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Abstract.
Background: Alzheimer’s disease and related dementias (ADRD) involve biological processes that begin years to decades
before onset of clinical symptoms. The plasma proteome can offer insight into brain aging and risk of incident dementia
among cognitively healthy adults.
Objective: To identify biomarkers and biological pathways associated with neuroimaging measures and incident dementia
in two large community-based cohorts by applying a correlation-based network analysis to the plasma proteome.
Methods: Weighted co-expression network analysis of 1,305 plasma proteins identified four modules of co-expressed pro-
teins, which were related to MRI brain volumes and risk of incident dementia over a median 20-year follow-up in Framingham
Heart Study (FHS) Offspring cohort participants (n = 1,861). Analyses were replicated in the Cardiovascular Health Study
(CHS) (n = 2,117, mean 6-year follow-up).
Results: Two proteomic modules, one related to protein clearance and synaptic maintenance (M2) and a second to inflam-
mation (M4), were associated with total brain volume in FHS (M2: p = 0.014; M4: p = 4.2 × 10–5). These modules were
not significantly associated with hippocampal volume, white matter hyperintensities, or incident all-cause or AD dementia.
Associations with TCBV did not replicate in CHS, an older cohort with a greater burden of comorbidities.
Conclusions: Proteome networks implicate an early role for biological pathways involving inflammation and synaptic
function in preclinical brain atrophy, with implications for clinical dementia.
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INTRODUCTION

Biological pathways involved in Alzheimer’s dis-
ease and related dementias (ADRD), before the
onset of clinical symptoms, are promising targets
for disease-modifying intervention, as biological pro-
cesses leading to ADRD development begin years
to decades before symptoms appear [1]. Circulating
plasma proteins are potential therapeutic targets for
ADRD and can be measured less invasively com-
pared to cerebrospinal fluid (CSF) proteins. Prior
studies have identified associations between expres-
sion of several specific proteins in the blood and
risk of Alzheimer’s disease (AD) dementia and
mild cognitive impairment (MCI) [2–6], demen-
tia endophenotypes, including structural brain MRI
measures [5] and amyloid-PET burden [7], and cog-
nitive decline [8].

Previous studies have identified and validated
individual protein biomarkers of ADRD risk. We
hypothesized that a network approach to the plasma
proteome could identify protein modules, groups of
proteins whose expression is positively or inversely
inter-correlated, which would suggest pathways rel-
evant to incident ADRD. Analysis at the module
level has the potential to detect small but con-
sistent variations in protein expression levels that
may be missed when analyzing proteins individ-
ually. Such network approaches have successfully
identified relevant pathways in blood pressure reg-
ulation, cancer, and chronic kidney disease [9–13].
Network analyses of the brain proteome have iden-
tified modules of proteins or “hub” proteins that are
cross-sectionally associated with AD disease status
[14–17], some of which are involved in astrocytic and
microglial anti-inflammatory processes [18], as well
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as RNA splicing and protein binding [19]. A recent
analysis using a network approach based on annota-
tions found that dementia-associated plasma proteins
were enriched in biological pathways implicated in
dementia pathophysiology, including immune, lipid,
metabolic signaling, and hemostasis pathways [20].

In this investigation, we used an annotation-
independent network analysis applied to a large
proteomic panel to identify modules of co-expressed
plasma proteins in the middle-aged Framingham
Heart Study (FHS) Offspring Cohort. We tested for
associations between these modules and structural
MRI endophenotypes for ADRD cross-sectionally,
and incident ADRD over two decades of follow-
up. We compared these results to the associations of
individual proteins with ADRD and MRI outcomes.
Finally, we sought replication in the Cardiovascu-
lar Health Study (CHS), an independent longitudinal
cohort study comprised of older adults.

MATERIALS AND METHODS

Discovery cohort

The FHS Offspring Cohort has been described
previously [21]. Participants who attended the
FHS Offspring Cohort fifth examination cycle
(1991–1995), had available aptamer-based proteomic
assays, and had provided informed consent for use of
these data were included (n = 1,861).

Protein assay
Proteomic data for this analysis was collected using

the SomaScan aptamer-based proteomic platform in
two phases using plasma stored in 1992–1995, as
described previously [22, 23] (see the Supplemen-
tary Material). In Phase 1, 1,061 plasma proteins were
measured in 798 participants. In Phase 2, an expanded
panel of 1305 proteins were assayed in 1,063 addi-
tional participants.

MRI brain volumes
Brain MRIs were conducted at the seventh

FHS Offspring Cohort clinic examination cycle
between 1999 and 2002. Total cerebral brain volume
(TCBV), hippocampal volume (HV), and white mat-
ter hyperintensity volume (WMH) were measured
as described previously [24–26]. All brain volumes
were expressed as percentages of intracranial volume
to correct for head size. WMH volumes were natu-
ral logarithmically transformed to reduce skewness
in their distribution.

All-cause dementia and Alzheimer’s disease
Surveillance and diagnosis protocols for all-cause

dementia and clinical AD in the FHS Offspring
Study from the fifth examination cycle (1992–1995)
through 2018 have been described previously [27].

Network building and module identification

Statistical analyses for this study were performed
in R (4.2.1) [28] and SAS (9.4). Analysis steps
for this study are outlined in Fig. 1. We built a
protein network by applying an unsigned weighted
co-expression network analysis (WGCNA) as imple-
mented in the Pigengene package [10] to the plasma
protein concentrations. In addition to positive correla-
tions, an unsigned approach also allows us to capture
any negative correlations among proteins in the net-
work, which could arise from negative regulatory
mechanisms, for instance. This analysis identified
four modules (i.e., clusters) of mutually correlated
proteins. For each protein module, a summary mea-
sure called an “eigenprotein” was calculated. An
eigenprotein has a single value for each participant,
indicating a weighted average of plasma levels of
the proteins in the corresponding module. Modules
were given shorthand names based on top overrepre-
sented Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways. Details on this process are in the
Supplementary Material. We measured associations
between each module eigenprotein and demographic
variables in FHS and CHS using Welch’s t-tests for
binary variables and Spearman correlation for con-
tinuous variables, and plotted results in a heatmap.

Primary analyses: Relation between
eigenproteins and outcomes

Brain volumes
Eigenproteins were standardized to mean 0 and

standard deviation (SD) 1 before regression analysis.
We used linear regression to relate protein modules
to brain volumes, adjusting for age at blood draw, age
squared, sex, APOE �4 allele carrier status, and time
interval between blood draw and MRI scan. We addi-
tionally fit regression models with an expanded set of
covariates available in a subset of 865 participants,
which included the above covariates and body mass
index, systolic blood pressure, total/HDL cholesterol
ratio, current diabetes, current smoking, current anti-
hypertensive medication use, estimated glomerular
filtration rate (eGFR), and prevalent cardiovascular
disease (a composite of stroke, transient ischemic
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Fig. 1. Outline of analysis of protein data in FHS discovery cohort. Correlation in protein expression values is used to perform a weighted
correlation network analysis (WGCNA), which identifies modules of correlated proteins. Each module is summarized as an eigenprotein,
which is a weighted sum of the concentrations of proteins in a module for each participant. Eigenproteins are used as features in linear
regressions to assess associations with structural brain MRIs and in Cox proportional hazards (PH) regressions for associations with incident
ADRD. Pathway analysis with STRING identifies pathways that are over-represented in modules of interest.

attack, myocardial infarction, acute coronary syn-
drome, angina pectoris, intermittent claudication, or
congestive heart failure). We used Bonferroni correc-
tions, multiplying p-values by four (to a maximum
of 1.0) to account for the four modules tested. This
adjustment is used throughout our study for associ-
ation tests involving modules for ease of comparing
p-values across analyses.

Incident all-cause dementia
We fit two Cox proportional hazards regression

models for each eigenprotein with time to demen-
tia or time to clinical AD as dependent variables. We
adjusted for 1) a minimal set of covariates includ-
ing age at blood draw, sex, and APOE �4 allele
carrier status, and 2) an expanded set of covariates
available in a subset of 1,464 participants, includ-
ing the minimal set of covariates and body mass
index, systolic blood pressure, total/HDL cholesterol
ratio, current diabetes, current smoking, current anti-
hypertensive medication use, eGFR, and prevalent
cardiovascular disease. We confirmed that the pro-
portional hazards assumptions were met by testing for
correlations between Schoenfeld residuals and time
using the cox.zph in the survival package in R.

Hub proteins within modules associated with
outcomes

For significant associations between modules and
outcomes, we aimed to identify hub proteins within
modules that were interconnected within the module
and explained the associations between the module
and outcomes. In previous studies, Module Member-
ship (MM), or a measure of intramodular connectivity
of a protein, has been used to identify hub proteins,
often in combination with some measure of asso-
ciation with the outcome of interest, such as “gene
significance” [29, 30]. Rather than use gene signif-
icance (a measure from an individual protein) as a
measure of biological importance, we used the col-
lective association of a subset of the module with the
outcome of interest.

To do this, we “pruned” the modules, removing
one protein at a time in ascending order of their MM
value (absolute “weight”), recalculating eigenprotein
values and re-fitting regression models at each step.
Regression models were adjusted for the original set
of covariates from our primary analyses. The set of
hub proteins chosen for each outcome was the set of
top weighted proteins that collectively had the lowest
p-value in association with the outcome. For ease of
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comparison with primary results, Bonferroni correc-
tions for four protein modules are displayed in the
figures.

Relation of individual proteins to outcomes

To complement the primary module-based anal-
yses, we also identified associations between
individual proteins and each outcome, utilizing the
same models, dependent variables and standard
covariates as described above for the eigenproteins.
We adjusted p-values for the association between
proteins and each outcome for 1,305 multiple com-
parisons using the Benjamini-Hochberg (i.e., false
discovery rate (FDR)) method [31] within each
outcome, with a significance cutoff of FDR < 0.10
(Supplementary Material).

Replication analysis in Cardiovascular Heart
Study

The CHS is a population-based, longitudinal
cohort enrolled between 1998-1999, as described
previously and in the Supplementary Material [32].
SomaScan 5k platform was used to generate plasma
proteomic data on 3171 participants from samples
stored in 1992–1993. Of these participants, 2726
were part of the Cognition study and were followed
for incident dementia until 1998-1999 and 782 of
those underwent brain MRIs as described previously
and in the Supplementary Material [33, 34]. We sum-
marized demographic variables for FHS and CHS
and tested for differences between cohorts using chi-
square tests for categorical variables and t-tests for
continuous variables, based on summary statistics
from both cohorts.

Our analyses were conducted in four phases: 1) cal-
culating the FHS eigenproteins in the CHS cohort;
2) replicating associations with brain MRI mea-
surements; 3) replicating associations with incident
ADRD; and 4) performing individual protein associa-
tions for proteins that were associated with outcomes
in FHS. Participants who did not consent to use of
their genetic data or who did not have APOE �4
allele carrier status were excluded from replication
steps (n = 196). For analysis of incident ADRD, we
excluded those with prevalent all-cause dementia at
the start of the Cognition Study or who developed
dementia prior to plasma collection for proteomics
(n = 88).

In pursuit of replicating the protein network anal-
ysis in CHS, we used the modules and corresponding

protein weights generated from FHS data and cal-
culated the corresponding eigenproteins in the CHS
cohort as the weighted sum of the Blom inverse-rank
normalized protein concentrations. We fit separate
linear regression models to measure the association
between the modules with significant associations in
FHS (M2 and M4, see Results) with TCBV, and we fit
separate Cox proportional hazards models to measure
the associations between M2 and M4 with incident
mild dementia and incident AD dementia. In all mod-
els, we adjusted for the same sets of covariates in the
CHS analyses as in the FHS analyses. Details on the
replication analyses are included in the Supplemen-
tary Material.

RESULTS

Our discovery cohort included 1,861 individuals
for building the protein network, 1,038 individuals
for the analysis of MRI outcomes, and 1,740 indi-
viduals for the analysis of all-cause dementia and
clinical AD outcomes. Table 1 summarizes the char-
acteristics for each analysis in FHS and CHS at the
time of blood draw. On average, the CHS cohort
was older, with a greater percentage of women, a
lower education level, lower prevalence of smoking,
higher SBP, lower DBP, and greater use of anti-
hypertensive medications, greater HDL and lower
total/HDL cholesterol ratio, higher fasting glucose
and diabetes prevalence, lower eGFR, higher car-
diovascular disease prevalence, smaller total cerebral
brain volume/ICV and hippocampal volume/ICV, and
greater burden of white matter hyperintensities. FHS
had a longer follow-up period and a lower incidence
of AD and all-cause dementia over the follow-up
period compared with CHS.

Protein modules in FHS

The WGCNA procedure identified four modules
containing 272 (M1), 165 (M2), 76 (M3), and 42
proteins (M4). The remaining 750 proteins did not
belong to any of the identified modules (Supple-
mentary Table 1). Modules were associated with
demographic features and cardiovascular risk factors
at baseline (Fig. 2). Higher M1 was associated with
greater age, total/HDL cholesterol ratio, and fasting
glucose in both cohorts. Higher M2 was associated
with lower cardiovascular risk factors in both cohorts,
including lower BMI, less current smoking, less dia-
betes, lower total/HDL cholesterol ratio, and less use
of lipid-lowering and antihypertensive medications.
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Table 1
Description of FHS and CHS samples for analysis

FHS CHS
Protein network Incident all-cause Protein network Incident all-cause

analysis MRI analysis dementia, analysis MRI analysis dementia,
(n = 1,861) (n = 1,038) AD (n = 1,740) (n = 2,117) (n = 666) AD (n = 2,107)

∗Age, y 55 ± 10 54 ± 10 55 ± 10 74 ± 5 74 ± 4 74 ± 5
∗Women (%) 54 55 55 61 61 61
∗BMI (kg/m2) 27.4 ± 5.0 27.2 ± 5.0 27.4 ± 5.0 26.4 ± 4.3 26.4 ± 4.1 26.5 ± 4.3
∗Education (%)

∗No high school diploma 3 3 3 22 18 22
High school diploma 28 28 28 29 28 29
∗Some college 30 30 31 24 26 24
∗College degree 38 38 38 25 29 25

∗Systolic blood pressure (mm Hg) 126 ± 19 124 ± 18 126 ± 19 135 ± 21 131 ± 20 135 ± 21
∗Diastolic blood pressure (mm Hg) 74 ± 10 74 ± 10 74 ± 10 71 ± 11 70 ± 10 71 ± 11
∗Antihypertensive treatment (%) 19 16 16 38 35 38
Total cholesterol 205 ± 37 204 ± 36 205 ± 36 203 ± 39 203 ± 37 203 ± 39
∗HDL cholesterol 50 ± 15 51 ± 15 50 ± 15 54 ± 14 54 ± 15 54 ± 14
∗Total/HDL cholesterol 4.4 ± 1.5 4.4 ± 1.5 4.4 ± 1.5 4.0 ± 1.2 4.0 ± 1.2 4.0 ± 1.2
Lipid-lowering medication (%) 7 6 6 8 8 8
APOE �4 allele carrier (%) — 23 23 — 24 24
∗Fasting blood glucose 95 (89, 103) 95 (89, 102) 95 (89, 103) 98 (91, 107) 97 (91, 105) 98 (91, 107)
∗Diabetes (%) 7 6 7 14 10 14
∗eGFR (mL/min/1.73m2) 89 ± 20 90 ± 18 89 ± 20 64 ± 14 64 ± 13 64 ± 14
∗Current Smoking (%) 19 16 19 9 8 9
∗Prevalent CVD 6 4 6 12 10 12
∗Incident all-cause dementia, N (%) — — 128 (7.4) — — 260 (12.3)
∗Incident AD, N (%) — — 94 (5.4) 221 (10.5)
∗Follow-up time, y — — 19.7 (14.0, 22.7) — — 6.2 (5.7, 6.6)
∗Total cerebral brain volume (cm3) — 952 ± 102 — — 841 ± 89 —
∗Total cerebral brain volume/ICV (%) 77% ± 3% 59% ± 3%
∗Hippocampal volume (cm3) — 6.6 ± 0.7 — — 6.8 ± 0.9 —
∗Hippocampal volume/ICV (%) 0.54% ± 0.05% 0.48% ± 0.07%
∗White matter hyperintensities (cm3) — 0.56 (0.32, 1.09) — — 4.1 (2.4, 7.8) —
∗White matter hyperintensities/ICV (%) — 0.04% (0.02%, 0.08%) — — 0.29% (0.17%, 0.54%) —

Summary statistics for continuous variables are mean ± standard deviation or median (Q1, Q3). For categorical variables, percentages are reported unless otherwise indicated. ∗p < 0.05 for a t-test
for continuous variables or for a chi-sq test for categorical variables, based on summary statistics. For demographic variables, tests compare values from protein network analysis samples. BMI,
body mass index; ICV, intracranial volume; eGFR, estimated glomerular filtration rate; CVD, cardiovascular disease.
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Fig. 2. Associations between protein modules and demographic variables. Top panel summarizes Welch’s t statistics for two-sample t-tests
for mean protein modules across levels of binary demographic variables. Bottom panel summarizes Spearman correlations between protein
modules and continuous demographic variables. Asterisks denote associations for which p < 0.05.

Higher M2 was additionally associated with higher
educational attainment and lower eGFR. M3 was
associated with higher total/HDL cholesterol ratio
and BMI in both cohorts, and M4 was associated
with greater total/HDL cholesterol, BMI, fasting glu-
cose and eGFR in both cohorts. Associations between
the modules and age and sex differed between the
cohorts, with no module having consistent age- and
sex- associations in both cohorts, except for a positive
age association with M1.

Module associations with structural MRI and
incident dementia

Of the four modules, two were significantly asso-
ciated with TCBV in FHS. Module 2 (M2) had a
positive association with TCBV. A one SD increase in
the M2 eigenprotein was associated with an increase
in TCBV of 0.18% (95% CI: 0.06%, 0.30%, adjusted
p = 0.014). Module 4 (M4) showed a negative asso-
ciation with TCBV, with one SD increase in M4
eigenprotein associated with a decrease in TCBV
of –0.27% (95% CI: –0.38%, –0.15%, adjusted
p = 4.2 × 10–5) (Table 2). No modules were associ-
ated with HV or WMH. The association between M2

and TCBV was attenuated upon adjustment for addi-
tional cardiovascular risk factors and was no longer
significant, whereas the association between M4 and
TCBV was similar after further adjustment (Supple-
mentary Table 2).

Of the 1,740 participants free from ADRD at the
time of blood draw for proteomic assessment who
were followed for a median of 19.7 years, 128 devel-
oped all-cause dementia, including 94 with probable
AD. After correcting for multiple testing, no modules
were significantly associated with risk of all-cause
dementia or clinical AD (Table 2).

Overrepresented pathways in protein modules

Results from overrepresentation analysis of pro-
teins in M1–M4 for Gene Ontology Process, Func-
tion, and Component annotations, as well as KEGG,
Reactome, and Wikipathways annotations are pre-
sented in Supplementary Table 3A-D. M2 included 8
overrepresented KEGG pathways with FDR p < 0.05,
the most significant of which were related to axon
guidance (FDR = 1.89×10–11) and complement and
coagulation cascades (FDR: 2.12 × 10–10). M4 con-
tained 14 overrepresented KEGG pathways, the
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Table 2
Summary of significant module associations with outcomes

Module 2: “Clearance/Synaptic Maintenance” Module 4: “Inflammation”

Number of proteins 165 42
Proteins and pathways
Top proteins in each module

based on absolute weight
Netrin receptor UNC5D

Ephrin-A5
Breast cancer anti-estrogen resistance protein 3

Abelson tyrosine-protein kinase 2
Ciliary neurotrophic factor receptor subunit alpha Serine/threonine-protein kinase 17
NT-3 growth factor receptor OCIA domain-containing protein 1
SLIT and NTRK-like protein 5 Estradiol 17-beta-dehydrogenase 1

Top KEGG Pathways from Axon guidance (18/177) Cytokine–cytokine receptor interaction (7/282)
module (relevant genes/full FDR p = 1.9 × 10–11 FDR p = 0.00097
gene set) from STRING Complement and coagulation cascades (13/82)
database FDR p = 2.1 × 10–10

FDR p < 0.001 Cytokine–cytokine receptor interaction (17/282)
FDR p = 7.3 × 10–8

Cell adhesion molecules (11/137)
FDR p = 4.3 × 10–6

MRI outcomes
Total Cerebral Brain Volume (%

ICV)
Beta (95% CI) 0.18 (0.06 to 0.30) –0.27 (–0.38 to –0.15)
Bonferroni p 0.014 4.2×10–5

Number of hub proteins 43 17
Hippocampal Volume (% ICV)
Beta (95% CI) –0.002 (–0.005 to 0.001) 2.4 × 10–6 (–0.003 to 0.003)
Bonferroni p 0.90 1.0
Log (WMH [% ICV])
Beta (95% CI) 0.02 (–0.04 to 0.07) 0.04 (–0.02 to 0.10)
Bonferroni p 1.0 0.66
Incident dementia outcomes
Incident all-cause dementia
HR (95% CI) 0.82 (0.68 to 0.99) 1.22 (1.04 to 1.44)
Bonferroni p 0.16 0.06
Incident AD
HR (95% CI) 0.85 (0.68 to 1.06) 1.26 (1.04 to 1.52)
Bonferroni p 0.58 0.07

KEGG, Kyoto Encyclopedia of Genes and Genomes; ICV, intracranial volume; AD, Alzheimer’s disease; WMH, white matter hyperinten-
sities. Names for modules come from top overrepresented KEGG pathways, methods detailed in the Supplementary Material.

most significant of which were cytokine-cytokine
receptor interactions (FDR = 9.7 × 10–4) and osteo-
clast differentiation (FDR = 0.0014) (Supplementary
Table 3B, D).

Pruned subsets and individual proteins in each
module

For the significant module-outcome associations,
we identified hub proteins in the modules that maxi-
mized interconnectedness within the modules as well
as significance of the association with the outcome. In
M2, the 43 top weighted proteins had the most signif-
icant association with TCBV; in M4, the 17 proteins
with the greatest MM had the most significant asso-
ciation with TCBV (Fig. 3). Hub proteins from M2
and M4 are listed in Supplementary Table 1.

Of the 1,305 proteins examined individually, 11
were significantly associated with TCBV (Table 3,
Supplementary Table 4A). Among these, four
belonged to M2 (tissue-type plasminogen activator,
gelsolin, RGM domain family member B, and coagu-
lation factor IXab), two belonged to M4 (macrophage
scavenger receptor types I and II, and OCIA domain-
containing protein 1), and the remaining five did not
belong to any module. ADP-ribosyl cyclase/cyclic
ADP-ribose hydrolase 1 was associated with HV and
did not belong to any module (Table 3, Supplemen-
tary Table 4B). No proteins were associated with
WMH (Supplementary Table 4C).

Of the 1,305 proteins that were analyzed, none was
individually significantly associated with all-cause
dementia with FDR <0.10, and two were associated
with clinical AD dementia: Cathepsin D (HR: 1.78
(1.36–2.34), FDR q-value = 0.04) and A disintegrin
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Fig. 3. Subsets of hub proteins in M2 and M4 associated with TCBV in FHS. (a) p-values for association of M2 with TCBV, as M2 is
gradually decreased from 165 to 2 proteins, with proteins removed in order of absolute weight (i.e., Module Membership) in the eigenprotein
from least to greatest. The most significant association with TCBV corresponded to the top 43 M2 proteins. (b) p-values for association of M4
with TCBV, as M4 is gradually decreased from 42 to 2 proteins in a similar manner as in (a). The most significant association with all-cause
TCBV corresponded to the top 17 M4 proteins. All p-values were adjusted for the four modules examined using Bonferroni corrections.
Hub proteins identified from these analyses are listed in Supplementary Table 1.

Table 3
Singular proteins significantly associated with MRI volumes and ADRD in FHS

Analyte Name Module Estimate Standard t-value (TCBV, HV) Raw p False
error or z-value (AD) discovery rate

Total cerebral brain volume
Insulin-like growth

factor-binding protein 4
– –0.329 0.060 –5.510 4.54 × 10–08 5.92 × 10–05

Tissue-type plasminogen
activator

2 –0.298 0.062 –4.772 2.08 × 10–06 0.003

Antileukoproteinase – –0.283 0.060 –4.707 2.86 × 10–06 0.004
Afamin – –0.277 0.060 –4.628 4.17 × 10–06 0.005
Gelsolin 2 0.274 0.060 4.555 5.88 × 10–06 0.008
Polymeric immunoglobulin

receptor
– –0.266 0.060 –4.412 1.13 × 10–05 0.015

Alpha-(1 3)-fucosyltransferase 5 – –0.259 0.061 –4.232 2.52 × 10–05 0.033
OCIA domain-containing protein

1
4 –0.247 0.060 –4.132 3.89 × 10–05 0.051

Macrophage scavenger receptor
types I and II

4 –0.242 0.060 –4.056 5.36 × 10–05 0.070

RGM domain family member B 2 0.242 0.060 4.049 5.53 × 10–05 0.072
Coagulation factor IXab 2 –0.243 0.060 –4.030 5.99 × 10–05 0.078
Hippocampal volume
ADP-ribosyl cyclase/cyclic

ADP-ribose hydrolase 1
– –0.0076 0.0018 –4.21 2.99 × 10–05 0.039

Incident clinical AD
Cathepsin D – 0.577 0.139 4.16 3.14 × 10–05 0.041
A disintegrin and

metalloproteinase with
thrombospondin motifs 15

– 0.458 0.113 4.05 5.14 × 10–05 0.067

and metalloproteinase with thrombospondin motifs
15 (ADAMTS-15) (HR: 1.58 (1.27–1.97), FDR q-
value = 0.07) (Table 3, Supplementary Tables 5A and
5B).

Replication analysis in CHS

There were no significant linear associations
between the M2 or M4 modules defined in FHS, and
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TCBV, risk of dementia, or risk of clinical AD demen-
tia in the CHS sample (Supplementary Table 6). The
individual proteins associated with TCBV, HV, and
AD dementia in the discovery cohort did not replicate
(Supplementary Table 7).

DISCUSSION

In this investigation, we used a network approach
and individual analysis of about 1,300 plasma pro-
teins in older adults in the community-based FHS
Offspring Cohort to identify pathways and potential
biomarkers involved in brain aging and ADRD. We
identified two modules and several proteins associ-
ated with the structural MRI endophenotype TCBV.
No module was significantly associated with all-
cause dementia or AD dementia after correcting for
multiple testing, however, the effect directions are
concordant with those observed in the TCBV anal-
yses (HR: 0.82; 95% CI: 0.68 to 0.99 for M2 with
all-cause dementia, HR: 1.22; 95% CI: 1.04 to 1.44
for M4 with all-cause dementia). The findings in FHS
did not replicate in CHS, possibly due to the differing
protein dynamics in this older cohort, which shows
the need for further replication to understand poten-
tial associations between the plasma proteome and
ADRD and its endophenotypes across the life course.

Of the protein modules evaluated, the M4 mod-
ule showed the strongest associations with TCBV
in FHS. It was enriched in proteins pertaining to
cytokine-related pathways including cytokine IL-
1� and other interleukins (IL-3, IL-22RA1, IL-2RA
(CD25)), as well as members of the TNF receptor
superfamily. Indeed, inflammation is believed to play
a critical role in the development of dementia through
microglial activation, and age-related increases in
pro- and anti-inflammatory cytokines have been
reported [35–38]. For example, a 2014 meta-analysis
reported that in several studies, IL-1� was found to
be elevated in serum or plasma of patients with AD
dementia and MCI, and was unchanged in others [39].
The same meta-analysis reported that circulating IL-3
was generally unchanged in patients with AD demen-
tia and MCI relative to controls, though individual
studies showed mixed results. Other inflammatory
markers commonly implicated in ADRD, such as IL-
6, TNF-�, and CRP [40, 41], were not associated
with brain MRI endophenotypes or incident ADRD in
our study, either individually or within protein mod-
ules, although IL-6 receptor was represented in M2.
A recent integrative omics study in AD brains found

that CSF1, a cytokine belonging to four of the top
five pathways over-represented in M4, is implicated
in microglial activation in AD via upregulation in
astrocytes [42].

The M2 module was associated with higher
TCBV in the discovery cohort. M2 is enriched
in proteins involved in phagocytosis and synap-
tic maintenance. The axon guidance pathway (the
most over-represented in M2) is important for neu-
ronal development, neuroinflammation and, possibly,
neurodegeneration. A large GWAS meta-analysis of
late-onset AD [43, 44], as well as a gene expression
study in brains with early-onset AD dementia [45],
and several mouse studies have identified a num-
ber of axon guidance pathway proteins associated
with AD dementia, including Ephrins, Netrins, and
semaphorins [46].

The complement and coagulation cascade pathway
also showed strong over-representation in M2. Com-
plement cascades are known to be upregulated in the
CNS in aging and AD, and may play a role in early
synaptic loss through inducing microglial phagocy-
tosis in response to amyloid-� deposition [38, 47,
48]. Our results suggest a somewhat counterintuitive
neuroprotective role for M2. One possible explana-
tion is that the greatest weighted complement protein
in M2,CD55, is an inhibitor of the complement cas-
cade [49]. In addition, several other complement
proteins were negatively weighted within M2, mean-
ing that lower M2 eigenprotein values (associated
with worse outcomes) indicated higher expression
of these complement proteins. Our results are con-
sistent with a recent plasma proteome study that
found over-representation of the complement and
coagulation cascade pathway in AD-associated pro-
teins [50]. Finally, cell adhesion molecules were also
over-represented among proteins in M2. Synaptic cell
adhesion molecules are implicated in synaptic main-
tenance and neuronal plasticity, and data from murine
models suggest that members of the NCAM family,
represented in M2, may be responsible for mediat-
ing age-related changes in memory [51]. M2 was not
significantly associated with total brain volume after
adjustment in the linear models for an expanded set of
covariates relating to cardiovascular risk. This, along
with the observed correlations between M2 and var-
ious cardiovascular risk factors (Fig. 2), suggest that
the association between M2 and brain aging may be
related to its association with overall cardiovascular
health.

Previous proteomic co-abundance network anal-
yses in the brain and CSF have identified modules
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associated with prevalent AD, asymptomatic AD, and
cognitive function. Some “hub” proteins found to
differentiate those with AD versus healthy controls
in Cheng et al. [16] and Jiang et al. [17] were also
present in the module M2 we identified, including
Insulin-like growth factor-binding protein 2, Osteo-
pontin, Serum amyloid P-component, and Leukemia
inhibitory factor receptor. “Hub” proteins in the mod-
ules from Swarup et al. [15] and Johnson et al. [18, 19]
did not overlap with proteins in the M2 and M4 mod-
ules we identified. In Swarup et al. and Zhang et al.,
however, modules related to MAPK signaling, cell
adhesion, immune response, inflammatory response
(including complement proteins) were identified and
found to be associated with AD status, which is con-
cordant with our TCBV results [14, 15].

A recent study in the ARIC and AGES cohorts
used Ingenuity Pathways Analysis to identify pro-
tein modules and related pathways associated with
incident dementia [20]. In contrast to our network
model, which is agnostic to associations with out-
comes or previously documented annotations, this
study performed network analyses using proteins that
were individually associated with dementia, and con-
structed a network based on previously annotated
relationships. Some of the pathways identified in that
study overlap with ours, including complement and
coagulation cascades, PI3K-Akt signaling pathways,
and cytokine-cytokine receptor interaction pathway
(Supplementary Table 3B,D). Although the individ-
ual dementia-associated proteins in that study did not
overlap with those in our analysis, the identification
of similar pathways in both studies is reassuring. This
supports our hypothesis that analyzing groups of pro-
teins provide more statistical power, and thus is more
robust, than analyzing them individually.

Associations of M2 and M4 with TCBV were not
replicated in the CHS cohort. Participants from the
CHS cohort were on average 19 years older than
participants from the FHS cohort, and the mean
follow-up time (to dementia or end of follow up) was
5.5 years in CHS, compared to nearly 20 years in
FHS. It is possible that associations between eigen-
proteins and dementia endophenotypes may vary over
the life course. Indeed, a recent study found that
plasma proteins implicated in aging vary greatly over
the life course, and in particular a group of pro-
teins enriched for axon guidance and ephrin signaling
pathways (overrepresented in M2 in our study) had
stable concentrations until age 70 followed by a sharp
increase over subsequent decades [52]. This agrees
with our finding that M2 was positively correlated

with age in the older CHS sample, but not in the
middle-aged FHS (Fig. 2). The roles of proteins in
aging appear to be nonlinear, and further research is
needed to unpack the interplay between age, plasma
protein dynamics and ADRD risk.

The strengths of our study include use of large,
well-characterized community-based samples with
robust longitudinal follow-up data, an agnostic com-
putational approach to identifying proteins related to
ADRD and related MRI endophenotypes from a large
panel, and consistent ascertainment of dementia over
time. Further analysis of genetic factors that influ-
ence circulating protein concentrations could be used
to understand potential causal relationships between
the proteins identified by this study and ADRD. Our
study has some limitations. Our research was not
designed to address causal pathways specific to amy-
loid or tau pathways. Instead, because of use of an
“agnostic” approach, these results may reflect sys-
temic states such as inflammation that may have
independent, additive, or interactive effects on AD
pathologies leading to dementia. WGCNA clusters
proteins in such a way that proteins cannot belong
to multiple clusters, which may not reflect biologi-
cal realities. The proteins included in the SomaScan
platform were selected specifically because they were
of interest for health outcomes. Thus, we do not
have a comprehensive or random sample of proteins
and they are enriched in biological pathways such
as hemodynamics. In addition, the Framingham Off-
spring Cohort is an ethnically homogenous sample of
white participants of European ancestry, and findings
may not be generalizable to people from other racial
and ethnic groups.

Conclusion

This study uses a large plasma proteome panel in
conjunction with network analysis methods to iden-
tify groups of proteins associated with neuroimaging
markers and incident ADRD in community-based
cohorts of cognitively healthy older adults. We iden-
tified two groups of proteins associated with TCBV,
an endophenotype for dementia. These protein mod-
ules were not significantly associated with ADRD
risk in our analysis, though the observed directions
of effect were concordant with the associations with
TCBV. From the relevant protein modules, we iden-
tified inflammatory pathways, phagocytosis, axon
guidance, and complement and coagulation cascades
as having potential roles in earlier stages of abnor-
mal brain aging. Future studies are warranted to
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replicate our network approach in additional cohorts
using blood and CSF protein panels from cognitively
healthy older adults.
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