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Abstract.
Background: Long-term exposure to air pollution has been associated with changes in levels of metabolites measured in the
peripheral blood. However, most research has been conducted in ethnically homogenous, young or middle-aged populations.
Objective: To study the relationship between the plasma metabolome and long-term exposure to three air pollutants: partic-
ulate matter (PM) less than 2.5 �m in aerodynamic diameter (PM2.5), PM less than 10 �m in aerodynamic diameter (PM10),
and nitrogen dioxide (NO2) in an ethnically diverse, older population.
Methods: Plasma metabolomic profiles of 107 participants of the Washington Heights and Inwood Community Aging Project
in New York City, collected from 1995–2015, including non-Hispanic white, Caribbean Hispanic, and non-Hispanic Black
older adults were used. We estimated the association between each metabolic feature and predicted annual mean exposure
to the air pollutants using three approaches: 1) A metabolome wide association study framework; 2) Feature selection using
elastic net regression; and 3) A multivariate approach using partial-least squares discriminant analysis.
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Results: 79 features associated with exposure to PM2.5 but none associated with PM10 or NO2. PM2.5 exposure was associ-
ated with altered amino acid metabolism, energy production, and oxidative stress response, pathways also associated with
Alzheimer’s disease. Three metabolites were associated with PM2.5 exposure through all three approaches: cysteinylglycine
disulfide, a diglyceride, and a dicarboxylic acid. The relationship between several features and PM2.5 exposure was modified
by diet and metabolic diseases.
Conclusions: These relationships uncover the mechanisms through which PM2.5 exposure can lead to altered metabolic
outcomes in an older population.
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INTRODUCTION

Air pollutants have been associated with mortal-
ity [1] and diseases [2] involving the pulmonary
[3], cardiovascular [4], and nervous systems [5].
These associations have been attributed to system-
wide changes induced by air pollution exposure
including oxidative stress [6], inflammation [7], and
changes in circulating metabolites [8]. Long term
exposure to fine particulate matter with aerodynamic
diameter ≤2.5 �m (PM2.5), particulate matter with
aerodynamic diameter ≤10 �m (PM10), and nitro-
gen dioxide (NO2) has been associated with decline
in cognitive function [9, 10] and increased risk of
Alzheimer’s disease (AD) [11], exposure to PM2.5
and NO2 have been associated with higher incidence
of dementia and AD [12], and exposure to PM2.5
has been associated with clinical aggravation of age-
related neurodegenerative diseases [13].

The metabolome comprises all metabolites and
other small molecules in a biological matrix that may
derive from both endogenous biochemical processes,
exogenous exposures that are absorbed and metabo-
lized by the body, as well as biochemical changes that
result from environmental exposures [14]. The appli-
cation of high-resolution mass spectrometry-based
untargeted metabolomics allows us to capture a com-
prehensive profile of circulating small molecules,
which include both known and as yet unknown
circulating small molecules [15]. Thus, by apply-
ing untargeted metabolomics, we can determine
circulating small molecules associated with long-
term exposure to air pollutants in an agnostic
manner. A metabolic signal in the periphery as
a result of exposure to air pollutants is plausi-
ble since inhaled particles have been reported to
pass into circulation from the lungs [16]. Besides,
particles that reach the lower airways and alve-
oli can induce inflammation and oxidative stress,
activating local and systemic metabolic changes
[17, 18]. Indeed, studies have identified a circulat-

ing metabolic signature associated with exposure
to traffic-related air pollutants [19]. However, few
studies have investigated the relationship between
long-term exposure to air pollution and circulat-
ing metabolic signals in an ethnically diverse aging
population using an untargeted global metabolomic
approach.

Individuals with chronic diseases may be more sen-
sitive to effects of air pollution [20], possibly due
to deficiencies in antioxidants and elevated levels of
inflammation [21]. However, few studies have con-
sidered whether associations between exposure to air
pollutants and circulating metabolites are modified
by underlying metabolic diseases. Identifying fac-
tors that can modify this relationship would allow
us to determine whether people with age-related dis-
eases are particularly vulnerable to the effects of
air pollution exposure given that people are living
longer lives and bear a large burden of age-related
co-morbidities [22]. Besides, the older adults are
particularly susceptible to the effects of chronic
environmental exposures in part due to age-related
deterioration in physiological function as well as the
presence of co-morbidities that exert a strain on the
body’s ability to respond to environmental insults
[23]. One recently published study found that long-
term exposure to air pollution is associated with
metabolic perturbations in older adults; however,
their study population only included non-Hispanic
white men [24]. Disparities in exposure to air pollu-
tants [25–27] and mortality due to exposure to PM2.5
[1, 28] among racial/ethnic groups has been well doc-
umented. Thus, studying the effects of air pollution
exposure in an ethnically diverse aging community is
necessary.

We performed analyses to identify circulating
metabolites associated with long-term exposure to
PM2.5, PM10, and NO2 and investigated whether
these relationships are modified by prevalent car-
diometabolic and neurodegenerative diseases. We
used data from the Washington Heights and Inwood
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Community Aging Project (WHICAP) in New York
City, a multi-ethnic community-based cohort of older
adults created to study risk factors of dementia and
AD. We used three different regression methods to
find reliable metabolic features associated with expo-
sure. If any features were significantly associated
(false discovery rate at 5%) with an exposure through
a metabolome-wide association study framework,
we additionally performed a penalized regression
for feature selection, using elastic net regression,
and multivariate supervised dimensionality reduc-
tion, using partial least squares differential analysis,
to find metabolic features important in predicting
exposure. We then report concordance of results from
all three approaches. Such a multipronged approach
has been used as an alternative to traditional hypoth-
esis testing for selection of metabolic features of
importance [29]. Additionally, we tested for the pres-
ence of effect modification by factors that are known
to affect metabolism: sex [30], racial/ethnic group
[31], dementia [32], a history of diabetes, hyper-
tension or heart disease [33, 34], and diet [35].
We also tested for modification by the presence
of an APOE �4 allele since it has been associated
with metabolism [36] and was found to modify the
relationship between exposure to air pollutants and
cognitive function in the cohort [37]. In doing so, we
aimed to identify factors and morbidities that may
modify the relationship between exposure and circu-
lating metabolites.

MATERIALS AND METHODS

Study population

We leveraged previously existing metabolomics
data in 119 older adults from the WHICAP cohort
[32]. WHICAP is a representative community-based
cohort in the northern Manhattan region of New York
City comprising of individuals aged 65 years and
older enrolled through a collaborative effort with
the Centers for Medicare and Medicaid and through
marketing rolls. All participants were enrolled after
obtaining informed consent and an interview was
conducted in either English or Spanish. A detailed
clinical assessment with standardized medical and
neurological history was collected by a trained physi-
cian. At each visit, blood was drawn and sent to the
laboratory within 2 h for DNA extraction and stor-
age of plasma and serum. At the first visit, residential
information was also obtained. Results from all inter-
views, clinical visits, and tests were reviewed through

a consensus conference comprised of clinicians with
expert knowledge in the diagnosis of AD and related
dementias, who made an AD diagnosis based on
accepted criteria [38]. The study comprised partic-
ipants equally divided among non-Hispanic white,
non-Hispanic Black and Caribbean Hispanic ancestry
based on self-report, classified based on the 1990 U.S.
Census guidelines. Metabolomics data was available
for 59 participants who were diagnosed with clinical
AD and 60 who were heathy at the time of assessment.

High resolution mass spectrometry-based
metabolomics

The details on the acquisition of the untargeted
metabolomics has been previously described [32, 39].
The data were generated in the Clinical Biomark-
ers Laboratory at Emory University. Briefly, the
metabolites were extracted from plasma using ace-
tonitrile and the extracts were injected in triplicate on
two chromatographic columns: a hydrophilic inter-
action column (HILIC) under positive ionization
(HILIC+) and a C18 column under negative ion-
ization (C18-), to obtain three technical replicates
per sample per column. After separation and ion-
ization, the ions produced were analyzed in full
scan mode for molecules within 85–1250 kDa on
a Thermo Orbitrap HF Q-Exactive mass spectrome-
ter. The untargeted metabolomic data were processed
through a computational pipeline that leverages open
source feature detection and peak alignment software,
apLCMS [40] and xMSanalyzer [41]. The feature
tables were generated containing information on the
mass-to-charge (m/z) ratio, retention time, and the
abundance/intensity of each ion for each sample.
Correction for batch effects was performed using
ComBat, which uses an empirical Bayesian frame-
work to adjust for known batches in which the
samples were run [42]. Each of these ions are referred
to as metabolic features. For the analysis, metabolic
features detected in at least 70% of the samples were
retained, leaving 6,375 features from the HILIC+
column and 3,759 features from the C18- column
for further analysis. Zero-intensity values were con-
sidered below the detection limit of the instrument
and were imputed with half the minimum intensity
observed for each metabolic feature. The intensity of
each metabolic feature was log10 transformed, quan-
tile normalized, and auto-scaled for normalization
and standardization.
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Exposure assessment

The methods used for exposure assessment have
been described in detail previously [9]. In brief, par-
ticipants’ residential addresses obtained during the
first neuropsychological examination were geocoded
and long-term air pollution exposures in the calendar
year prior to a clinical visit were estimated for NO2
(ppb), PM10 (�g/m3), and PM2.5, (�g/m3), using
regionalized universal kriging models [43, 44]. Mea-
surements of the air pollutants were obtained from the
US EPA Air Quality System database. For geocodes
without monitoring data, the annual averages were
used in the kriging models to predict concentrations.
To improve predictions, information on land use, dis-
tance to roadways, and other geographic variables
were included using partial least square methods. The
cross-validated MSE-based R2 was 0.88 and 0.85 for
PM2.5 and NO2, respectively [43, 44]. The models did
not apply a grid but made predictions at the actual
residential location based on calculated geographic
covariates at that location. The exposure data were
analyzed as continuous variables in linear and penal-
ized regressions and dichotomized for the partial least
square discriminant analysis. In this study we consid-
ered 107 participants for whom both metabolomics
data and air pollution exposure estimates were avail-
able. These participants had characteristics similar
to all those with metabolomics and exposure data
available.

Statistical analysis

We used a metabolome-wide association study
(MWAS) framework with correction for multiple
comparisons by controlling the false discovery rate
(FDR) at 5%. In case significant associations between
metabolic features and an air pollutant were observed,
we then performed two additional tests, elastic net
regression (e-net) and partial least squares discrimi-
nant analysis (PLS-DA). All models were adjusted
for the year of blood draw in order to adjust for
temporal variation in the data. We also adjusted all
models for total number of education years com-
pleted as a proxy for socioeconomic status. The
overlap of metabolic features in the results from all
three analyses was determined using the VennDe-
tail package (version 1.14.0) which extracts details
of multi-set interactions that can be used for visual-
ization. All analyses were conducted in R (version
3.6.3).

Metabolome-wide association with exposure to
air pollutants

We estimated the relationship between estimated
long-term exposure to PM2.5, PM10, and NO2
and each metabolic feature using multiple single-
pollutant models, adjusted for potential confounders
and predictors of the outcome including age (years),
sex (women/men), racial/ethnic group (non-Hispanic
white, non-Hispanic Black, Caribbean Hispanic),
clinical diagnosis of AD (case/control (no demen-
tia)), year of blood draw, and years of education.
We used single pollutant models since the mecha-
nisms and pathways of toxicity through which these
pollutants have been related to health tend to be dis-
tinct. Besides, there was a strong positive correlation
between all three pollutants and that raised issues of
collinearity in our models (Supplementary Table 2).
The analyses were conducted separately for data from
each column. We corrected for multiple comparisons
using an FDR of 5% and q-values were estimated
using the Benjamini-Hochberg (BH) method.

Penalized regression for selection of metabolic
features that predict exposure to PM2.5

The MWAS only detected significant associations
with PM2.5; we thus, performed elastic net regres-
sion to determine which features from both columns
were predictors of PM2.5 exposure. The covariates
included were the same as the MWAS framework. We
used five-fold cross-validation, repeated five times,
using the caret package (version 6.0–90) with a cus-
tom grid search where alpha ranged from 0.1 to 1
with 0.1 increments, and lambda ranged from 0.0001
to 1 with 0.053 increments, to determine the opti-
mal penalization and mixing parameters [45]. Based
on the root mean square error, the parameters chosen
were a lambda of 0.158 and alpha of 1 (i.e., lasso was
the optimal fit).

Partial least squares discriminant analysis
Finally, we conducted a partial least squares dis-

criminant analysis to determine which metabolic
features were important in discriminating between
low and high exposure to PM2.5 using a multivariate
approach. We created a binary categorization of the
PM2.5 exposure by first calculating the residuals from
regressing PM2.5 exposure on year of blood draw,
since there was a strong negative correlation between
PM2.5 exposure and year of blood draw. Second, we
categorized exposure as high or low at the median of
the residuals. Then, we regressed the intensity of each
metabolic feature from both columns on the same



V. Kalia et al. / Circulating Metabolites Linked to Air Pollution 1029

covariates as above in “Metabolome-wide association
with exposure to air pollutants” and stored the residu-
als. Finally, we used the de-trended metabolic feature
intensities in a PLS-DA model using the mixOmics
package (version 6.11.1), which contains methods
for multivariate methods for omics data [46]. We
used a variable importance (VIP) score cut-off of
3.0 for component 1 and 2.5 for component 2, to
deem a metabolic feature important in discriminat-
ing between high and low exposure. These cut-offs
were chosen to find the most important features based
on the distribution of VIP scores.

Pathway analysis
To determine the biological relevance of the

metabolic features associated with PM2.5, we con-
ducted pathway analysis using the “functional
analysis” module in MetaboAnalyst (version 5.0)
[47], a web-based interface for comprehensive
metabolomic data analysis. We used the MWAS
results from both columns and applied a nominal
p-value cut-off of 0.01 to determine metabolic path-
way enrichment using the mummichog algorithm and
the human MFN reference database [48]. We present
results for pathways with a Fisher’s exact test p-value
< 0.1.

Metabolite annotation
Metabolite annotations were made using an

internal library and by matching to the Human
Metabolome Database (HMDB) [49], the Kyoto
Encyclopedia of Genes and Genomes (KEGG)
database, and LIPIDMAPS using the R package
xMSannotator (version 1.3.2) [50]. This uses a mul-
tistage clustering algorithm method to determine
metabolic pathway associations, intensity profiles,
retention time, mass defect, and isotope/adduct pat-
terns to assign putative annotations to metabolic
features. In cases where a feature had multiple
matches, we used the following rules to assign an
annotation: first, we screened features based on the
confidence score assigned by xMSannotator, and the
annotation with the highest score was used. Second,
if all annotations had the same score, we chose the
annotation with the lowest difference in expected
and observed mass (delta parts per million (ppm)).
Finally, if all features had the same score and delta
ppm, we indicated the identity as “multiple matches”
since we couldn’t decipher a unique putative annota-
tion (10.5%). If a feature did not match any database
entries, it was denoted as “unknown” (35.2%). The
confidence in annotation was based on criteria defined

by Schymanski et al. [51], where level 1 corresponds
to a confirmed structure identified through MS/MS
and/or comparison to an authentic standard; level 2
to a probable structure identified through spectral
matches to a database; level 3 to a putative iden-
tification with a speculative structure; level 4 to an
unequivocal molecular formula but with insufficient
evidence to propose a structure; and level 5 to an exact
mass but not enough information to assign a formula.

Effect modification and sensitivity analysis
We tested for the presence of effect modification

only in the metabolic features that were signifi-
cantly associated with long-term exposure to PM2.5
after correction for multiple comparisons through
the MWAS approach. This 2-step approach that uti-
lizes a screening step has been shown to improve
power to detect gene-by-environment interactions
[52]. We compared models with and without an inter-
action term between PM2.5 and the effect modifier
using likelihood ratio tests and controlled the FDR
at 20% to look for noteworthy interactions using the
Benjamini-Hochberg method.

We tested whether racial/ethnic group, sex, his-
tory of heart disease, hypertension or diabetes, an AD
diagnosis, or an APOE �4 allele were effect modi-
fiers of the observed associations. We ran separate
linear models for each modifier, adjusted for the same
covariates as above in “Metabolome-wide associa-
tion with exposure to air pollutants” and included an
interaction term for each modifier and PM2.5. This
model was compared to a lower-order model with
the modifier included only as a covariate, without an
interaction term.

To test for effect modification by diet we used data
from a 61-item version of the Willet semiquantitative
food frequency questionnaire (SFFQ). This question-
naire has been validated for use in older adults [53]
and in the WHICAP cohort [54–56]. The validity
of the SFFQ data has been previously determined
in a subsample of the WHICAP cohort (n = 78) and
a moderate intraclass correlation was observed for
energy-adjusted nutrients (0.30 for total calories, 0.28
for carbohydrates, 0.41 for fats, and 0.33 for protein)
[55]. The questionnaire was administered in English
or Spanish to participants of the WHICAP cohort
to determine average food consumption in the year
prior to baseline assessment. The 61 food items were
categorized into 30 groups and intake of each group
was calculated by summing intakes of member food
items. The daily intake of nutrients was determined
by multiplying the frequency of consumption of each
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portion of every food by the nutrient content of each
portion [57, 58]. In our study, we had the SFFQ data
available for 77 of the observations (72%). We used
data on estimated intake of four macronutrients: total
carbohydrate, total protein, animal fat, and vegetable
fat. The estimated intake of the macronutrients was
adjusted for total caloric intake using the residual
method. We used principal component analysis to
create linear combinations of the four macronutri-
ents to discern patterns in macronutrient intake using
the prcomp() function in R. Each of the principal
components (PC) was used to test for effect modifi-
cation by including an interaction term between each
PC and PM2.5 in a linear model like that above and
additionally, adjusting for total caloric intake.

Sensitivity analysis was conducted to determine
whether smoking history confounded the relation-
ship observed between long-term PM2.5 exposure
and the metabolic features by additionally adjusting
the model above in “Metabolome-wide association
with exposure to air pollutants” for smoking history.
The participants were asked the question “Have you
ever smoked?” and their responses were recorded as
“Yes/No”, providing a binary variable for their smok-
ing history. The results were compared by plotting the
coefficients for PM2.5 from the two models to deter-
mine whether adjusting for smoking history produced
coefficients different from the main analysis.

RESULTS

The mean age of the participants was 89.2 years
(standard deviation (SD) = 8.44), women made up
82% of the population, 34.6% were non-Hispanic
Black, 33.6% were non-Hispanic white, and 31.8%
were Caribbean Hispanic, and the mean number of
years of education was 9.42 (SD = 4.66). Roughly
half of the participants were diagnosed with AD
(53.3%), 27.1% of the participants carried at least
one APOE �4 allele, 20.6% of the participants had
a history of diabetes, 37.4% had a history of heart
disease, and 71% had a history of hypertension.
The metabolomic data consisted of 6375 metabolic
features from the HILIC+ column and 3759 fea-
tures from the C18- column after data filtering and
cleaning. The average long-term exposures in these
participants was 31.7 (SD = 7.03) ppb for NO2, 21.0
(SD = 7.73) �g/m3 for PM10 and 12.9 (SD = 2.41)
�g/m3 for PM2.5 (Table 1) and correlation between
pollutants ranged from 0.73–0.91 (Supplementary
Table 2).

Using an MWAS framework, we found 79
metabolic features significantly associated with
PM2.5 (61 from the HILIC+ column and 18 from
the C18- column, Fig. 1, Supplementary Table 3)
after correcting for multiple comparisons. No signif-
icant associations were found between the metabolic
features and PM10 or NO2 (Fig. 1). Through
the penalized elastic net regression, we found 32
metabolic features that had non-zero coefficients (18
from HILIC+ column and 14 from C18-, Supple-
mentary Table 4). The results from the PLS-DA
showed separation along component 1 and 2 of peo-
ple exposed to PM2.5 below or above the median
(Fig. 2A). Thirty-six metabolic features had a vari-
able importance score > 3 on component 1 or a VIP
score > 2.5 on component 2 (32 from HILIC+ column
and 4 from C18- column, Supplementary Table 5).

When comparing the results from the three
approaches, we found 6 features associated with
PM2.5 through all approaches, i.e., the MWAS, elas-
tic net and PLS-DA (Fig. 2B). These features were
putatively annotated as cysteinylglycine disulphide
(cys-gly), a diglyceride, alphachloralose, a dicar-
boxylic acid, and one feature had multiple matches
in HMDB (Table 2). The metabolic features associ-
ated with PM2.5 enriched several metabolic pathways
including: alanine and aspartate metabolism, the
TCA cycle, glutamate metabolism, glycolysis and
gluconeogenesis, butanoate metabolism, pyruvate
metabolism, methionine and cysteine metabolism,
tyrosine metabolism, fatty acid oxidation, vita-
min A metabolism, glycerophospholipid metabolism,
and aminosugars metabolism. These represented
pathways related to energy production, redox home-
ostasis, and amino acid metabolism (Fig. 2C).

None of the relationships identified as significant
through MWAS were modified by sex, racial/ethnic
group, history of heart disease, or history of
hypertension. The relationship between a lysophos-
phatidylethanolamine and PM2.5 was modified by
both AD diagnosis and APOE �4 allele status, such
that people with AD or carriers of at least one
�4 allele had a negative association between expo-
sure and levels of lysophosphatidylethanolamine
while those without AD or an �4 allele had a
positive association (Table 3, Supplementary Fig-
ure 1). The relationship between two other features
annotated as lysophosphatidylethanolamine was also
modified by APOE �4 allele status in a simi-
lar way, i.e., those with at least one �4 allele
had a negative association between exposure and
lysophosphatidylethanolamine (Table 3, Supplemen-
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Table 1
Characteristics of the study population in the Washington Heights and Inwood Community Aging Project. After regressing out the effect of
year of blood draw, the PM2.5 exposure levels were dichotomized at the median, to create low and high exposure groups. This was also used

to determine features associated with exposure through a partial least square discriminant analysis

Low PM2.5 (N = 54) High PM2.5 (N = 53) Overall (N = 107)

Age (y)
Mean (SD) 90.7 (7.31) 87.6 (9.25) 89.2 (8.44)

Sex
Women 44 (81.5%) 44 (83.0%) 88 (82.2%)
Men 10 (18.5%) 9 (17.0%) 19 (17.8%)

Racial/Ethnic group
Non-Hispanic Black 22 (40.7%) 15 (28.3%) 37 (34.6%)
Non-Hispanic white 16 (29.6%) 20 (37.7%) 36 (33.6%)
Caribbean Hispanic 16 (29.6%) 18 (34.0%) 34 (31.8%)

Education (y)
Mean (SD) 9.74 (4.81) 9.09 (4.53) 9.42 (4.66)

Alzheimer’s disease
Case 28 (51.9%) 29 (54.7%) 57 (53.3%)
Control 26 (48.1%) 24 (45.3%) 50 (46.7%)

APOE �4 carrier
No �4 allele 39 (72.2%) 39 (73.6%) 78 (72.9%)
At least one �4 allele 15 (27.8%) 14 (26.4%) 29 (27.1%)

History of diabetes
No 45 (83.3%) 40 (75.5%) 85 (79.4%)
Yes 9 (16.7%) 13 (24.5%) 22 (20.6%)

History of heart disease
No 36 (66.7%) 31 (58.5%) 67 (62.6%)
Yes 18 (33.3%) 22 (41.5%) 40 (37.4%)

History of hypertension
No 21 (38.9%) 10 (18.9%) 31 (29.0%)
Yes 33 (61.1%) 43 (81.1%) 76 (71.0%)

PM2.5 (�g/m3)
Mean (SD) 11.8 (2.65) 14.0 (1.48) 12.9 (2.41)

PM10 (�g/m3)
Mean (SD) 20.7 (8.82) 21.2 (6.51) 21.0 (7.73)

NO2 (ppb)
Mean (SD) 29.8 (7.96) 33.7 (5.29) 31.7 (7.03)

tary Figure 2). The relationship between three
features and PM2.5 was modified by a history of dia-
betes, such that people with a history of diabetes had
a greater positive association between the features
and exposure to PM2.5 (Supplementary Table 6, Sup-
plementary Figure 3), however; the features did not
match any database entries.

The principal component analysis of macronu-
trients from the dietary data generated four PCs
(Supplementary Figure 4). PC1 (explained 57.1% of
the total variance in the data) had positive loadings
from carbohydrates and vegetable fat and negative
loadings from total protein and animal fat and mod-
ified the relationship between one metabolic feature
and exposure to PM2.5 such that a unit increase in
the score on PC1 reduced the slope of the relation-
ship between the metabolic feature and PM2.5. PC2
(28% of variance explained) and PC3 (13.9% of vari-
ance explained) did not modify any relationships
discovered but the relationship between 39 of the

metabolic features, about half of the features iden-
tified in MWAS, and PM2.5 was modified by PC4
(explained 0.01% of the variance in the data), which
had positive loadings from all four macronutrients
(Table 3, Supplementary Table 6, Supplementary Fig-
ure 4).

In sensitivity analysis, the associations between
exposure and the metabolic features were not affected
by the inclusion of smoking history as a covariate in
the model (Supplementary Figure 5).

DISCUSSION

We found several plasma metabolic features asso-
ciated with predicted outdoor residential annual
concentrations of PM2.5 in a racially and ethnically
diverse urban population of older adults. Pathway
analysis revealed perturbations in the metabolism
of several amino acids, the citrate cycle, glycolysis
and gluconeogenesis, butanoate, pyruvate, fatty acid,
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Fig. 1. Manhattan plots show the metabolic features associated with long-term exposure to air pollutants determined through a metabolome
wide association study framework. In the grid, the two columns represent data from the HILIC (on the left) and C18 chromatographic column
under positive and negative ionization respectively. The rows show data for the respective air pollutants. All models were adjusted for age
(years), sex (men/women), racial/ethnic group (non-Hispanic white, non-Hispanic black, Hispanic Caribbean), Alzheimer’s disease status
(case/control), year of blood draw and years of education. The horizontal line represents nominal p-value < 0.05. The colored dots represent
features significantly associated with the pollutant after correction for multiple comparisons (FDR < 0.05) with blue dots representing a
negative association between that metabolic feature and air pollutant and the red dots a positive association.

vitamins and co-factors, glycerophospholipid, and
aminosugars. These metabolic pathways have been
previously associated with PM2.5 and include indi-
cators of oxidative stress. These signals could help
us understand the mechanisms through which PM2.5
exposure can lead to altered health outcomes.

This is the first study of metabolic features associ-
ated with long-term exposure to PM2.5 in a racially
and ethnically diverse aging population of both men

and women. Additionally, we used three different sta-
tistical approaches to determine features associated
with exposure to PM2.5. By looking for concordance
among results from diverse regression methods, we
found a reliable set of features that are associated
with, and can predict exposure to, PM2.5. While
others have used such multipronged approaches for
metabolomic data analysis [29], this is the first study
to consider such an approach when studying the effect
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Fig. 2. In A, the biplot shows clustering of observations with high (orange triangles) and low (blue circles) long-term exposure to PM2.5 after
adjusting for age, sex, ethnic group, Alzheimer’s disease status, year of blood draw and years of education. In B, the overlap in metabolic
features associated with long-term PM2.5, estimated through three different approaches, a metabolome association study (MWAS), elastic net
regression (enet) and partial least squares discriminant analysis (PLSDA). In C, the metabolic pathways enriched by the metabolic features
associated with long-term PM2.5 exposure, determined through the MWAS approach. Enrichment represents that ratio between observed
number of significant hits/expected number of hits. In D, a representation of glutathione metabolism and the biochemical relationship
between members of glutathione metabolism and other pathways. Metabolites in red text were negatively associated with PM2.5 through
either MWAS, enet, or PLS-DA.

of long-term exposure to PM2.5 on the circulating
metabolome. We identified six features associated
with PM2.5 through this approach, two of which were
annotated as cys-gly (an M + 2 H adduct and an iso-
tope of the M + H adduct), one as dicarboxylic acid,
and another as diglyceride with level 3 confidence,

and two were annotated with level 5 confidence,
one as alphachloralose and another with multiple
database matches.

Both features annotated as cys-gly were nega-
tively associated with exposure to PM2.5. A previous
study in the Normative Aging Study also reported
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Table 2
The putative annotations of the six features associated with long-term PM2.5 through all three approaches (Fig. 2B)

m/z Time (s) Annotation Formula Delta Adduct ID score∗ ESI β p Pathway/source
ppm

300.0478 120.7 Cysteinylglycine
disulfide, multiple
other matches

C8H15N3O5S2 0 M+H [+2] 3 + –0.48 3.7E-07 Glutathione
metabolism;
Redox
homeostasis

149.53 124.3 Cysteinylglycine
disulfide

C8H15N3O5S2 0.47 M+2H 3 + –0.45 4.2E-06 Glutathione
metabolism;
Redox
homeostasis

355.0733 115.4 Multiple matches – – – 5 + –0.44 4.8E-06 –
154.9871 183.3 Alphachloralose C8H11Cl3O6 8 M+2H 5 + –0.45 1.1E-06 Rodenticide
775.6017 48 A diglyceride C45H72O5 4.32 M+2ACN+H 3 + –0.43 7.2E-06 Lipid metabolism
129.0194 36.5 A dicarboxylic

acid
C5H6O4 0.54 M-H 3 – –0.49 4.9E-07 Lipid metabolism

m/z, mass-to-charge ratio; Time, Retention time; Delta ppm, mass difference in parts per million; ID score, confidence in annotation based
on Schymanski scale (1 being the highest and 5 the lowest); ESI, electrospray ionization.

a significant negative relationship between cys-gly
and long-term exposure to PM2.5 [24]. Cys-gly is
formed by the degradation of reduced glutathione
metabolism catalyzed by glutathione specific γ-
glutamylcyclotransferase [59, 60]. This cleavage of
reduced glutathione is important for the turnover of
glutathione (Fig), which is required for maintain-
ing redox homeostasis [60], and in cellular stress
response [61]. A reduction in glutathione levels has
also been observed in the liver of mice exposed to
PM2.5 [62].

Dicarboxylic acids are produced by breakdown of
amino acids and fatty acids and can feed into the TCA
cycle for energy production [63, 64]. The observed
association may suggest changes in the energy pro-
duction from amino acids and fatty acids because of
long-term exposure to PM2.5. In fact, pathway analy-
sis did reveal alterations in pathways related to energy
production, namely the TCA cycle and glycolysis and
gluconeogenesis. In vivo exposure to PM2.5 in mice
also showed altered TCA cycle, glucose, and lipid
metabolism in the liver [62].

Diglycerides (DG) consist of a glyceride with
two fatty acid chains. DGs serve as substrates to
the diacylglycerol acyltransferase (Dgat) enzyme,
which converts DGs to triglycerides, metabolites that
are key regulators of lipid transport and deposition
in adipose tissue [65, 66]. Mice exposed to PM2.5
had higher expression of Dgat in white adipose tis-
sue [67], suggesting an increase in the synthesis of
triglycerides from DGs. This response to exposure to
PM2.5 would also be in line with the negative associa-
tion between the circulating DG and PM2.5 observed
in our population.

Finally, two features had low confidence in
their annotation: one was putatively annotated as
alphachloralose while the other had multiple database
matches. Given the low confidence in annotation, we
do not discuss their potential role in association with
PM2.5 but plan to confirm the identity of these fea-
tures in the future.

Several of our findings confirm results from pre-
vious analyses. Long-term exposure to PM2.5 over
2000–2016 in an aging population of white men liv-
ing in the Boston area, with mean age of 75 years,
was also associated with alterations in glycerophos-
pholipid, alanine, and glutathione metabolism [24].
Similar pathways were also reported to be altered by
PM2.5 exposure in a subset of the UKTwins study,
including pyruvate metabolism, glycolysis, and glu-
coneogenesis [68]. In a study of younger individuals,
long-term exposure to PM2.5 was associated with cir-
culating phospholipids, similar to the enrichment in
glycerophospholipid metabolism in our study [69].
Nearly all the metabolomic pathways affected by
long-term PM2.5 in our study were also reported in
a study of exposure to ultrafine particulate matter
[70]. Additionally, animal and in vitro studies have
also reported similar changes in metabolic pathways.
Changes in the TCA cycle, amino acid biosynthe-
sis, and glutathione metabolism were reported in
lung epithelial cells exposed to fine particulate mat-
ter [71]. In mice chronically exposed to ambient
PM2.5, serum metabolomic analysis revealed changes
in glycerophospholipid, sphingolipids, glycerolipids
and lysophospholipids, and in pathways related to
protein digestion and absorption, glycine, serine,
threonine metabolism, alanine metabolism, carbon
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Table 3

Effect modification. The relationship between several metabolic features and PM2.5 was modified by Alzheimer’s disease diagnosis, APOE �4 allele, history of diabetes, and diet

Modifier Number of m/z Time FDR from Putative annotation Adduct Delta ID ESI
features# (s) LR test ppm score∗

Sex 0
Racial/Ethnic group 0
History of heart disease 0
History of hypertension 0
Clinical diagnosis of Alzheimer’s disease 1 475.2654 189.5 0.102 A lysophosphatidylethanolamine M-H [-1] – 3 –
APOE �4 allele status 4 475.2654 189.5 0.08 A lysophosphatidylethanolamine M-H [-1] – 3 –

500.2779 197.7 0.101 A lysophosphatidylethanolamine M-H 0.72 3 –
503.292 201 0.08 A lysophosphatidylethanolamine M-H [-1] – 3 –

History of diabetes 3 Unknown (see supplemental table 6)
Diet: PC1 ↑ carbohydrate, vegetable fat

↓ protein, animal fat
1 Unknown (see supplemental table 6)

Diet: PC2 0
Diet: PC3 0
Diet: PC4 ↑ carbohydrates, animal fat,

protein, and vegetable fat
39 241.0308 181.6 0.063 Cystine M+H 1.33 3 +

774.5957 47.4 0.0012 A phosphatidylcholine or
phosphatidylethanolamine

M+H 6.49 3 +

170.0128 179.7 0.138 Cysteic acid M+H 6.06 3 +
122.027 183.9 0.087 Cysteine M+H 0.25 3 +
141.5325 181.9 0.063 Cystine M+ACN+2H 0.14 3 +
243.0263 182.7 0.063 Cystine M+H [+2] – 3 +
263.0126 183.2 0.063 Cystine M+Na 1.79 3 +

149.53 124.3 0.158 Cysteinylglycine disulfide M+2H 0.47 3 +
298.0517 119 0.109 Cysteinylglycine disulfide M+H 2.99 3 +
300.0478 120.7 0.158 Cysteinylglycine disulfide, multiple

other matches
M+H [+2] – 3 +

324.3257 41.9 0.078 N-(14-Methylhexadecanoyl)pyrrolidine M+H 1.2 3 +
378.7789 61.9 0.115 A diglyceride M+ACN+H 7.42 5 +
796.5254 57.2 0.076 A phosphatidylethanolamine M+H-H2O 3.45 5 +
822.5468 54.6 0.063 A phosphatidylethanolamine M+H-H2O 3.65 5 +
824.5603 55.7 0.058 A phosphatidylethanolamine M+H-H2O 1.02 5 +
98.5181 183.4 0.11 Diethyl trisulfide, multiple other matches M+ACN+2H 3.25 5 +
242.0344 181.1 0.081 Glucosamine 6-sulfate/ Azorhodine 2G M+H-H2O/M+H+NH4 3.76/4.88 5 +
152.9913 182.8 0.063 Multiple matches 5 +
142.0342 182.5 0.071 Polyvidone M+H-2H2O 2.53 5 +
132.9872 60.1 0.103 Pyruvic acid, multiple other matches M+2Na-H – 5 +
98.0164 186.8 0.063 Thiocysteine M+ACN+2H 0.61 5 +
195.0259 184.9 0.094 Thiocysteine, other multiple matches M+ACN+H 1.28 5 +
586.0316 182.9 0.109 Zoledronate 2M+ACN+H 8.75 5 +

#A noteworthy interaction was defined at an FDR < 0.2. LR, Likelihood ratio test; m/z, mass-to-charge ratio; Time, retention time; Delta ppm, mass difference in parts per million; ID score,
confidence in annotation based on Schymanski scale (1 being the highest and 5 the lowest); ESI, electrospray ionization. See supplemental table 6 for information on features with no known
database match.
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metabolism, saccharides, fatty acids, sterols, and
stress hormones [72]. Interestingly, several metabolic
pathways associated with PM2.5 exposure have also
been implicated in AD. These include cysteine and
glutathione metabolism [73], methionine, glycoly-
sis and gluconeogenesis, and TCA cycle metabolism
[74]. In a prior analysis in the cohort, we reported a
relationship between AD and alanine and aspartate
metabolism, and glycerophospholipid metabolism
[32]. These pathways may provide some insight
into possible mechanisms through which exposure
to PM2.5 may be related to incidence and risk of AD.

Several studies of short-term PM2.5 exposure have
reported changes in arginine, histidine, linoleate, and
leukotriene metabolism [19, 70, 75, 76]. We did not
find significant changes in levels of these metabo-
lites associated with long-term exposure to PM2.5 in
our study, suggesting that there might be exposure-
window specific changes in circulating metabolites.

Through our analysis, we also wanted to discover
whether the associations identified between circu-
lating metabolites and exposure to long-term PM2.5
were modified by sex, racial/ethnic group, underly-
ing metabolic diseases (history of diabetes, dementia
diagnosis, history of heart disease, history of hyper-
tension), or diet. The relationship between two of the
six features associated with PM2.5, identified through
all three statistical approaches, both annotated as cys-
gly, was modified by diet. None of the other possible
modifiers affected the associations between the six
features and exposure.

APOE �4 is a known risk factor for AD, the
gene may underlie the observed modification by
the dementia diagnosis. The APOE �4 gene plays a
role in transporting cholesterol and other fats in the
bloodstream, especially in the brain [77]. Lysophos-
phatidylethanolamine (LysoPE) is a derivative of
phosphatidylethanolamine, a phospholipid typically
found in the cell membrane, especially of the cen-
tral nervous system [78]. Our findings suggest that
people with at least one APOE �4 allele may have a
different response to long-term exposure to PM2.5
possibly due to altered lipid transport. Studies in
APOE null mice have reported increased lipid depo-
sition when exposed to concentrated PM2.5 [79] and
altered atherosclerotic plaque formation upon diesel
exhaust exposure [80] compared to mice that were
unexposed.

Having a history of diabetes modified the rela-
tionship between PM2.5 and three features. These
features did not match any entries in HMDB, KEGG,
or LIPIDMAPS. However, one of these features was

also modified by dietary PC1, suggesting the fea-
ture may derive from food or some other exogenous
source.

Several studies have reported that the relationship
between exposure to air pollutants and health out-
comes is modified by diet [81]. For example, vitamin
C supplementation has been shown to protect from
adverse effects of ozone [68, 82, 83]. Similarly, a
Mediterranean diet has been shown to modify the risk
of long-term exposure to PM2.5 and cardiovascular
disease mortality [84]. Consumption of animal-based
food also modified the relationship between exposure
to air pollution and gestational diabetes [85], while
a plant-based diet has been shown to protect against
adverse effects of PM2.5 on cognitive function [86].

We used macronutrient data to find whether broad
changes in dietary intake influenced any of the rela-
tionships identified through the MWAS approach. To
capture patterns in the macronutrient data, we used
principal component analysis. We found that one fea-
ture was modified by PC1, which captured the most
variance in the data, had positive loadings from carbo-
hydrates and vegetable fat, and had negative loadings
from protein and animal fat, suggesting a diet with
low protein and animal-based products. However, this
feature did not match entries in HMDB, KEGG, or
LIPIDMAPS. Nearly half of the features that were
significantly associated with PM2.5 had a significant
interaction with PC4, which captured < 1% of the
variance in the dietary data and had positive load-
ings from all four macronutrient categories. This
finding suggests that macronutrient intake modifies
the relationship between circulating metabolites and
long-term exposure to PM2.5, albeit only a small vari-
ation in the macronutrient intake data was responsible
for this. It could also suggest that differences in the
intake of nutrients other than the four macronutrients
may modify the relationship between these metabolic
features and PM2.5. Analysis using additional dietary
data will be needed to confirm these findings.

We would like to acknowledge some limitations in
the analyses presented here. First, due to our small
sample size we may have been underpowered to dis-
cover associations with small effect sizes. This could
explain why we found no associations between circu-
lating metabolites and long-term exposure to PM10
and NO2, which others have reported [24, 87, 88].
Second, we could only provide level 3 confidence
in metabolite identification. The accurate identity of
these metabolites will be determined as we confirm
more metabolites on our platform using chemical
standards. Third, due to the small sample size we were
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likely underpowered to detect significant interactions,
especially with the dietary data, for which we only
have 77 observations (∼72% of the total study sam-
ple). Fourth, the estimates of air pollution exposure
were predicted for each participant at baseline and
maybe prone to exposure measurement error. Addi-
tionally, the estimates did not account for time spent
outside of the home, thus we are unable to account
for exposures experienced in geographical locations
outside the home, like exposures in occupational set-
tings. However, since most of the participants were
retired at the time of the study, occupational exposure
is unlikely to confound the relationships observed
here. Fifth, since the samples were selected for equal
representation of racial/ethnic groups and AD sta-
tus, we may be prone to selection bias; however,
the mean levels of air pollutant exposure were sim-
ilar between AD cases and controls (Supplementary
Table 1). Sixth, our study included people with and
without AD but is not a case-control study which
may reduce the generalizability of our study to the
general population. Seventh, since we were inter-
ested in discovering whether presence of metabolic
diseases, APOE �4 allele and diet can modify the
relationships observed, we used an FDR threshold
of 20%, which may be considered lenient and not
robust to false positive associations. However, we
chose this threshold given the exploratory nature of
our question and small sample size, and we believe the
findings of effect modification warrant further explo-
ration in larger studies. Eighth, the assumptions of
normality required for the regression framework in
the metabolome-wide association study framework
are not always met, especially when considering the
thousands of features investigated for association.
Ninth, by restricting our effect modification analy-
ses to features that were significantly associated with
exposure, we missed the opportunity to investigate
features that did not reach statistical significance and
we may overestimate the effect of features selected
given that we had previously analyzed the feature in
order to decide on its inclusion for further analysis.
Finally, while we did adjust our models for known
confounders, we are unable to rule out residual con-
founding from unknown variables.

Despite these limitations, our study has sev-
eral strengths. Our sample was representative of
the neighborhoods in northern Manhattan. We
applied high-resolution mass spectrometry-based
metabolomics to capture the circulating metabolome
in an agnostic manner. Additionally, we had infor-
mation on history of chronic disease with metabolic

consequences and dietary information that has been
well validated in the cohort. This study is also a
critical step as we expand our analysis to the larger
WHICAP cohort.

In conclusion, using an untargeted metabolomics
analysis, we applied a multipronged approach to
find circulating biochemical signals associated with
estimated long-term exposure to PM2.5. We found
that circulating cysteinylglycine disulfide, a diglyc-
eride, and a dicarboxylic acid are associated with
long-term exposure to PM2.5, suggesting changes in
glutathione turnover, lipid transport and storage, and
energy production. We also found changes in sev-
eral metabolic pathways, that have previously been
associated with long-term exposure to PM2.5. The
relationship between long-term PM2.5 and cysteinyl-
glycine disulfide was modified by diet suggesting that
dietary changes may influence this relationship. In
the future, we plan to identify the features putatively
annotated in this analysis. Finally, we plan to inves-
tigate the relationship between long-term exposure
to air pollutants and circulating metabolites in the
larger WHICAP study. This will provide more power
to also consider the relationship between long-term
exposure to NO2 and PM10 and explore the role of
diet in the relationship between long-term exposure
to air pollutants and circulating metabolites.
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