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Abstract.

Background: There is a close association between Alzheimer’s disease (AD) and circadian rhythms, and neuroinflammatory-
related pathways are associated with both interactions.

Objective: To reveal the relationship between circadian rhythm (CR) and AD at the level of genes, pathways, and molecular
functions through bioinformatics.

Methods: We analyzed the differential genes between AD and control groups in GSE122063 and found the important gene
modules; obtained CR-related genes from GeenCard database; used Venn 2.1 database to obtain the intersection of genes
of AD important modules with CR-related genes; and used STRING database and Cytoscape 3.7.1 to construct the gene
protein-protein interaction network. The MCODE plugin was used to screen pivotal genes and analyze their differential
expression. We trranslated with www.DeepL.com/Translator (free version) to obtain transcriptional regulatory relationships
from the TRRUST database and construct a hub gene-transcription factor relationship network.

Results: A total of 42 common genes were screened from AD and CR genes, mainly involving signaling pathways such as
neuroactive ligand-receptor interactions. A total of 10 pivotal genes were screened from the common genes of CR and AD,
which were statistically significant in the comparison of AD and control groups (p <0.001), and ROC analysis showed that
all these pivotal genes had good diagnostic significance. A total of 36 TFs of pivotal genes were obtained.

Conclusion: We identified AD- and CR-related signaling pathways and 10 hub genes and found strong associations between
these related genes and biological processes such as inflammation.
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INTRODUCTION

Alzheimer’s disease is a chronic and progres-
sive decline in cognitive function, mainly manifested
. > o X by cognitive decline, decline in daily living ability
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closely related to genetics, aging, lifestyle, environ-
mental factors, and nervous system diseases [1-4],
but so far, the etiology and pathogenesis of AD
is not clear. Although researchers have proposed
the hypothesis of amyloid-B (AP) cascade dam-
age [5], tau hyperphosphorylation [5], cholinergic
injury hypothesis [6], the ApoE hypothesis [7], neu-
roinflammatory hypothesis [8], and mitochondrial
dysfunction hypothesis [9] for AD, they have yet to
fully explain the complex mechanism of this disease.
The prevalence of AD continues to rise, seriously
affecting healthcare systems worldwide [10].

The complex connection between the body’s
intrinsic biological rhythms and AD has recently
attracted a lot of attention. The “sunset phenomenon”
is a symptom of a distinct temporal pattern in
AD, manifested by symptoms such as hallucina-
tions, hallucinations, emotional instability, anxiety,
and cognitive impairment at dusk, lasting several
hours in mild cases or affecting sleep in severe cases
[11]. Circadian rhythm (CR) is a biological timer
[12], a 24-hour physiological and behavioral cycle
generated by endogenous biological clock oscilla-
tions, which can regulate the biological processes of
the body at different levels, such as neural, molecular,
and cellular [13]. Sunset syndrome in AD patients is
both one of the symptoms of circadian rhythm disor-
der and aggravated by circadian rhythm disorder [ 14,
15]. There is an intricate relationship between AD and
CR. On the one hand, A4, production and secretion
increase when the body is awake, while AP clear-
ance increases and production decreases during sleep,
and sleep in the elderly mostly shows an increase in
daytime sleep fragmentation and a decrease in night-
time sleep [16, 17]. Sleep deprivation also increases
tau protein in the interstitial fluid, and its hyperphos-
phorylation may destabilize the microtubule system,
leading to neurogenic fiber tangles and neurodegen-
eration of neuronal synaptic terminals [18], causing
the onset of AD. Interestingly, melatonin correction
of the sleep/wake cycle has achieved positive results
in improving sunset/agitation behavior in patients
with dementia [19]. On the other hand, clinical stud-
ies have shown a significant shortening of rapid eye
movement (REM) sleep and increased fragmentation
of slow-wave sleep in AD patients, which may be
caused by a decrease in cholinergic activity in AD
[20-22].

The intrinsic mechanism link between AD and CR
is not yet clear, and bioinformatics has a bright future
in the analysis of disease differential genes and the
screening of important pivotal genes and pathways.

We use bioinformatics to analyze biomarkers and
pathways commonly associated with AD and CR,
and to point out new directions for future research in
the prevention and treatment of AD from correcting
circadian rhythm disorders.

METHODS
Acquisition of genes

Differential genes in AD

Using “GSE122063” as the search term, we
obtained the differential genes between the AD group
and the control group in this study from the GEO
database [23] (https://www.ncbi.nlm.nih.gov/geo/),
removed the duplicate genes, and established the
AD differential gene database. A volcano diagram
was used to visualize the differential genes that were
screened based on gene expression.

Construction of co-expression network and
identification of key modules

WGCNA was used to explore gene modules highly
related to the external traits of the samples. The
weighted gene co-expression network of differen-
tially expressed genes (DEGs) in our study was
constructed through the R package WGCNA (V1.69).
First, we calculated the MAD (Median Absolute
Deviation) of each gene in the gene expression pro-
file separately, eliminated the top 50% of genes with
the smallest MAD, used the good Samples Genes
method of the R package WGCNA to eliminate out-
lier genes and samples, and further used WGCNA
to construct a scale-free co-expression network. To
classify genes with similar expression profiles into
gene modules, average linkage hierarchical clustering
was performed based on the TOM-based dissimilar-
ity measure with a minimum gene dendrogram size
(genome) of 30, setting the sensitivity to 3. To further
analyze the modules, we calculated the dissimilarity
of the module feature genes, selected a cut line for the
module dendrogram, and merged some modules. In
addition, we merged modules with distance less than
0.25, and finally obtained 3 co-expression modules.
It is worth noting that gray modules are considered
as the set of genes that cannot be assigned to any
module.

After identifying significant interest of modules,
gene significance (GS) and module membership
(MM) were calculated for each gene. In WGCNA,
MM refers to the correlation between genes and gene
expression profiles. Hub genes are a subset of highly
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interconnected genes (nodes) within key modules of
co-expression network and are significantly associ-
ated with biological functions.

Targets of CR

The CR-related genes were retrieved from
the GeneCard database (https://www.genecards.org/)
[24] using the search term “circadian rthythm,” and a
CR gene database was created.

Targets for CR intervention in AD

Using Venny?2.1(http://bioinformatics.psb.ugent.b
e/webtools/Venn/), the AD differential genes
obtained earlier were intersected with the CR-related
genes to create a gene database for CR interventions
in AD, and the corresponding Venn diagrams were
plotted.

Target analysis and enrichment analysis

Protein-protein interaction (PPI) network
construction of key genes

Common genes were imported into String database
[25] (https://cn.string-db.org/) to obtain protein
interactions; the obtained protein information was
imported into Cytoscape 3.7.2 software to construct
protein-protein interaction networks and calculate the
Degree values of nodes, and adjust the nodes in the
network according to the Degree values. The PPI net-
work was generated by adjusting the properties of the
nodes in the network according to the Degree value.

KEGG signaling pathway enrichment analysis

The genes of CR intervention AD
were uploaded to the Metascape platform
(https://metascape.org/gp/index.html#/main/step1)
[26] for Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis (p <0.05),
and the top 20 signaling pathways were filtered
according to p-value to draw bubble maps for
visualization.

Gene ontology analysis

The genes of CR intervention AD were uploaded
to the Metascape platform for Gene ontology (GO)
analysis enrichment analysis (p<0.05), and the
enrichment results of molecular function, biological
process, and cellular component were obtained.

Hub genetic analysis

Screening of HUB targets and construction of
PPI networks

Using cytohHubba plug-in and MCODE plug-in
in Cytoscape 3.7.2 [27], the top 10 differential genes
were screened as hub genes based on EPC from the
results obtained above, and the PPI network maps of
the hub genes were drawn.

Differential expression of Hub genes in AD

The expression of the hub genes in GSE122063
was downloaded from the GEO database for each
sample in the AD and Control groups, respectively.
Cluster analysis of the hub genes was performed
and box plots of the differences in expression of the
different genes within the two groups were plotted
separately. The diagnostic and discriminant values
of DEGs in the AD group and control group were
evaluated by receiver operating characteristic curve
analysis. GSE122063 datasets were used as the exter-
nal validation datasets.

ROC curve analysis of hub genes

ROC analysis was performed using the R pack-
age pROC (version 1.17.0.1) to obtain AUC, and the
ci function of pROC was used to evaluate AUC and
confidence intervals to obtain the final AUC results.

KEGG and GO analysis of HUB gene
KEGG signaling pathway and GO analysis of hub
genes using Metascape, and visualization of results.

Analysis of hub gene-associated transcription
factor

Each of the 10 HUB genes was imported into
Transcriptional Regulatory Relationships Unraveled
by Sentence-base Text mining database (TRRUST)
[28] (https://www.grnpedia.org/trrust/) to obtain the
transcription factors (TFs) of HUB genes. Then
Cytoscape 3.7.2 was applied, and the hub gene-IF
network was constructed.

Statistical analysis

In the above parts, it is considered that the research
results meet p < 0.05 was statistically significant.


https://www.genecards.org/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://cn.string-db.org/
https://metascape.org/gp/index.html#/main/step1
https://www.grnpedia.org/trrust/

1212 J. Zhang et al. / Bioinformatics-Based Analysis of Circadian Rhythm Regulation Mechanisms

RESULTS
Acquisition of gene

In the GEO database GSE122063 study, 56 sam-
ples in the AD group and 44 samples in the Control
group, and 14,200 differential genes were obtained
between the AD and Control groups, volcano plot in
Fig. 1A, and the sample clustering plot in Fig. 1B. A
total of 2,320 CR-related genes were obtained.

WCGNA analysis and module significance
calculation

The gene expression matrix of 14,200 pretreat-
ment genes from AD patients in the GEO dataset
was used for the WGCNA of the R package. Sample
clustering is shown in Fig. 2A. To ensure high scale
independence (0.85), we set 3 =10 in this analysis
(Fig. 2B). To ensure average connectivity (15.24),
we set 3=10 in this analysis (Fig. 2C). Based on
the average hierarchical clustering and dynamic tree
clipping, we obtained a total of 9 co-expression
modules, module feature vector clustering (Fig. 2E),
module-phenotype correlation heat map (Fig. 2D),
turquoise module’s GS and MM correlation scatter
plot (Fig. 2F).

Screening of common targets and construction of
PPI networks

A total of 381 AD-related genes were obtained in
the turquoise module and intersected with 2,320 CR-
related genes to obtain 42 key genes acting on both
AD and CR, Venn diagram (Fig. 3A) and PPI network
diagram (Fig. 3B).

Enrichment of the KEGG signaling pathway

Analysis of DEGs by Metascape revealed a total
of 42 signaling pathways enriched by CR and AD
common targets p < 0.05, mainly including Neuroac-
tive ligand-receptor interaction, Cytokine-cytokine
receptor interaction, Viral protein interaction with
cytokine and cytokine receptor, Chemokine signal-
ing pathway, Human cytomegalovirus infection, etc.
(Fig. 4A).

Enrichment of the GO

Analysis of DEGs by Metascape revealed a total
of 289 items (p<0.05). There were 19 molecular

functions, including receptor ligand activity, sig-
naling receptor activator activity, signaling receptor
regulator activity, neuropeptide hormone activity;
23 cellular components, including postsynapse,
asymmetric synapse, neuron to neuron synapse,
glutamatergic synapse, postsynaptic specialization
membrane; and 247 biological processes, including
regulation of monoatomic ion transport, regulation
of metal ion transport, regulation of transmembrane
transporter activity, regulation of transmembrane
transport, regulation of transporter activity; the top
10 p-values in each of the three groups were selected
for visualization (Fig. 4B).

Hub genetic analysis

Hub target screening

A total of 10 hub genes were screened in this study,
included CCL2, CCRS5, GDF15, HSPA1A, IL1R1,
MPO, NEDD4L, PPBP, SNCA, and YWHAH. The
specific information calculated by Cytoscape 3.7.2 is
shown in Table 1.

The PPI network of Hub genes

A total of 10 nodes and 28 edges were obtained
from the analysis of the interrelationships of the 10
hub genes by the string database and Cytoscape 3.7.2
software (Fig. 3C).

Differential expression of HUB gene

We determined the differential expression levels
by comparing Hub gene expression between the
AD group and the control group in the GSE122063
disease gene pool (Fig. 5A). Box plots showed signif-
icant differences in the levels of all 10 genes between
the AD and control groups (Fig. 5B).

ROC analysis of HUB gene

The diagnostic ability of the 10 DEGs to
distinguish AD from control group samples in
the GSE122063 dataset showed good diagnos-
tic value: HSPAIA (AUG=0.8705); NEDD4L
(AUG=0.7918); CCL2 (AUG=0.8409); PPBP
(AUG=0.7666); CCRS5 (AUG=0.8393); MPO
(AUG=0.7416); GDF15 (AUG =0.8425); YWHAH
(AUG=0.7526); IL1R1 (AUG=0.7390); SNCA
(AUG =0.7403) (Fig. 6).

KEGG signaling pathway and Gene Ontology
Analysis of DEGs by Metascape revealed a total
of 8 signaling pathways enriched by 10 hub genes
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Fig. 1. A) Ditferentially expressed genes between the blank and Alzheimer’s disease groups in the GSE122063 study in the GEO database; B) sample information.
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Fig. 2. A) sample clustering; B) Scalar independence; C) average connectivity; D) module-phenotype correlation heat map; E) module
feature vector clustering; F) turquoise module’s GS and MM correlation scatter plot.

p <0.05, mainly including Cytokine-cytokine recep-
tor interaction, Viral protein interaction with cytokine
and cytokine receptor, Chemokine signaling path-
way, Human cytomegalovirus infection, Endocytosis,
Toxoplasmosis, Fluid shear stress and atherosclero-
sis, and Viral carcinogenesis (Fig. 7A).

Analysis of DEGs by Metascape revealed a total
of 567 items (p<0.05): there were 60 molecu-

lar functions, including signaling receptor binding,
sodium channel regulator activity, cytokine activ-
ity, chemokine activity, g protein coupled receptor
binding; 4 cellular components, including inclusion
body, secretory granule, platelet alpha granule, secre-
tory vesicle; and 503 biological processes, including
response to molecule of bacterial origin, response
to lipid, regulation of transporter activity, cellular
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Fig. 3. A) Venn diagram of the intersection of differential genes and circadian rhythm-associated genes in Alzheimer’s disease; B) PPI
network diagram of intersecting genes; C) PPI network diagram of 10 hub genes.

response to oxygen containing compound, response
to cytokine; the top 10 p-values in each of the three
groups were selected for visualization (Fig. 7B).

The regulatory relationship between Hub gene
and TFs

A total of 36 TFs of 10 Hub genes were obtained
through the TRRUST database, and the regulatory
relationship between TFs and target genes are shown
in Fig. 8.

DISCUSSION

With the advent of the aging of the world popu-
lation and the increase in life expectancy, AD has
attracted widespread attention because of its insid-
ious onset, irreversible neurodegenerative changes,
and severe reduction in patients’ ability to per-
form daily living and social functions [29]. AD
is a multifactorial disease that is determined by
the interaction of genetic susceptibility and envi-
ronmental factors throughout the life course [30].
Circadian rhythms are the periodic rhythms inher-
ent in many lives and the most common form of
rhythm in human life activities, and changes in peo-
ple’s lifestyles often disrupt this rhythmic cycle.
Researchers have thoroughly investigated the com-
plex interrelationships that exist between lifestyle
changes and AD-related mechanisms: 24.5%—-40% of
AD patients are reported to suffer from chronic sleep
disorders [31]. In addition, sleep disorders causing
circadian rhythm disturbances may be early signs of
age-related neurodegenerative diseases and memory
loss in the elderly. Melatonin, whose main function is

to improve sleep disorders, has achieved significant
efficacy in the treatment of AD in clinical studies,
further confirming the existence of some linkage
between the two [32]. Existing studies confirm that
untimely light exposure or sleep deprivation inhibits
the expression of Bmall (brain and muscle arnt-like)
in neurons and glial cells of mice, a central factor in
the transcriptional-translational feedback loops of the
biological clock, and that Bmall deficiency leads to
cortical and hippocampal astrocyte proliferation and
memory impairment, resulting in an AD-like patho-
logical development [33-35]. In addition, Wagner et
al. autopsied brain samples from 32 volunteers and
performed single nucleus RNA sequencing (snRNA-
seq) on them, and the analysis revealed that APOE
&4, the most critical gene leading to the development
of AD, causes abnormal accumulation of cholesterol
in oligodendrocytes in AD patients, which makes the
outer myelin sheath of neuronal axons become less
and thinner, affecting neuronal myelin involved in
neuronal metabolism and insulation function [36].
At the same time, Hita-Yafiez et al. found a signif-
icant shortening of rapid eye movement (REM) sleep
time in patients with cognitive impairment carrying
the APOE ¢4 gene. AD also has a significant dis-
ruptive effect on sleep rhythm [20]. The relationship
between circadian rhythm disorders and AD is recip-
rocal, and a vicious circle is formed between the two,
with the occurrence of either one leading to a high
risk state for the other [37]. Therefore, an in-depth
study of specific biomarkers sensitive to AD and
CR is imminent. In this study, we deeply analyzed
the differential genes between AD and control in
the GEO database, and successfully constructed PPI
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Table 1

Name Degree  Average Betweenness Closeness Clustering Neighborhood ~Number Of Radiality

Shortest Centrality Centrality Coefficient Connectivity Directed

PathLength Edges
CCL2 6 2.5 0.362637 0.4 0.266667 2.666667 6 0.785714
MPO 4 3.142857 0.148352 0.318182 0.333333 3 4 0.693878
CCRS5 4 2.285714 0.543956 0.4375 0.333333 3.25 4 0.816327
SNCA 4 2.571429 0.538462 0.388889 0.166667 2.25 4 0.77551
PPBP 3 2.714286 0.087912 0.368421 0.666667 4.666667 3 0.755102
YWHAH 3 3.214286 0.142857 0.311111 0.333333 2.666667 3 0.683673
NEDDA4L 3 3.214286 0.142857 0311111 0.333333 2.666667 3 0.683673
GDF15 2 3.285714 0 0.304348 1 5 2 0.673469
IL1R1 2 2.857143 0 0.35 1 5 2 0.734694
HSPA1A 2 2.357143 0.527473 0.424242 0 4 2 0.806122

A

—

[ | [
B (BB

HSPAIA

20

e

=

Gene Expression

AD
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ey
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Fig. 5. A) Heat map of DGEs expression; B) Differential expression of 10 central genes in AD group and Control groups (a: HSPALA; b:
NEDDA4L; c: CCL2; d: PPBP; e: CCRS; f: MPO; g: GDF15; h: YWHAH; i: IL1R1; j: SNCA).

network of DEGs using the STRING database and
network construction tool, and enriched the differen-
tial genes; based on this, 10 important HUB genes
were also screened and analyzed, including CCL2,
CCRS, GDF15, HSPA1A, IL1R1, MPO, NEDDA4L,
PPBP, SNCA, and YWHAH.

Global gene expression studies (WGCNA) can
help us better understand the specific pathobiology
between AD and CR. The DGEs of the most impor-
tant sections were further screened using WGCNA
based on obtaining all DGEs of the AD and con-
trol groups in GSE122063. To gain more insight into
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Fig. 8. Interaction network diagram of hub gene-TFs (Pink circular nodes are hub genes; purple triangular nodes are transcription factors).

these DEGs, we analyzed selected genes used for GO
and KEGG enrichment analysis and found Neuroac-
tive ligand-receptor interaction, Cytokine-cytokine
receptor interaction, Long-term potentiation, Gap
junction, Endocytosis, Serotonergic synapse, Fluid
shear stress and atherosclerosis, Apelin signaling
pathway, Lipid and atherosclerosis, Pathways of
neurodegeneration - multiple diseases and other
signaling pathways play important roles in AD.
The pathways play an important role in AD. By
studying circadian rhythm disorders in zebrafish lar-
vae, Xiao et al. discovered significant differential
expression of clarmla, bmallb, perlb, and per2 on
neuroactive ligand-receptor interaction [38]. Neu-
roactive ligand-receptor interaction is also essential
in neuroinflammatory diseases. Mesenchymal stem
cells (MSCs) were found to activate neuroactive
ligand-receptor interactions by secreting trophic fac-
tors, anti-apoptotic factors, and intervening in the
immune response process, thereby activating the
downstream PI3K-Akt signaling pathway, reducing
neuroinflammatory response, enhancing neurogen-
esis, and improving efficacy in the treatment of
neurological injury [39]. Thus, the interaction of neu-
roactive ligands with receptors and the PI3K-Akt

signaling pathway may play an important role in
neuroinflammation and neurodegenerative diseases
caused by CR disorders.

The dopaminergic synapse is an important signal
transduction pathway in AD that regulates synaptic
function and modulates neurotransmitters, thereby
enhancing memory [40]. Dopaminergic synapse is
also an important neuromodulatory pathway for
animals to maintain circadian rhythm periodicity
within their physiological range and has been iden-
tified in Drosophila as an important pathway that
innervates arousal-promoting neurons. Dopaminer-
gic neurons innervate the large ventral lateral neurons
(I-LNvs) of Drosophila and increase cAMP levels
in the I-LNvs via signaling to induce the genera-
tion of action potentials that inhibit sleep and lead
to arousal [41]. Fernandez-Chiappe et al. [42] con-
firmed this in his study. In his study, he found
that Dopamine receptor 1 (DoplR1) and Dopamine
receptor 2 (Dop1R2) regulate daytime and nighttime
sleep duration, respectively. In addition to higher
receptor levels, correspondingly longer sleep dura-
tion, he also found that inhibition of the dopamine
pathway following inhibition of the Dop1R2 recep-
tor similarly reduced nighttime sleep duration in
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Drosophila, and that there is a complex mechanism
for maintaining circadian periodicity [42]. Thus, we
propose that circadian rhythm disorders may con-
tribute to the development of AD via dopaminergic
synapse signaling, neurodegeneration pathways, and
multiple diseases.

The human master biological clock is located
in the supraoptic nucleus (or core) (SCN). Cir-
cadian rhythm-related genes (CRY1, CRY2, DBP,
NPAS2, PERI1, PER3, PER2, CLOCK, etc.) regu-
late transcriptional and translational loops in cells.
Circadian locomoter output cycles protein kaput
(Clock), Basic helix-loop-helix ARNT-like protein
1 (Bmall), Period circadian protein homolog 1
(PER), and Cryptochrome (Cry), whose expres-
sion levels fluctuate in a 24-hour cycle, together
form a “transcription-translation-suppression of tran-
scription” feedback loop that regulates the human
biological rhythm. Neuronal PAS domain-containing
protein 2 (NPAS2), CRY, and PER genes het-
erodimerize in the nucleus to drive positive feedback
regulation of circadian rhythms and encode cyclin
(PER and CRY); PER proteins accumulate mainly at
night, and a certain amount of accumulation enters
the nucleus to repress PER gene retrotranscription
to close the feedback loop [43]. The operation of the
feedback loop causes a circadian rhythm in the release
of neural excitations, transmitters, and hormones, and
this affects the cyclical fluctuations in brain func-
tion. In physiological states, amyloid 3-protein (AP)
secretion in brain tissue is reduced during sleep,
whereas disrupted circadian rhythms cause abnormal
AP release and accumulation, forming AP plaques
and leading to the development of AD [44].

Then, we further analyzed the expression of 10
hub genes. The results showed that CCL2, CCRS5,
GDF15, HSPA1A, IL1R1, and PPBP were highly
expressed in the AD group compared with the blank
group (p<0.05), while NEDD4L, MPO, YWHAH,
and SNCA showed low expression (p <0.05). C-C
motif chemokine 2 (CCL2), also known as mono-
cyte chemotactic protein 1 (MCP-1), is a small
molecular weight cytokine of the CC chemokine fam-
ily and is partially responsible for the chemotaxis
of mononuclear phagocytes (microglia, peripheral
monocytes, and macrophages). Increased CCL2 in
serum and cerebrospinal fluid has been reported to
be associated with neurodegeneration and negatively
correlated with cognitive scores in AD patients [45,
46]. Previous studies have demonstrated that trans-
gene overexpression of CCL2 enhances microglia
proliferation and induces diffuse amyloid plaque

deposition in Tg2576 mice [47]; further studies
have shown that CCL2 transgene overexpression in
mice as young as 2-3 months is able to accelerate
spatial and working memory and deficits in hip-
pocampal synaptic transmission in amyloid precursor
protein (APP) mice, mainly because CCL2 is a potent
enhancer of AP oligomerization, microglia accumu-
lation and cognitive dysfunction in animal models
of AP degeneration, and can directly promote A3
uptake, intracellular A3 oligomerization, and protein
secretion [48]. Another study found that the upreg-
ulation of circadian gene albumin D site binding
protein (DBP) is involved in the activation process of
CCL2, while the dynamic changes of CCL2 expres-
sion level showed oscillatory changes similar to DBP
[49]. C-C chemokine receptor type 5 (CCRYS) is a
suppressor of neuroplasticity and memory, that is
highly enriched in the CA1 region of the hippocam-
pus with the ligand CCLS5, regulates learning-related
cell signaling and neuronal plasticity, and is involved
in many forms of regulation of learning and memory
[50]. CCRS has a role in regulating the expression
and secretion of cytokines, promoting the expression
of pro-inflammatory mediators such as interleukin
(IL)-1pB, tumor necrosis factor (TNF)-a, IL-6, and
IL-17a, causing neuroinflammation and leading to
the development of AD [51]. It was confirmed that
elevated levels of CCRS5 expression also reduced the
overlap of activated neurons present in the mem-
ory fragments of mice, thereby inhibiting memory
capacity and leading to further aggravation of AD
[50]. This suggests that CCRS could be an effec-
tive target for the treatment of AD. There is also a
strong link between circadian rhythms and neuroin-
flammation. A study in depressed mice claimed that
the Per2 gene induces neuroinflammatory responses
through chemokines (especially CCRS antagonists)
[52]. Myeloperoxidase (MPO) is produced by neu-
trophils and is involved in the development of AD
by participating in the molecular pathway lead-
ing to AP deposition [53, 54]. Also, MPO binds
tightly to the vascular endothelium by interacting
with negatively charged glycocalyx in other chronic
inflammatory diseases, including heart disease, lead-
ing to cerebrovascular endothelial dysfunction and
reducing blood-brain barrier function [55]. Other
studies have shown a significant daily rhythmic
cyclic variation in MPO activity [56]. There is a
complex relationship between circadian rhythm and
AD in the aspects of inflammation and metabolism,
among which the role of CCR and MPO cannot be
ignored.
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In addition, we performed a ROC analysis of
the diagnostic value of the HUB gene in AD. The
results showed that HSPA1A showed a high diag-
nostic value (AUC >0.85). Therefore, HSPAIA is
considered an important biomarker to study the rela-
tionship between AD and circadian rhythm.

Conclusion

We have simultaneously explored the common
related genes, pathways and biological processes of
AD and CR, and clarified that there are complex
molecular and cellular mechanisms between AD and
CR. Most importantly, we have identified signal-
ing pathways such as Neuroactive ligand-receptor
interaction, Cytokine-cytokine receptor interaction,
Viral protein interaction with cytokine and cytokine
receptor in our study, further analyzed 10 impor-
tant potential biomarkers such as CCL2, CCRS5, and
MPO, and found strong correlations between these
associated genes and biological processes such as
metabolism and inflammation. We elucidated that
CR-related factors play a key role in the development
of AD. We hope that our ideas will provide new ideas
for further research in the prevention and treatment
of AD.
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