintain the biological function of complex 1
[64]. The latest assembly stages of the ND2-module
of complex I involve the incorporation of subunits
NDUFA1, NDUFA10, and NDUFS5 [61]. Changes in
the expression of NDUFA1 and NDUFS5 may affect
the assembly of the ND2-module, and thus, the struc-
ture and function of mitochondrial complex I.

Our findings on MRGs with decreased expression
in LOAD and MCI are practical for clinical appli-
cation and helpful for the understanding of LOAD
pathogenesis, diagnosis and prevention. The cause
of AD is not clear at present, but like other chronic
degenerative diseases, it may be caused by a vari-
ety of complex factors [5]. There are many different
theories about the pathogenesis of AD, including
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the mitochondrial cascade hypothesis, an important
theory considering that mitochondrial dysfunction
causes energetic and metabolic dysfunction and also
drives the pathogenesis of AD, including A� plaque
formation and tau deposition [65]. Evidence demon-
strates both metabolic defects and oxidative damage
occur in AD. Further, a mitochondrial complex I
inhibitor restored synaptic activity and cognitive
function in 3xTg-AD mice and significantly reduced
the levels of pTau [66]. In another study, the mito-
chondrial function of peripheral blood mononuclear
cells and platelets were measured, and the bioener-
getic parameters, in descending order, were MCI,
CN, and AD. They also found that respiration was
positively associated with hippocampal volume, and
systemic mitochondrial dysfunction was associated
with cognitive decline [67]. It would be intriguing
to investigate whether the three markers we identi-
fied also contribute to the pathological mechanisms
of LOAD in the brain.

The interaction between immune signaling and
the intrinsic cellular metabolic program determines
the functional state of T lymphocytes [68]. Both
mitochondrial oxidative phosphorylation (OXPHOS)
and glycolysis are important metabolic pathways
that promote T-cell proliferation [69]. In terms of
biological energy, resting T cells are character-
ized by low metabolic requirements, dependence on
OXPHOS-derived ATP, and inhibition of glycolysis
[70]. Mitochondrial ATP production is essential for
T cell activation, and their proliferation is associ-
ated with significant glucose uptake and glycolysis,
which are the main sources of ATP. Mitochondrial
respiration is enhanced by T-cell activation [53, 71].
The expression changes of MRGs in LOAD, such as
NDUFA1, NUDFS5, and NDUFB3, may be related
to changes in the immune cells in AD peripheral
blood, the specific biological processes affected will
be explored in our following studies. Our study
showed that the LOAD group had significantly higher
proportions of Tregs and gamma delta T cells, and
lower proportions of resting CD4 memory T cells
and naüve B cells. Among the proportion of changed
cells, three candidate genes were positively correlated
with gamma delta T cells and resting CD4 memory
T cells, and negatively correlated with Tregs. Studies
on Tregs in AD have been inconsistent. Some studies
have revealed that the frequency of Tregs increases
with age and is accompanied by intensified suppres-
sive activity of Tregs in patients with AD [39, 72,
73], which is consistent with our results. However,
a recent study found that the proportion of circulat-

ing Tregs in descending order was MCI, CN, and
AD [74], which is inconsistent with our analysis.
Differences in results are probably due to different
research methods and samples. The CDR3 region of
T-cell receptor � genes in AD brain tissue and periph-
eral blood is unique. AD brain hydrophilic residues
increased, as well as clones with larger volumes [75],
which may be related to the inflammatory process
of AD. As for the relationship between resting CD4
memory T cells and AD, one study found six kinds
of inflammatory cells infiltrating 13 brain regions,
and resting CD4 memory T cells had the highest pro-
portion [76]. Some studies suggest that resting CD4
memory T cells may be involved in the AD process
[77, 78]. It has also been reported that there is a sig-
nificant reduction in naive B cells in the peripheral
blood of patients with AD [79, 80].

The changes in peripheral blood mitochondrial
function found by our enrichment analysis may
reflect the dysfunction of brain mitochondria in
patients with LOAD to a certain extent, and the spe-
cific correlation and mechanism need to be further
explored. Peripheral circulating immune cells may
have crosstalk with the central nervous system (CNS).
Immune cells in the peripheral blood also exist in the
CNS, and immune surveillance through the selected
peripheral white blood cells provides a maintenance
mechanism that is essential for brain function [81].
Episodes in neurodegenerative diseases occur when
the presence of pathological mediators in the CNS
overrides this capacity for immune surveillance [82].
Along the gut-brain axis, Tregs interact with a vari-
ety of resident cells in the CNS, including immune,
epithelial, and neuronal cells, to produce a powerful
neuroprotective effect in neuronal diseases [50, 51].
It has also been shown that Chlamydia pneumoniae
infection may lead to dysregulation of key path-
ways involved in AD pathogenesis after intranasal
inoculation [83]. Moreover, circulating blood cells
are exposed to paracrine factors that regulate mito-
chondrial function throughout the body, possessing
high ETC activity and metabolic flexibility [84], and
have long been considered as a potential sensitive
marker of mitochondrial dysfunction [85]. Blood cell
bioenergetics can indicate the bioenergetics of high
metabolically active tissues such as brain [86].

AD is a neurodegenerative disease with insidi-
ous onset and gradual development [2]. Pathological
changes such as tau protein deposition occur before
clinical symptoms [15], and mitochondrial dysfunc-
tion in the brain can be detected in the MCI stage
[87]. We were curious whether the MRG alterations
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identified in this study occurred in the MCI stage, so
we validated them on the gene datasets and collected
clinical peripheral blood samples. Dataset analysis
showed that NDUFA1 and NDUFS5 were signifi-
cantly decreased in patients with MCI compared to
the CN group, and both had good prediction accu-
racy for MCI. The two candidate genes we identified
can predict LOAD earlier and provide help for early
detection and intervention of LOAD.

We performed qRT-PCR validation on clinical
peripheral blood samples, and found that NDUFA1,
NDUFS5, and NDUFB3 were significantly decreased
in LOAD compared to CN. NDUFA1 and NDUFB3,
but not NDUFS5, were significantly decreased in
patients with MCI compared to CN. LOAD exhib-
ited more significant changes in MRGs. This may be
related to the different sources and scales of patients
between the clinical samples and datasets, and the
reason needs to be further explored.

Although we identified some MRGs that can serve
as candidate genes for LOAD and MCI using bioin-
formatics methods and qRT-PCR experiments, our
study still has limitations. First, the clinical validation
sample size in this study was small and came from a
single center, therefore, the conclusion may lack the
universality of other regions and populations. In the
future, more samples should be collected to verify the
correlation between MRGs and LOAD. Second, the
experiments in this study did not classify peripheral
blood leukocytes, subsequent studies could classify
leukocytes to explore specific cell groups with sig-
nificant changes in MRGs expression. Third, the
molecular biological mechanisms between down reg-
ulated MRGs and LOAD needs to be further explored,
which will be shown in our following work.

Conclusion

Using the GEO public database and machine learn-
ing methods, including LASSO and SVM-RFE, we
identified two MRGs, NDUFA1 and NDUFS5, which
can be used as candidate genes of MCI and LOAD,
and we constructed a disease prediction model.
The results were verified by qRT-PCR of clinical
blood samples. Biological function analysis showed
that the expression of mitochondria-related pathways
was significantly changed. This study also reported
changes in LOAD peripheral circulating immune
cells, and Tregs and resting CD4 memory T cells
were closely related to changes in candidate genes,
the specific mechanism will be further explored.
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