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Abstract.
Background: If retinal indices of neurodegeneration are to be biomarkers for the monitoring of cerebral neurodegeneration, it
is important to establish whether potentially modifiable risk factors for dementia are associated with retinal neurodegenerative
changes.
Objective: To study associations of dementia risk factors with retinal sensitivity, an index of retinal neural function, and
retinal nerve fiber layer (RNFL) thickness, an index of retinal neural structure.
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Methods: We used cross-sectional data from The Maastricht Study (up to 5,666 participants, 50.5% men, mean age 59.7),
and investigated associations with regression analyses (adjusted for potential confounders).
Results: Most risk factors under study (i.e., hyperglycemia, unhealthy diet, lower cardiorespiratory fitness, smoking, alcohol
consumption, and hypertension) were significantly associated with lower retinal sensitivity and lower RNFL thickness.
Conclusion: Findings of this population-based study support the concept that retinal neural indices may be biomarkers for
the monitoring of therapeutic strategies that aim to prevent early-stage cerebral neurodegeneration and, ultimately, dementia.

Keywords: Alcohol consumption, Alzheimer’s disease, cardiorespiratory fitness, dementia, imaging biomarkers, obesity,
optical coherence tomography, perimetry, physical inactivity, retinal neurodegeneration

INTRODUCTION

Clinical dementia, the end stage of cerebral neu-
rodegeneration, is preceded by a gradual loss of
neurons over time [1–3]. Mechanistically, deterio-
ration of microvascular and neuronal structures is
thought to hamper the function of the neurovascu-
lar coupling unit, which can impair autoregulation,
and subsequently result in neural ischemia and neural
exposure to toxins, both of which can induce neu-
rodegeneration [1, 2]. As postulated in the ticking
clock hypothesis [4, 5], there may be an oppor-
tunity to prevent the onset and/or progression of
early microvascular and neuronal deterioration via
reducing early exposure to potentially modifiable risk
factors for these detrimental changes [3–5]. Such
risk factors include hyperglycemia, an unhealthy diet,
lower cardiorespiratory fitness, excessive alcohol
consumption, smoking, hypertension, dyslipidemia,
obesity, and lower levels of physical activity
[6–13].

Currently, there are no clinical tools available to, at
an individual level, monitor the efficacy of therapeu-
tic strategies that aim to prevent early-stage cerebral
neurodegeneration in the absence of clinical demen-
tia [14, 15]. This is an important issue because early
monitoring may facilitate personalized, targeted pre-
vention of early-stage cerebral neurodegeneration
[14, 15].

The retina may provide an opportunity to monitor
therapeutic strategies that aim to prevent early-stage
neurodegenerative changes [16]. Retinal measures
of neuronal function and structure are biologically
plausible biomarkers for the monitoring of cere-
bral neurodegenerative changes because the retina
and the brain have a shared embryology, and both
have many anatomical and physiological similarities
[16]. Indeed, early structural retinal neurodegenera-
tive changes have been found to be associated with
MRI-assessed markers of cerebral neurodegeneration
(i.e., lower grey and white matter volume) [17], cog-
nitive decline [18], and dementia [19].

In the retina, early functional and structural
neurodegenerative changes can, respectively, be non-
invasively and accurately assessed as lower retinal
sensitivity and lower retinal nerve fiber layer (RNFL)
thickness [16, 20]. Loss of retinal sensitivity reflects
greater dysfunction of the neural networks which per-
ceive, filter, and transmit visual information from the
retina to the brain [20]. RNFL thinning reflects loss
of retinal ganglion cell axons, which transmit visual
information from the retina to the brain [16].

Current literature on whether potentially modifi-
able risk factors for dementia may be determinants of
retinal sensitivity or RNFL thickness has important
limitations [21–32]. First, no large population-based
studies have investigated the associations of poten-
tially modifiable risk factors for dementia with retinal
sensitivity. Second, previous studies have not yet
investigated the associations with RNFL thickness
of a number of important potentially modifiable risk
factors for dementia, i.e., adherence to a healthy diet,
cardiorespiratory fitness, and accelerometer-assessed
lower physical activity [22–32].

In view of above, we investigated, using a
large, well-characterized population-based cohort
study, whether potentially modifiable risk factors for
dementia are associated with retinal sensitivity and
RNFL thickness.

MATERIALS AND METHODS

Here key elements of the Material and Methods
are provided, more details are provided in the Sup-
plementary Methods.

Study population and design

We used data from The Maastricht Study, a
population-based observational cohort study. The
rationale and methodology have been described
previously [33]. In brief, the study focuses on
the etiology, pathophysiology, complications, and
comorbidities of type 2 diabetes mellitus and is
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characterized by an extensive phenotyping approach.
Eligible for participation were all individuals aged
between 40 and 75 years and living in the southern
part of the Netherlands. Recruitment was stratified
according to known type 2 diabetes status, with an
oversampling of individuals with type 2 diabetes, for
reasons of efficiency [33]. The present report includes
cross-sectional data of 7,689 participants who com-
pleted the baseline survey between November 2010
and December 2017.

Retinal sensitivity

We assessed retinal sensitivity of both eyes in the
central and peri macular area with the Heidelberg
Edge Perimeter (Heidelberg Engineering, Heidel-
berg, Germany). In brief, light stimuli varying in
strength between 0 and 35 decibels were presented
at 54 coordinates on the retina; at each coordinate
the threshold of visual perception (i.e., the thresh-
old at which the weakest presented visual stimulus
could be perceived) was determined; and results were
averaged into ‘retinal sensitivity’. The intra-observer
reliability for the assessment of the retinal sensitivity
is 0.95 [34].

RNFL thickness

We assessed RNFL thickness with optical coher-
ence tomography (OCT; Spectralis unit; Heidelberg
Engineering, Heidelberg, Germany). The RNFL
thickness (�m) of both eyes was measured within a
3.45 mm diameter circular scan (12◦, 768 voxels, 100
automatic real-time tracking) centered on the optic
nerve head. All OCT scans were reviewed, and their
quality was scored. Intra- and interindividual relia-
bility, expressed as intraclass correlation coefficients,
were 0.97 and 0.96, respectively [35].

Assessment of risk factors

We determined hemoglobin A1c (HbA1c; % or
mmol/mol) and total cholesterol (mmol/L) in fasting
venous plasma samples [33]; assessed dietary intake,
including alcohol consumption, with a validated food
frequency questionnaire [36], and calculated the
Dutch Healthy Diet index sum score (without alco-
hol consumption) [36, 37]; and categorized alcohol
consumption into none, light, moderate, and high
(definitions in Supplementary Material) [38]. Then,
we assessed cardiorespiratory fitness, defined as the
maximum power output adjusted for body mass (i.e.,

Wmax·kg–1), with a graded cycle ergometer-, sub-
maximal exercise test [39]; assessed smoking status
(current, former, never smoking) via a questionnaire
[33]; assessed antihypertensive medication use, an
index of past exposure to a relatively high blood
pressure, as part of an interview, assessed 24-h ambu-
latory blood pressure (mm Hg) with an oscillometric
device [40]; calculated mean arterial pressure from
the 24-h ambulatory blood pressure measurements
as ([1/3*systolic 24-h ambulatory blood pressure]
+ [2/3*diastolic 24-h ambulatory blood pressure]);
assessed waist circumference (cm) as part of a phys-
ical examination [33]; and measured 8-day physical
activity (h/day) with an accelerometer [41].

Covariates

As described previously [33], we assessed educa-
tional level (low, intermediate, high) by questionnaire
[42], high-density lipoprotein (HDL) and fasting
plasma glucose in fasting venous blood samples [33];
assessed medication use as part of an interview,
and assessed glucose metabolism status based on
fasting plasma glucose and oral glucose tolerance
test-derived 2-h post load glucose [33].

Statistical analyses

We used multivariable regression analysis to inves-
tigate the associations of potentially modifiable
risk factors for dementia (determinants) with reti-
nal sensitivity and RNFL thickness (outcomes). We
standardized determinants and outcomes of a contin-
uous nature (i.e., expressed as z-score) and entered
categorical variables into models as dummy vari-
ables. Next, we inversed (i.e., multiplied by –1)
the healthy diet score, cardiorespiratory fitness, and
physical activity so that higher values indicate lower
healthy diet score, lower cardiorespiratory fitness,
or lower physical activity. Last, we used com-
plete case analysis, where individuals were included
in the main analyses if data were available on
the main determinant, the outcome, and potential
confounders required for the fully adjusted model
(model 3).

We adjusted for potential confounders. In model
1 we did not adjust for any confounders (“crude”).
In model 2, we adjusted for demographic con-
founders (i.e., age, sex, and educational status)
and for glucose metabolism status [32]. In model
3, we additionally adjusted for cardiovascular and
lifestyle variables (i.e., office systolic blood pressure,
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antihypertensive medication use [yes/no], waist cir-
cumference, total cholesterol/HDL cholesterol ratio,
lipid-lowering medication use [yes/no], smoking
status [current, former, never], and alcohol con-
sumption status [none, moderate, high]) [32]. For
associations where HbA1c was the determinant,
glucose metabolism status was not entered into
the model to prevent collinearity. The associations
were expressed as standardized regression coefficient
(st�) and corresponding 95% confidence interval
(95%CI).

We tested for interaction by sex and glucose
metabolism status to assess whether associations,
respectively, differed between men and women or
between individuals with type 2 diabetes, pre-
diabetes, and normal glucose metabolism. For
interaction analyses with glucose metabolism status,
we excluded participants with other types of diabetes
because the number of these participants was small.

To assess the robustness of our findings we per-
formed a range of additional analyses (we report one
additional analysis in the main manuscript; and report
all additional analyses in the Supplementary Meth-
ods). We studied the associations of age with retinal
sensitivity and RNFL thickness. We performed these
analyses so that we could compare with how many
years of “aging” the betas for determinants under
study correspond.

All analyses were performed with Statistical Pack-
age for Social Sciences version 25.0 (IBM SPSS,
IBM Corp, Armonk, NY, USA). For all analy-
ses, a p-value <0.05 was considered statistically
significant.

RESULTS

Selection and characteristics of the study
population

Figure 1 shows an overview of the study population
selection.

Table 1 and Supplementary Tables 1 and 2 show
general participant characteristics according to ter-
tiles of retinal sensitivity and RNFL thickness.
Overall, participants with a lower retinal sensitiv-
ity and thinner RNFL were older, and generally had
a more adverse risk factor profile. General charac-
teristics of participants included in the study were
comparable to those of participants with missing data
(Supplementary Table 3).

Associations of risk factors with retinal
sensitivity and RNFL thickness

HbA1c
After full adjustment (model 3), greater HbA1c

was significantly associated with lower retinal
sensitivity and lower RNFL thickness (per SD,
standardized beta [95% CI], –0.05 [–0.08; –0.02],
and –0.05 [–0.08; –0.02], respectively; Table 2 and
Fig. 2).

Healthy diet score without alcohol consumption

After full adjustment (model 3), lower healthy diet
score was significantly associated with lower retinal
sensitivity and lower RNFL thickness (per SD, stan-
dardized beta [95% CI], –0.06 [–0.09; –0.03], and
–0.03 [–0.06; –0.00], respectively).

Cardiorespiratory fitness

After full adjustment (model 3), lower cardiorespi-
ratory fitness was significantly associated with lower
retinal sensitivity, but not with lower RNFL thickness
(per SD, standardized beta [95% CI], –0.05 [–0.08;
–0.01], and –0.03 [–0.07; 0.01], respectively).

Alcohol consumption

After full adjustment (model 3), high versus light
alcohol consumption was not associated with lower
retinal sensitivity but was significantly associated
with lower RNFL thickness (standardized beta [95%
CI], 0.04 [–0.03; 0.10], and –0.08 [–0.16; –0.01],
respectively).

Smoking

After full adjustment (model 3), current versus
never smoking was significantly associated with
lower retinal sensitivity but was not associated with
RNFL thickness (standardized beta [95% CI], –0.14
[–0.22; –0.06], and 0.09 [–0.00; 0.18], respectively).

In contrast, after full adjustment (model 3), former
versus never smoking was significantly associated
with greater retinal sensitivity and was not associ-
ated with lower RNFL thickness (standardized beta
[95% CI], 0.05 [0.00; 0.11], and –0.01 [–0.07; 0.05],
respectively).
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Fig. 1. delineates the selection of participants for inclusion in analyses. *For retinal sensitivity and RNFL thickness, respectively, the
numbers of participants with complete data for analyses with HbA1c were n = 5,662 and n = 5,249; for analyses with the healthy diet score
were n = 5,369 and n = 4,981; for analyses with cardiorespiratory fitness were n = 4,899 and n = 4,452; for analyses with alcohol consumption
were n = 5,377 and n = 4,989; for analyses with smoking were n = 5,666 and n = 5,255; for analyses with antihypertensive medication use were
n = 5,666 and n = 5,255; for analyses with 24-h ambulatory blood pressure were n = 5,074 and n = 4,746; for analyses with total cholesterol
were n = 5,664 and n = 5,255; for analyses with waist circumference were n = 5,666 and n = 5,255; and for analyses with physical activity
were n = 5,027 and n = 4,510. Confounders are: age, sex, glucose metabolism status, educational level, office systolic blood pressure (where
applicable), antihypertensive medication use, waist circumference (where applicable), total cholesterol/ HDL ratio (where applicable), lipid-
lowering medication use, smoking (where applicable), and alcohol consumption (where applicable; a precise overview of covariates entered
per model [for all analyses] is presented in the Methods). RNFL, retinal nerve fiber layer; HbA1c, glycated hemoglobin.

Blood pressure

After full adjustment (model 3), antihypertensive
medication use was not associated with retinal sen-
sitivity, but was significantly associated with lower
RNFL thickness (per SD, standardized beta [95%
CI], –0.03 [–0.09; 0.03], and –0.12 [–0.19; –0.05],
respectively).

After full adjustment (model 3), greater 24-h
ambulatory systolic, diastolic, and mean arterial
blood pressure were not associated with retinal sen-
sitivity (per SD, standardized beta [95% CI], –0.01
[–0.04; 0.02], 0.03 [–0.00; 0.05], and 0.01 [–0.02;
0.04], respectively).

After full adjustment (model 3), greater 24-h
ambulatory diastolic, but not 24-h ambulatory sys-
tolic blood pressure or mean arterial blood pressure,
was significantly associated with lower RNFL thick-
ness (per SD, standardized beta [95% CI], –0.03
[–0.06; –0.00], –0.01 [–0.04; 0.02], and –0.03 [–0.06;
0.01], respectively).

Cholesterol

After full adjustment (model 3), greater total
cholesterol was significantly associated with greater
retinal sensitivity but was not associated with
RNFL thickness (per SD, standardized beta [95%
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Table 1
General study population characteristics according to tertiles of retinal sensitivity in the study population with complete data on waist

circumference

Characteristic Retinal sensitivity
Total study group Tertile 1 (low) Tertile2 (middle) Tertile 3 (high)

(N = 5,666) (N = 1,877) (N = 1,901) (N = 1,888)

Demographic characteristics

Age (y) 59.7 ± 8.7 64.2 ± 7.9 59.6 ± 8.2 55.4 ± 7.8
Men 2862 (50.5) 936 (49.%) 960 (50.5) 966 (51.2)
Educational level

Low 1927 (34.0) 809 (43.1) 618 (32.5) 500 (26.5)
Middle 1571 (27.7) 463 (24.7) 525 (27.6) 583 (30.9)
High 2168 (38.3) 605 (32.2) 758 (39.9) 805 (42.6)

Potentially modifiable risk factors for dementia

HbA1c (mmol/mol)* 39.1 ± 9.3 40.9 ± 9.8 38.7 ± 9.1 37.9 ± 8.8
HbA1c (%)* 5.7 ± 0.9 5.9 ± 0.9 5.7 ± 0.8 5.6 ± 0.8
Dutch Healthy Diet score (points)* 76.6 ± 14.6 77.1 ± 14.6 76.9 ± 14.6 75.8 ± 14.5
Cardiorespiratory fitness (Wmax·kg–1) 2.1 ± 0.6 2.0 ± 0.6 2.2 ± 0.6 2.3 ± 0.6
Alcohol consumption

None 814 (15.1) 305 (17.1) 240 (13.2) 269 (15.2)
Light 1656 (17.6) 533 (29.8) 548 (30.2) 574 (32.4)
Moderate 1186 (22.1) 358 (20.0) 396 (21.8) 430 (24.3)
High 1721 (32.0) 592 (33.1) 631 (34.8) 497 (28.1)

Smoking status
Never 2170 (38.3) 662 (35.3) 732 (38.5) 776 (41.1)
Former 2785 (49.2) 981 (52.3) 934 (49.1) 870 (46.1)
Current 711 (12.5) 234 (12.5) 235 (12.4) 242 (12.8)

Antihypertensive medication use 2074 (36.6) 895 (47.7) 665 (35.0) 514 (27.0)
Ambulatory 24-h systolic blood pressure (mmHg)* 118.9 ± 11.6 120.1 ± 12.1 118.6 ± 11.2 117.7 ± 11.3
Ambulatory 24-h diastolic blood pressure (mmHg)* 72.9 ± 7.2 72.0 ± 7.1 73.1 ± 7.1 73.3 ± 7.3
Mean arterial pressure (mm Hg) 88.2 ± 8.0 88.1 ± 8.0 88.2 ± 7.8 88.4 ± 8.1
Total cholesterol (mmol/L)* 5.2 ± 1.1 5.1 ± 1.1 5.2 ± 1.1 5.3 ± 1.1
Waist circumference (cm) 94.8 ± 13.4 96.3 ± 13.5 94.4 ± 13.2 93.5 ± 13.3
Physical activity (minutes per day)* 118.9 ± 40.9 115.0 ± 39.7 121.4 ± 41.3 120.3 ± 41.2

Other

Glucose metabolism status
Normal glucose metabolism 3514 (62.0) 995 (53.0) 1199 (63.1) 1320 (69.9)
Prediabetes 840 (14.8) 319 (17.0) 292(15.4) 229 (12.1)
Type 2 diabetes 1278 (22.6) 552 (29.4) 400 (21.0) 326 (17.3)
Other type of diabetes 34 (0.6) 11 (0.6) 10 (0.5) 13 (0.7)

Glucose-lowering medication use 957 (16.9) 414 (21.1) 299 (15.7) 244 (12.9)
Lipid-lowering medication use 1744 (30.8) 781 (41.6) 550 (28.9) 413 (21.9)
Total/HDL cholesterol ratio (no unit) 3.6 ± 1.2 3.5 ± 1.1 3.6 ± 1.2 3.6 ± 1.2

Outcomes

Retinal sensitivity (dB) 27.7 ± 1.6 26.1 ± 1.6 27.9 ± 0.3 29.1 ± 0.5
RNFL thickness (�m)* 94.9 ± 10.8 83.3 ± 6.8 95.3 ± 2.5 106.1 ± 6.3

Data are presented as mean ± standard deviation, median [interquartile range] or number (%). ∗Data shown in the study population with
complete data on ambulatory 24-h blood pressure (n = 5,074), total cholesterol (n = 5,664), HbA1c (n = 5,662), Dutch Healthy Diet score
(n = 5,369), alcohol consumption (n = 5,377 [shown for alcohol consumption assessed with the food frequency questionnaire]), cardiores-
piratory fitness (n = 4,899), physical activity (n = 5,027), and RNFL thickness (n = 5,255). HDL, high-density lipoprotein; HbA1c, glycated
hemoglobin A1c.

CI], 0.05 [0.02; 0.08], and 0.03 [–0.00; 0.06],
respectively).

Waist circumference

After full adjustment (model 3), greater waist
circumference was neither associated with retinal
sensitivity, nor with RNFL thickness (per SD, stan-

dardized beta [95% CI], –0.01 [–0.05; 0.02], and 0.03
[–0.00; 0.07], respectively).

Physical activity

After full adjustment (model 3), lower physical
activity was neither associated with retinal sensitiv-
ity, nor with RNFL thickness (per SD, standardized
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Table 2
Associations of potentially modifiable risk factors for dementia with retinal sensitivity and RNFL thickness

Retinal Sensitivity, per SD RNFL thickness, per SD
Model Number of

participants in
analyses

st� (95% CI) Number of
participants in
analyses

st� (95% CI)

Potentially modifiable risk factors for dementia

HbA1c, per SD 1 N = 5,662 –0.15 (–0.17; –0.12) N = 5,249 –0.06 (–0.09; –0.04)
2 –0.07 (–0.10; –0.05) –0.05 (–0.08; –0.02)
3 –0.05 (–0.08; –0.02) –0.05 (–0.08; –0.02)

Lower healthy diet score,
per SD

1 N = 5,369 –0.01 (–0.03; 0.02) N = 4,981 –0.04 (–0.07; –0.01)

2 –0.07 (–0.09; –0.04) –0.03 (–0.06; 0.00)
3 –0.06 (–0.09; –0.03) –0.03 (–0.06; –0.00)

Lower cardiorespiratory
fitness, per SD

1 N = 4,899 –0.21 (–0.23; –0.18) N = 4,542 –0.01 (–0.04; 0.02)

2 –0.05 (–0.08; –0.02) –0.02 (–0.05; 0.02)
3 –0.05 (–0.08; –0.01) –0.03 (–0.07; 0.01)

Alcohol consumption N = 5,377 N = 4,989
- None versus light 1 –0.10 (–0.19; –0.02) 0.05 (–0.04; 0.13)

2 –0.05 (–0.13; 0.03) 0.01 (–0.08; 0.10)
3 –0.03 (–0.11; 0.05) 0.01 (–0.08; 0.09)

- Moderate versus light 1 0.07 (–0.01; 0.14) 0.03 (–0.05; 0.11)
2 0.07 (0.00; 0.14) 0.04 (–0.04; 0.11)
3 0.06 (–0.01; 0.13) 0.04 (–0.04; 0.11)

- High versus light 1 –0.04 (–0.11; 0.03) –0.10 (–0.17; –0.03)
2 0.05 (–0.02; 0.11) –0.09 (–0.16; –0.01)
3 0.04 (–0.03; 0.10) –0.08 (–0.16; –0.01)

Smoking N = 5,666 N = 5,255
-Former versus never 1 –0.09 (–0.15; –0.04) –0.05 (–0.11; 0.01)

2 0.06 (0.01; 0.11) –0.02 (–0.08; 0.04)
3 0.05 (0.00; 0.11) –0.01 (–0.07; 0.05)

-Current versus never 1 –0.14 (–0.22; –0.06) 0.08 (–0.01; 0.17)
2 –0.15 (–0.23; –0.07) 0.09 (–0.00; 0.17)
3 –0.14 (–0.22; –0.06) 0.09 (–0.00;0.18)

Antihypertensive
medication use

1 N = 5,666 –0.33 (–0.39; –0.28) N = 5,255 –0.16 (–0.21; –0.10)

2 –0.05 (–0.10; 0.00) –0.09 (–0.15; –0.03)
3 –0.03 (–0.09; 0.03) –0.12 (–0.19; –0.05)

24-h ambulatory systolic
blood pressure, per SD

1 N = 5,074 –0.09 (–0.12; –0.06) N = 4,746 –0.06 (–0.09; –0.03)

2 –0.01 (–0.04; 0.01) –0.01 (–0.04; 0.02)
3 –0.01 (–0.04; 0.02) –0.01 (–0.04; 0.02)

24-h ambulatory diastolic
blood pressure, per SD

1 N = 5,074 0.09 (0.07; 0.12) N = 4,746 –0.05 (–0.08; –0.02)

2 0.03 (–0.00; 0.05) –0.03 (–0.06; –0.00)
3 0.03 (–0.00; 0.05) –0.03 (–0.06; –0.00)

Mean arterial pressure,
per SD

1 N = 5,074 0.01 (–0.03; 0.03) N = 4,746 –0.06 (–0.09; –0.03)

2 0.01 (–0.02; 0.04) –0.02 (–0.05; 0.01)
3 0.01 (–0.02; 0.04) –0.03 (–0.06; 0.01)

Total cholesterol, per SD 1 N = 5,664 0.08 (0.05; 0.10) N = 5,255 0.06 (0.03; 0.08)
2 0.06 (0.04; 0.09) 0.02 (–0.01; 0.05)
3 0.05 (0.02; 0.08) 0.03 (–0.00; 0.06)

Waist circumference, per
SD

1 N = 5,666 –0.10 (–0.12; –0.07) N = 5,255 –0.05 (–0.07; –0.02)

2 –0.02 (–0.05; 0.01) 0.02 (–0.01;0.05)
3 –0.01 (–0.05; 0.02) 0.03 (–0.00;0.07)

(Continued)
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Table 2
(Continued)

Retinal Sensitivity, per SD RNFL thickness, per SD
Model Number of

participants in
analyses

st� (95% CI) Number of
participants in
analyses

st� (95% CI)

Potentially modifiable risk factors for dementia

Lower physical activity,
per SD

1 N = 5,027 –0.06 (–0.08; –0.03) N = 4,510 –0.02 (–0.05; 0.01)

2 –0.01 (–0.03; 0.02) –0.00 (–0.03; 0.03)
3 0.01 (–0.02; 0.04) –0.01 (–0.04; 0.02)

Standardized regression coefficients (st�) represent the difference in retinal sensitivity or RNFL thickness (in SD) for one SD greater HbA1c,
lower healthy diet score, lower cardiorespiratory fitness, for none, moderate, or high versus light total alcohol consumption, for current or
former versus never smoking, for with versus without antihypertensive medication use, greater 24-h ambulatory systolic blood pressure,
greater total cholesterol, greater waist circumference, or lower physical activity. One SD corresponds with 11.6 and 7.2 mm Hg for systolic
and diastolic 24-h ambulatory blood pressure, respectively, 8.0 mm Hg for mean arterial pressure, 1.1 mmol/L for total cholesterol, 13.4 cm
for waist circumference, 0.9% for HbA1c, 14.6 points for the healthy diet score, 0.6 W/kg for cardiorespiratory fitness, 40.9 minutes/day
for physical activity, 1.6 dB for retinal sensitivity (all determined in the study population with complete data on retinal sensitivity and waist
circumference), or 10.8 micrometers for RNFL thickness (RNFL thickness was determined in the study population with complete data on
antihypertensive medication use [n = 5,666]; values per SD for other variables were numerically similar in the retinal sensitivity and RNFL
thickness study populations). Bold denotes p < 0.05. Variables in models: Model 1: crude; Model 2: model 1 + age, sex, glucose metabolism
status (where applicable), educational level; Model 3: model 2 + office systolic blood pressure (where applicable), antihypertensive medication
use (where applicable), waist circumference (where applicable), total cholesterol/ HDL ratio (where applicable), lipid-lowering medication
use, smoking (where applicable), and alcohol consumption (where applicable; a precise overview of covariates entered per model [for all
analyses] is presented in the Methods). RNFL, retinal nerve fiber layer; SD, standard deviation; CI, confidence interval; HbA1c, glycated
hemoglobin A1c; HDL, high density lipoprotein.

beta [95% CI], 0.01 [–0.02; 0.04], and –0.01 [–0.04;
0.02], respectively).

Tests for interaction and stratified analyses

Sex did not modify any of the associations, but
glucose metabolism status did (all p-values for
interaction are shown in Supplementary Table 4).
Type 2 diabetes modified the association of 24-h
ambulatory systolic blood pressure with retinal sen-
sitivity (pinteraction < 0.001); the association of 24-h
ambulatory systolic blood pressure with RNFL thick-
ness (pinteraction = 0.049); and the association of total
cholesterol with RNFL thickness (pinteraction = 0.04).
Additionally, prediabetes inconsistently modified the
associations of healthy diet score and physical activ-
ity with retinal sensitivity.

In individuals with, but not without, type 2
diabetes, greater 24-h ambulatory systolic blood
pressure was significantly associated with lower reti-
nal sensitivity, but not with lower RNFL thickness
(model 3; in individuals with type 2 diabetes, per SD,
standardized beta [95% CI], –0.06 [–0.12; –0.04],
and –0.06 [–0.13; 0.00], respectively; Supplementary
Table 5). In addition, we observed a similar pattern
for 24-h ambulatory diastolic and mean arterial blood
pressure. Then, in individuals with, but not without,
type 2 diabetes, greater total cholesterol was sig-

nificantly associated with greater RNFL thickness
(model 3; in individuals with type 2 diabetes, per
SD, standardized beta [95% CI], 0.09 [0.03; 0.16]).
However, we did not observe this pattern for retinal
sensitivity.

Additional analyses

We generally observed quantitatively similar
results in a range of additional analyses (all results are
reported in the Supplementary Results section and are
shown in Supplementary Tables 6–12). Here we high-
light one main finding. After full adjustment (model
3), greater age was associated with lower retinal sen-
sitivity and lower RNFL thickness (standardized beta
[95% confidence interval], per year –0.04 [–0.05;
–0.04] and –0.01 [–0.01; –0.01], respectively; Sup-
plementary Table 8). Hence, the beta for 1 SD greater
HbA1c corresponds with approximately 1.3 year of
aging for retinal sensitivity and 5.0 years of aging for
RNFL thickness; the beta of 1 SD lower adherence
to a healthy diet corresponds with approximately 1.5
years of aging for retinal sensitivity and 3.0 years of
aging for RNFL thickness; and the beta of 1 SD lower
cardiorespiratory fitness corresponds with approxi-
mately 1.3 year of aging for retinal sensitivity and
3.0 years of aging for RNFL thickness. Therefore,
added up, the combination of these three adverse fac-
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Fig. 2. Associations of potentially modifiable risk factors for dementia with retinal sensitivity and RNFL thickness, ranked by strength
and direction of associations. Standardized regression coefficients (st�) represent the difference in retinal sensitivity (black circular point
estimates with error bars) or RNFL thickness (grey triangular point estimated with error bars) in SD for one SD greater HbA1c, lower
healthy diet score, lower cardiorespiratory fitness, for high versus light total alcohol consumption, for current versus never smoking, for
with versus without antihypertensive medication use, greater 24-h ambulatory systolic blood pressure, greater total cholesterol, greater waist
circumference, or lower physical activity. Numerical values with which 1 SD corresponds are presented in the legend of Table 2. *denotes
p < 0.05. Variables in models: age, sex, glucose metabolism status (where applicable), educational level, office systolic blood pressure (where
applicable), antihypertensive medication use (where applicable), waist circumference (where applicable), total cholesterol/ HDL ratio (where
applicable), lipid-lowering medication use, smoking (where applicable), and alcohol consumption (where applicable; a precise overview of
covariates entered per model [for all analyses] is presented in the Methods). RNFL, retinal nerve fiber layer; SD, standard deviation; CI,
confidence interval; HbA1c, hemoglobin A1c; HDL, high density lipoprotein.

tors corresponds with approximately 4.1 and 11.0
years of “aging” for, respectively, retinal sensitivity
and RNFL thickness.

DISCUSSION

The present population-based study has four main
findings. First, we found significant associations
with lower retinal sensitivity of greater HbA1c,
lower healthy diet score, lower cardiorespiratory
fitness, current versus never smoking, and greater
24-h ambulatory blood pressure, though the latter
only in individuals with, but not without, type 2
diabetes. Second, we found significant associations
with lower RNFL thickness of greater HbA1c, lower
healthy diet score, lower cardiorespiratory fitness,
high versus light alcohol consumption, current versus

never smoking, and antihypertensive medication use.
Third, greater total cholesterol was associated with
greater retinal sensitivity and greater RNFL thick-
ness, though the latter only in individuals with, but
not without, type 2 diabetes. Fourth, waist circumfer-
ence and physical activity were not associated with
outcomes under study.

Our findings on RNFL thickness are in line with
findings from most previous population-based stud-
ies [22–32]. Importantly, the present study is the first
population-based study to investigate the associations
of potentially modifiable risk factors for dementia
with retinal sensitivity [21]. In addition, the present
study is the first study to report associations of 24-
h ambulatory-assessed blood pressure levels, waist
circumference, adherence to a healthy diet, cardiores-
piratory fitness, and accelerometer-assessed physical
activity with RNFL thickness.
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Mechanistically, most risk factors that were signif-
icantly associated with outcomes can increase levels
of oxidative stress in the retina, which can lead to
retinal microvascular dysfunction, loss of retinal neu-
ral structures (including RNFL thinning), and retinal
dysfunction (i.e., resulting in lower retinal sensitivity)
[2, 43]. Additionally, antihypertensive medication
use, lower cardiorespiratory fitness and a less healthy
diet may be associated with more retinal neurode-
generative changes as they, respectively, reflect past
exposure to higher levels of blood pressure over time
(i.e., hypertension), lower exposure to neuroprotec-
tive factors in the retina [44]; and lower exposure to
certain nutrients which can reduce levels of oxida-
tive stress [45]. Biologically, impaired microvascular
function likely predisposes the retinal capillaries to
a high intracapillary pressure, which is detrimental
for the capillaries and can lead to ischemia and a
hampered clearance of toxins from the neuronal tis-
sue, both of which can activate pathways that lead
to neurodegeneration [2, 43]. Physiologically, up to
20–50% of retinal ganglion cells can be lost before
worse retinal function is detectable [46]. In addi-
tion, progressive loss of neural structures can also
increasingly predispose retinal neurons to ischemia as
neuronal structures contribute to function of the neu-
rovascular coupling unit, which tightly regulates the
supply of nutrients (e.g., oxygen) to retinal neurons
[1, 2, 43].

In participants with, but not without, type 2 dia-
betes greater 24-h ambulatory systolic blood pressure
was significantly associated with lower retinal sensi-
tivity and numerically similar in strength, though not
statistically significant, with lower RNFL thickness.
Biologically, as hyperglycemia is detrimental for neu-
ronal and microvascular structures, which regulate
capillary pressure, individuals with, versus without,
type 2 diabetes may be more susceptible to hyperten-
sion [43].

Directionally inconsistent with our hypothesis,
greater total cholesterol was associated with greater
retinal sensitivity and greater RNFL thickness,
though the latter only in individuals with, but not
without, type 2 diabetes. Mechanistically, a greater
total cholesterol level, which reflects higher levels
of circulating cholesterol, may be beneficial for the
retina as cholesterol is an important contributor to
the formation of neuronal synapses [47]. Then, as
under hyperglycemic circumstances neuronal and
microvascular structures (i.e., neurovascular cou-
pling unit) are functionally impaired, the ability to
ensure a continuous supply of cholesterol to the retina

is likely reduced, resulting in lower levels of retinal
cholesterol, and subsequently less synaptogenesis, in
individuals with, versus without, type 2 diabetes [47].

Waist circumference was not associated with out-
comes, possibly because the effects of adiposity on
neural retina tissue are bidirectional. Mechanisti-
cally, higher levels of visceral (white) adipose tissue,
which greater waist circumference represents, likely
leads to higher levels of adipokines in the circula-
tion, which may have both neuroprotective as well
as neurodegenerative effects on retinal neurons [48].
For example, directionally opposing effects have
been reported for tumor necrosis factor-alpha [TNF-
alpha]), a relatively well-studied adipokine [48].

Lower physical activity was not associated with
outcomes under study, possibly because other factors
than the amount of physical activity determine the
extent of the neuroprotective physiological response
to physical activity [49]. Indeed, besides the amount
of physical activity, also genetic factors and the type,
frequency, and intensity of activity have been found
to determine the physiological response to physical
activity [49].

Our findings contribute to the increasing evidence
that there may be an opportunity to improve clin-
ical care via the use of retinal neural biomarkers.
First, our findings are consistent with the concept
that retinal sensitivity and RNFL thickness may be
biomarkers for the monitoring of therapeutic strate-
gies that aim to prevent cerebral neurodegeneration
in the absence of clinical dementia [16, 20]. However,
in order to able to move from a research setting to a
clinical setting, future trials are warranted to further
investigate whether modification of potentially mod-
ifiable risk factors for dementia can actually lead to
a detectable increase in retinal sensitivity and RNFL
thickness [50]. Second, the modification of a com-
bination of risk factors may result in a considerable
reduction of retinal neuronal aging. Indeed, added
up, 1 SD greater HbA1c, 1 SD lower adherence to a
healthy diet, and 1 SD lower cardiorespiratory fitness
correspond with approximately 4.1 and 11.0 years
of “aging” for, respectively, retinal sensitivity and
RNFL thickness.

Strengths of this study are 1) the large size of this
population-based cohort with oversampling of indi-
viduals with type 2 diabetes, which enabled accurate
comparison of individuals with and without diabetes;
2) the extensive number of potential confounders
that were considered; 3) the use of state-of-the-
art methods to assess all variables included in this
study [50].
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The study has certain limitations. First, due to the
cross-sectional nature of the study, causal inferences
should be made with caution [50]. Mechanistically,
hyperglycemia and hypertension may lead to neu-
rodegeneration but the reverse may also be true, i.e.,
there may be a vicious cycle [43]. Intact neurovascu-
lar interaction is required for normal microvascular
function and impaired microvascular function may
aggravate hyperglycemia and hypertension [43]. Sec-
ond, we may have underestimated the strength of
the associations under study if such associations
were stronger in participants that were not included
in the study population (who generally tended to
be less healthy) [50]. Third, although we took an
extensive set of confounders into account, we cannot
fully exclude bias due to unmeasured confounding
(e.g., due to environmental factors such as air pol-
lution) [50]. Fourth, we may have underestimated
the strength of certain associations under study (e.g.,
diet) as we adjusted for certain variables which may
(in part) reflect the effects on the outcomes of cer-
tain potentially modifiable risk factors for dementia
(e.g., we adjusted for glucose metabolism status
and blood pressure; and a healthy dietary intake
may in part protect against neurodegeneration via
reducing the risk of hyperglycemia and hyperten-
sion) [50]. Last, we studied Caucasian individuals
aged 40–75 years and therefore our results may be
generalizable to such a population; whether these
results also apply to other populations requires further
study [50].

In summary, the present population-based study
demonstrated that most potentially modifiable risk
factors for dementia were independently associated
with indices of retinal neuronal function (i.e., reti-
nal sensitivity) and structure (i.e., RNFL thickness).
Hence, retinal indices of neural function and structure
may be biomarkers for the monitoring of therapeu-
tic strategies that aim to prevent early-stage cerebral
neurodegeneration and, ultimately, dementia.
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