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Abstract.

Background: DNA methylation (DNAm), an epigenetic mark reflecting both inherited and environmental influences, has
shown promise for Alzheimer’s disease (AD) prediction.

Objective: Testing long-term predictive ability (>15 years) of existing DNAm-based epigenetic age acceleration (EAA)
measures and identifying novel early blood-based DNAm AD-prediction biomarkers.
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Methods: EAA measures calculated from Illumina EPIC data from blood were tested with linear mixed-effects models
(LMMs) in a longitudinal case-control sample (50 late-onset AD cases; 51 matched controls) with prospective data up to 16
years before clinical onset, and post-onset follow-up. Novel DNAm biomarkers were generated with epigenome-wide LMMs,
and Sparse Partial Least Squares Discriminant Analysis applied at pre- (10-16 years), and post-AD-onset time-points.
Results: EAA did not differentiate cases from controls during the follow-up time (p > 0.05). Three new DNA biomarkers
showed in-sample predictive ability on average 8 years pre-onset, after adjustment for age, sex, and white blood cell proportions
(p-values: 0.022-<0.00001). Our longitudinally-derived panel replicated nominally (p =0.012) in an external cohort (n =146
cases, 324 controls). However, its effect size and discriminatory accuracy were limited compared to APOE e4-carriership
(OR =1.38 per 1 SD DNAm score increase versus OR = 13.58 for e4-allele carriage; AUCs =77.2% versus 87.0%). Literature
review showed low overlap (n=4) across 3275 AD-associated CpGs from 8 published studies, and no overlap with our
identified CpGs.

Conclusion: The limited predictive value of EAA for AD extends prior findings by considering a longer follow-up time, and
with appropriate control for age, sex, APOE, and blood-cell proportions. Results also highlight challenges with replicating

discriminatory or predictive CpGs across studies.
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INTRODUCTION

Alzheimer’s disease (AD) pathology in the form
of tau and amyloid-3 (A) starts accumulating years
or decades before clinical symptoms [1], making
early prediction critical. Recently, novel blood-
based markers, for instance those reflecting different
species of phosphorylated tau in plasma have shown
promise for AD prediction [2, 3]. In addition, the
study of polygenic risk-scores (PRS) for AD has
come to explain an increasing proportion of AD her-
itability [4]. However, it is essential to study further
non-invasive biomarkers, besides the neuropathology
and genetic biomarkers, due to the highly hetero-
geneous and multifactorial nature of AD, which is
influenced by multiple lifestyle and environmental
factors across life [5-7].

DNA methylation (DNAm), an epigenetic process
measurable in blood, is of increasing interest for
AD prediction due to its potential to capture both
inherited and acquired disease risk through the life
course [8—10]. DNAm is a mechanism that can reg-
ulate gene expression, by binding of methyl groups
to DNA nucleotides, most commonly at CpG sites
(cytosine-guanine nucleotide pairs). DNAm patterns
are partially heritable, influenced by lifestyle and
environmental factors, and change in aging [9, 11,
12]. Epigenetic biomarkers based on DNAm are
also of interest for prediction of biological aging,
aging-related diseases, and mortality [13, 14]. Of
interest is that DNAm can bring potential mechanistic
insights into disease etiology thanks to its potential
to affect gene expression [15]. In AD, DNAm alter-
ations located in gene regions with well-established

roles in AD have been identified in both brain tis-
sue and blood, including apolipoprotein E (APOE)
[16] and the amyloid precursor protein (APP) genes
[17, 18]. Across studies however, limited replication
across CpG sites and genes have been found so far,
with the direction of some effects differing between
studies, i.e., hyper- versus hypomethylation in AD
cases [19]. DNAm findings in blood cells can be
challenging to interpret in the context of neurodegen-
erative diseases due to the tissue-specificity of DNAm
[20, 21]—although some CpG-sites’ methylation lev-
els show high correspondence across blood and brain
[21-23]. In theory, DNAm changes in blood cells of
AD patients could be the consequences of disease-
related processes, capture potential causal pathways
relevant for disease progression such as peripheral
inflammation or immune system functioning [14, 24],
or could mirror the disease-causal methylation status
of the corresponding CpG-site in brain tissue [25,
26]. In all these scenarios, blood DNAm patterns
could hold value as biomarkers if they significantly
contribute to the prediction of disease conversion or
progression.

The relative consistency of DNAm changes with
aging enables accurate estimation of chronological
age based on DNAm patterns using machine learn-
ing methods, resulting in epigenetic age-estimators,
or “clocks” [13, 27]. A higher epigenetic age than
chronological age as estimated by epigenetic clocks,
so-called epigenetic age acceleration (EAA), has
been found to associate with cellular and physical
aging, mortality [14, 28], several age-related dis-
eases including Parkinson’s disease, some cancer
types, coronary heart disease [13, 14] as well as AD
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[29]. Since advanced age is the largest risk factor
for late-onset sporadic AD [30], it is of relevance to
investigate whether measures capturing accelerated
biological aging are predictive of AD. In studies of
AD, EAA in brain tissue correlates with neuropatho-
logical biomarkers of AD, including brain tau and
amyloid load, as well as with decline in cognition
[29, 31, 32]. The fact that AD-related DNAm alter-
ations in brain tissue are enriched in sites displaying
aging-related changes, with a concordance of effect
direction, also suggests that EAA may be of relevance
for AD prediction or disease progression [33]. How-
ever, previous studies have found mixed results with
regards to the utility of EAA in blood in the con-
text of dementia [8, 34-36], and there is a scarcity of
longitudinal studies tracking EAA over longer time-
periods preceding disease onset. Thus, although EAA
in blood can successfully predict a number of aging-
related outcomes, its predictive value for AD remains
to be established.

The current study aimed at testing the hypothesis
of accelerated epigenetic aging in blood in clini-
cal late-onset AD using a longitudinal case-control
design, with up to 20 years of longitudinal follow-up
data from the same carefully characterized individu-
als from a Swedish population-based study [37, 38].
We tested three validated epigenetic clocks thought
to capture different aspects of cellular and physi-
ological aging [14, 39, 40], as well as a DNAm
biomarker designed to capture the rate of biologi-
cal aging across multiple organ systems [41, 42]. In
addition, we investigated whether we could identify
sets of CpG sites predictive of AD up to 16 years
before clinical AD onset, using both univariate and
multivariate statistical methods. First, using CpG-
wise univariate linear mixed effects models (LMMs),
we leveraged our longitudinal data to identify CpG
sites that stably differentiated AD cases from con-
trols across the entire follow-up period, with the
rationale that such sites may be particularly robust
biomarkers. Secondly, we used a multivariate super-
vised machine-learning method for variable selection
by sparse partial least squares discriminant analy-
sis (sPLS-DA), which accounts for the covariance
among CpG sites, and permits selecting sets of CpGs
able to conjunctly discriminate AD cases from con-
trols. By applying the sPLS-DA in specific time
subsamples, long before (16-10 years) and after AD
onset, we tested whether different sets of CpGs were
predictive at different disease stages, substantially
expanding the time frame of previous studies [43, 44].
Finally, we tested whether the findings from primary

study cohortreplicated in a cross-sectional Australian
sample [45], or corresponded to previously reported
DNAm differences in AD based on a literature search.
An overview of the study design is provided in Sup-
plementary Figure 1.

MATERIALS AND METHODS
Study populations

Our main study sample is from the Betula study,
a longitudinal, prospective population-based study,
aimed at investigating health, aging, cognition and
dementia. It comprises 4,425 participants followed
for up to 25 years, with cognitive, health-related,
social, and biological assessments [37, 38, 46]. As
fully described previously [38, 46], the recruited
participants were native Swedish speakers with no
dementia, congenital or acquired intellectual disabil-
ities at study entry, nor severe impairments in hearing
or vision. The study was initiated in 1988 with con-
secutive follow-ups at five years intervals (T1-T6 test
waves), evaluating cognitive status and dementia at
each time point. Blood sampling was carried out at
test waves T2-T6 (Supplementary Table 1).

The Australian Imaging, Biomarker & Lifestyle
Study (AIBL) was used as an independent external
cohort to validate the analyses. Data was collected by
the AIBL study group. AIBL study methodology has
been reported previously [45, 47]. The AIBL study
aimed at recruiting and characterizing 1000 partic-
ipants, including at least 200 AD cases, 100 mild
cognitive impairment (MCI) cases, and 700 healthy
controls (aimed at including both carriers and non-
carriers of the APOE &4 allele, and subjects with
subjective memory complaints). More than 4000 sub-
jects initially volunteered after a media appeal or
were informed about the study by a clinician. In all,
1,166 individuals were assessed and screened, result-
ing in a final baseline sample comprising 768 healthy
controls, 133 MCI cases, and 211 AD cases.

This research was conducted in accord with the
Declaration of Helsinki. The Betula study has been
approved by the Regional Ethical Review Board
in Umea and the Swedish Ethical Review Author-
ity, and written consent for study participation was
obtained from each participant. Informed written
consent was also given by all AIBL volunteers, and
ethics approvals for the study were obtained from
ethics committees of Austin Health, St. Vincent’s
Health, Hollywood Private Hospital and Edith Cowan
University.
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Clinical characterization and dementia
diagnosis assessments

The dementia diagnosis assessment in the Betula
study has previously been described [37]. In brief,
the diagnostic characterization was based on multiple
sources of information and included each partici-
pant’s healthcare history as expressed in medical
records, supplemented by relevant data from the
repeated health and cognitive assessments that were
part of the Betula study protocol. The dementia diag-
noses were defined according to the Diagnostic and
Statistical Manual of Mental Disorders 4th edition
(DSM-1V) dementia classification. Participants diag-
nosed with AD showed representative symptoms of
clinical AD, including an insidious onset and pro-
gressive cognitive decline.

For the AIBL sample, AD diagnoses were based
on NINCDS-ADRDA Alzheimer’s Criteria (probable
or possible), evaluating the impairment of memory,
language, perceptual skills, attention, constructive
abilities, orientation, problem solving, and functional
abilities [48]. MCI diagnosis was based on Winblad et
al., in which subjects previously diagnosed with MCI
by a clinician additionally showed a score at least 1.5
standard deviation from the age-adjusted mean on one
or more neuropsychological tasks [49].

Inclusion and exclusion criteria

The Betula sample inclusion criteria were having
at least one blood sample >3 years prior to clinical
AD onset, and at least one sample at or after onset,
as well as a >5-year duration between samples. Only
cases with an onset age of >65 years were considered.
In total, 49 AD cases fulfilled these criteria. An addi-
tional two cases without post-onset samples, but with
pre-onset samples >10 years prior to onset were added
to enrich the sample with measurements collected
long before onset. Thus, the final sample comprised
51 AD participants and 51 healthy age- and sex-
matched controls subjects, born between 1909 and
1944. This selected sample comprised 20 AD cases
and 20 matched controls with three longitudinal time-
points, 29 AD cases and 29 matched controls with
two longitudinal time-points, and 2 AD cases and
2 matched controls with one time-point long before
AD onset. Controls were considered healthy when
not diagnosed with AD or any other dementia sub-
types, and not showing memory decline according to
a previous classification model applied to the sam-

ple [50, 51]. The majority of the included controls
(n=42) were classified as ‘average memory decline’
according to the classification, the reminder showed
above average memory maintenance (n=9), indicat-
ing normal/non-pathological memory aging among
controls. In total, 237 blood samples (AD + controls)
were analyzed on DNAm arrays. Among those, four
samples were excluded due to mismatch or not pass-
ing the built-in quality control test in the arrays. Thus,
233 samples remained for further analyses, compris-
ing 50 AD cases (116 samples) and 51 matched
controls (117 samples), with a median of 16 years
(min 5, max 26) of follow up time.

The AIBL DNAm sample comprised 471 healthy
controls, 94 MCI cases, and 161 AD cases (see sam-
ple demographic characteristics in Supplementary
Table 2). We excluded subjects younger than 65 years
of age (n=95) as the focus was on late-onset clini-
cal AD, and the same age-range criteria were used for
the controls and the MCI group. Healthy controls that
developed AD (n=9) or MCI after the DNA methyla-
tion analysis (n=64) were also excluded. Thus, 324
healthy controls, 88 MCI cases, and 146 AD cases
were included (Supplementary Table 2).

DNAm analyses

DNA bisulfite conversion and methylation array
analysis

DNA was extracted from peripheral blood (whole
blood or buffy coat) collected at multiple blood sam-
pling time points, by previously described methods in
Betula [52] and AIBL [53]. In Betula, the DNA were
sodium bisulfite converted using the EZ DNA methy-
lation kit (Zymo Research, CA, USA) according to
the manufacturer’s protocol. AIBL DNA methyla-
tion was obtained from the NCBI Gene Expression
Omnibus GSE153712 [54]. Infinium Methylation
EPIC BeadChip arrays (Illumina inc., San Diego,
CA) were used in Betula and AIBL for methyla-
tion profiling of the bisulfite converted DNA. These
arrays interrogate over 850 000 CpG sites across
the genome at single-nucleotide resolution. For the
Betula cohort the quality of the methylation data
was assessed using the bead arrays controls reporter
(Illumina) and the multiple samples from the same
individual were confirmed using single-nucleotide
polymorphisms (SNPs) included on the array. In
both Betula and AIBL arrays, raw methylation data
from the arrays (-values) was extracted using the
the minfi R package and were normalized using the
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BMIQ (Beta MIxture Quantile dilation) normaliza-
tion (V1.3). The average beta (avg. 3) methylation
level of each CpG site ranges from 0 (unmethy-
lated) to 1 (fully methylated). Probes with detection
p-values greater than 0.05 were set as missing val-
ues prior to normalization. Multimapping probes, and
probes where the methylation site is close to a SNPs
in European population were filtered out based on
previous recommendations [55]. Methylation sites
known to be under the influence of DNA sequence
variants and associated with, e.g., ethnicity (methy-
lation quantitative trait loci, meQTLs) in cis or in
trans [56, 57], and methylation sites in the X and Y
chromosomes were also filtered out prior to analysis.
Batch effects were assessed, and no batch effect cor-
rection was deemed necessary. After these filtering
steps, 690,926 CpG sites remained for analysis. In
addition, for the univariate and multivariate analyses,
5,412 probes with any missing value were excluded,
totaling 685,514 CpG sites remaining for analyses.

Epigenetic clocks estimation

Hannum’s DNAm age (71 CpGs) was originally
calculated composing a weighted average (formed
by regression coefficients) of CpGs, which then is
transformed to DNAm age using a calibration func-
tion [39]. Horvath’s epigenetic clock (353 CpGs) is
based on a similar regression model approach [40].
Hannum’s and Horvath’s clocks were constructed
with the Illumina 450k methylation array, with 6
and 17 included CpGs, respectively, missing on the
currently used Methylation EPIC array [13]. The Phe-
noAge clock (513 CpGs) was obtained by a penalized
regression model that accounted for several disease
risk biomarkers [14]. All CpGs used by the Phe-
noAge clock are available on the EPIC array. We
also estimated the DNAm biomarker Dunedin Pace
of Aging Calculated from the Epigenome (Dunedin-
PACE) [41], an updated version of the DunedinPoAm
clock designed to predict the longitudinal rate of
change in 18 biomarkers from multiple organ systems
across 12 years [42]. For the epigenetic clocks estima-
tion, missing [3-values were imputed by a K-nearest
neighbor model.

To estimate epigenetic age acceleration/
deceleration, delta epigenetic ages were used
instead of age-acceleration residuals from linear
regression-based estimation, since the longitudinal
measures violate the assumption of independence
of observations (see also [58]). Thus, after the
estimation of Horvath, Hannum, and PhenoAge epi-

genetic age clocks, Aepigenetic ages were obtained
by subtracting the chronological age from the
epigenetic age. A positive Aepigenetic age indicates
accelerated epigenetic aging (i.e., the individual is
biologically older than their chronological age) and a
negative Aepigenetic age indicates slower epigenetic
aging (i.e., an individual is biologically younger than
their chronological age). The raw estimated values
were used for the DunedinPACE health clock, as it
is not an age estimator. One healthy control subject
presented values below 3 standard deviations from
the mean Hannum, Horvath and PhenoAge clocks,
and these outlier values were replaced by the second
lowest value of the full sample to avoid exclusion
and loss of data points, according to a previous study
[59].

Covariates

For the Betula sample, APOE genotypes were
obtained by polymerase chain reaction (PCR),
as previously described [60]. APOE was set as
a binary indicator variable (0/1), indicating the
absence/presence of an &4 allele. The blood cell pro-
portions of granulocytes, cluster of differentiation
(CD)8+ T-cells, CD4+ T-cells, Natural Killer (NK)
cells, B cells, and monocytes were estimated from
the DNAm array [61]. Granulocyte proportion was
chosen to adjust the models, as it is the estimated
blood cell type with the highest proportion in the
blood, which may contribute to the DNAm levels
reflected by the DNAm array [62]. In the analyses,
the considered health- and lifestyle covariates from
each subjects’ baseline were body mass index (BMI),
waist-hip-ratio, blood glucose, erythrocyte sedimen-
tation rate, pulse pressure, years of education, and
a binary indicator of whether the participant ever
reported to be a smoker during the study period (Sup-
plementary Table 1). Backward selection was used
to select covariates to be included in the ADNAm
clocks adjusted LMMs. However, except for the self-
reported smoking indicator, these covariates showed
no associations with the DNAm clocks in prelimi-
nary LMMs, and no significant differences between
AD cases and matched-controls (descriptives in Sup-
plementary Tables 1 and 2). In the novel DNAm
biomarkers’ logistic and Cox models, none of the
lifestyle-related markers were significant; therefore,
they were not included in the final regression mod-
els. Carriage of the APOE €4 allele, sex, self-reported
smoking, and AD status were included in the mod-
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els as binary indicator variables (0/1). In the AIBL
sample, the variables AD status, age at AD and MCI
onset, APOE, sex, granulocyte proportion, years of
education, self-reported smoking, Hannum, Horvath,
PhenoAge, DunedinPACE, and chronological ages
were set as described for the Betula sample.

Relative leukocyte telomere length (RTL) was
compared to the novel DNAm biomarkers, as an
established blood-based biomarker previously asso-
ciated with increased AD incidence in non-APOE
g4-carriers in our sample [63]. Peripheral blood
leukocytes DNA was used to estimate normal-
ized RTL as previously described [52, 63], using
a modified Cawthon’s polymerase chain reaction
method [64, 65]. Preliminary visual inspection of our
data indicated a potential differential RTL attrition
between cases and controls. To capture the attri-
tion of RTL over the study period, individual RTL
slopes were estimated as the beta coefficients from
linear models of RTL predicted by the age at RTL
sampling.

Statistical analyses

Generalized additive mixed models (GAMMSs)

GAMMs were used to depict the longitudinal pro-
file of the raw estimated DNAm clocks in cases and
controls separately, in order to check for potential
non-linear associations in the Betula sample. Sub-
sequent analyses used linear models, as observed
associations were highly linear. Unadjusted GAMM
models were performed in R using the gamm4 func-
tion of the gamm4 package.

Linear mixed-effects models

In the Betula sample, longitudinal changes in the
DNAm biomarkers (Hannum, Horvath, PhenoAge,
or DunedinPACE), and blood cell proportions were
assessed employing LMMs. As we intended to access
differential longitudinal changes between AD cases
and controls, all LMMs include an interaction term
between AD status as a binary indicator variable and
time, calculated in years to clinical onset (year 0).
The time-scale ranged from —16 to 7, i.e., a 23-year
follow-up duration was modelled. Chronological age
was used as an alternative time-scale. The longitu-
dinal measures from the same subject and the sex-
and age-matched pairs were modelled as nested ran-
dom effects to account for variability within these
blocking variables, therefore there was no need to
control the models for age and sex. In particular,
subjects were nested within matched pairs such that

each matched pair of subjects are unique to that pair.
LMMs were performed in R using the Imer func-
tion of the Ime4 package. Thus, the models were
set as: Imer(DNAm biomarker ~ APOE &4 carrier
+ ever smoked + granulocyte proportion + AD status
x time to/after AD onset (or chronological age) +
(1 | subject number) + (1 | matched pair number).
Detailed R codes of the GAMMs and LMMs are
available at https://fernandashackenhaar.github.io/
LMMs/.

Univariate longitudinal analysis of differentially
methylated sites

We used LMMs with individual CpG-sites as
dependent variables to identify differentially methy-
lated sites that stably discriminate AD cases from
controls across the entire follow-up period (see the
statistical analysis section above for a more detailed
description of the LMMs). Models were adjusted for
APOE &4 carriage and granulocyte proportion. No
CpG passed the 5% cut-off for Benjamini-Hochberg
false discover rate (FDR) correction. Instead, an
exploratory approach was used where CpGs were
selected when having a significant (p <0.001) model
estimate (beta coefficients) for AD of at least 0.05
(>10.05|). As the CpGs’ B-values range from 0 to 1,
an estimate of |0.05] represents a methylation differ-
ence between AD cases and controls of 5%. CpGs
were further required to show absence of a cross-
over interactions between AD status and time, in other
words, that the direction of the association remained
the same before and after AD onset [66, 67] (see
the beta-values of a representative CpG selected by
this method in the Supplementary Figure 2). The -
values of the CpGs that passed these criteria were
multiplied by 1 or —1 according to the direction of
association with AD, and summed up to obtain the
marker hereafter denoted The longitudinal AD panel
(see the CpGs and their directions of association in
Supplementary Table 3). As a post-hoc analysis we
also tested a version of the panel where CpGs were
weighted with the effect sizes (beta coefficients) from
the LMM, but the weighted longitudinal AD panel did
not outperform the original longitudinal AD panel
(data not shown).

As a sensitivity analysis, we additionally ran the
LMMs on 78 filtered out meQTL sites that have pre-
viously been associated with AD [56, 57]. None of
the sites fulfilled the p<0.001 threshold (p-values
=0.009-0.980) and the |ABs| were lower than 3.8%
and would thus not have been selected into our panel.
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Multivariate analysis of AD-predicting sets of
CpGs

Machine learning-based sparse partial least
squares discriminant analysis (sPLS-DA) [68] with
685,514 CpGs was used to identify CpGs that
together may differentiate AD from controls. Two
different cross-sectional subsamples were used for
the sPLS-DA analyses: 1) the ‘long before’ AD sub-
sample, that comprised samples from 16 to 10 years
before AD onset and their respective matched con-
trols (21 AD cases and 19 controls); and 2) the
‘after AD’ subsample, comprising samples from the
years of AD onset to 7 years after AD onset (47
AD cases and 49 controls). SPLS-DA combines vari-
able selection (identifying the most predictive or
discriminative CpGs using lasso penalization) and
classification in a one-step procedure. The algorithm
uses a linear transformation that converts the data
into a reduced dimensional space, in which the prin-
cipal components (PCs) are the estimated features
that represent the reduced dimensions that best sep-
arate the labeled groups with the smallest error rate.
The number of PCs and CpGs within the PCs was
selected by the lowest obtained balanced error rate
(BER) after within-sample cross-validation (3-fold
repeated 50 times). The sPLS-DA analyses were per-
formed by the splsda, tune.splsda, and perf functions
of the mixOmics R package. To obtain AD predictive
scores for each subject, the [3-values of the identi-
fied CpGs were multiplied by the weight (loading) of
each DNAm site obtained by the SPLS-DA analysis,
and thereafter summed. The loadings also indicate the
direction of the DNAm site association with AD. Pos-
itive loadings indicate CpGs that are hypermethylated
in the AD cases, and negative loadings indicate CpGs
that are hypermethylated in the healthy matched con-
trols.

Logistic regression models

The ability of each DNAm clock and novel DNAm
biomarker to differentiate AD cases from controls
was evaluated in the Betula sample at baseline
time-point of each participant on average 8 years
before AD onset, by logistic regressions. Models
were adjusted for the covariates APOE &4 allele
carriage, granulocyte proportion, sex, and chrono-
logical age. In these models, and the ones described
below, DNAm clocks, novel DNAm biomarkers, age,
and granulocyte proportion were z-transformed, i.e.,
scaled to zero-mean and standard deviation (SD)
of one. Thus, effect sizes should be interpreted as
reflecting one standard deviation’s increase in the

odds/hazard ratio. Self-reported smoking was not
significant in these models, thus not shown. Binary
logistic regressions were performed in R using glm
function of the stats package.

Cox proportional hazard regression models

The ability of each DNAm clock and novel DNAm
biomarkers to predict the risk of AD was evaluated
at baseline time-point of each participant, on average
8 years before AD onset, by Cox regression. Models
were adjusted for the confounders APOE &4 allele
carriage, granulocyte proportion, sex, and chrono-
logical age. Cox regressions were performed in R
using the coxph function of the survival package. Due
to collinearity between some of the DNAm clocks
and novel DNAm biomarkers (see correlation Sup-
plementary Table 4), the predictors could not all be
included in a single model [69]. For this reason, Cox
and logistic models were estimated for each DNAm
biomarker separately.

Internal validation analyses

C-statistics of the logistic regression models were
used to compare the discriminatory accuracy of the
novel DNAm biomarkers estimated in Betula with
the established biomarker APOE &4 allele carriage,
at baseline time-point of each participant, on average
8 years before AD onset. The models were adjusted
for the confounders granulocyte proportion, sex, and
chronological age. C-statistics forest plot was esti-
mated using the forestplot function of the forestplot
package in R.

External validation analyses

Logistic regressions and their respective area under
the receiver operating characteristic (ROC) curves
AUC evaluating models’ discriminatory accuracy
were used to validate the novel DNAm biomarkers
in the AIBL validation sample. As for Betula, logis-
tic models were adjusted for APOE &4 allele carriage,
granulocyte proportion, sex, and chronological age.
ROC curves were estimated using the roc function of
the pROC package in R.

Enrichment analysis

Tests of enrichment of CpGs-associated genes in
AD or AD-related pathways by ‘Pathway’, ‘Disease’,
and ‘Human Phenotype’ was performed by protein
function analysis using Toppgene (https://toppgene.
cchmc.org/enrichment.jsp). Enrichment by ‘disease
biomarker networks’, and ‘diseases (by biomarkers)’
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Table 1
Demographic characteristics of the Betula and AIBL study populations

Betula study participants AIBL study participants

Controls (n=51) AD (n=50) Controls (n=324) MCI (n=88) AD (n=146)
Sex, female/male (%) 42179 (17.6%) 41/9 (18%) 184/ 140 (43%) 33 /55 (63%) 82 /64 (43%)
APOE g4-carriers, n (%) 10 (19.6%) 27 (54%) 76 (23%) 41 (47%) 112 (77%)
Age at AD onset, y - 81 (67-94) - - 78.5 (65-93)
Age, y* 75 (55-86) 75 (55-85) 73 (65-91) 77 (66-95) 80 (66-93)
Years of education
0to6 23 (45.1%) 18 (36%) 1(0.31%) 1(1.14%) 9 (6.16%)
7to8 11 (21.57%) 17 (34%) 22 (6.79%) 10 (11.36%) 20 (13.71%)
9to 12 11 (21.57%) 8 (16%) 125 (38.58%) 39 (44.32%) 51 (34.93%)
13to 15 4 (7.84%) 5(10%) 61 (18.83%) 15 (17.04%) 31(21.23%)
15 or more 2 (3.92%) 2 (4%) 114 (35.18%) 23 (26.14%) 32 (21.92%)
missing 0 (0%) 0 (0%) 1(0.31%) 0 (0%) 3 (2.05%)

Data are expressed as number (percentage) or median (min-max). AD, Alzheimer’s disease. APOE, apolipoprotein E. MCI, mild cognitive
impairment. *Age at study entry for Betula, and age at blood sampling for AIBL.

was performed with GeneGo MetaCore™ software
(https://portal.genego.com/).

RESULTS

Sample characteristics

The Betula and AIBL samples selected for the
DNAm analysis were compared to investigate poten-
tial sample differences (Table 1). The percentage
of males was similar between cases and controls
within the samples, but higher in AIBL (~43%) than
in Betula cases (~18%) (Table 1). In Betula, the
proportion of APOE e4-carriers among AD cases
(54%) and matched-controls (19.6%) were also sim-
ilar to the proportions in the full population-based
samples (Supplementary Table 1), indicating the rep-
resentativeness of our selected study sample. In both
samples, there is an expected higher proportion of
APOE g4-carriers in AD cases than controls (Table 1),
although higher proportions were seen in AIBL com-
pared to Betula (due to enrichment for APOE &4 at
sampling). The age at clinical onset was on aver-
age 81 years (range 67-94 years) in Betula and 78.5
in the AIBL sample (Table 1). While in the AIBL
sample there were age-differences between controls
(~73 years), MCI (~77 years), and AD cases (~80
years), the Betula sample cases and controls were
age-matched (~75 years at study enrollment). For
a graphical description of the Betula longitudinal
blood sampling times in relation to each partici-
pant’s chronological age and age at AD onset, see
Fig. 1.

In Betula, among health and lifestyle variables,
BMI was significantly lower in the AD cases after
clinical onset but the remaining of the considered

covariates did not differ between the study groups
at baseline (Supplementary Table 1).

Longitudinal changes in blood cell proportions

Prior to biomarker analyses, LMMs were used to
evaluate whether aging or AD were associated with
longitudinal changes in estimated blood cells pro-
portions (Supplementary Table 5 and Supplementary
Figure 3) in the Betula sample. The AD cases had
a faster rate of increase in the NK cell proportion
associated with increased chronological age (interac-
tion beta coefficient=0.0006, p =0.047). We found
no other significant differences in the intercepts or
the slopes of the other blood cells, indicating similar
blood cell proportions in AD cases and matched-
controls. CD4+ T cells and B cells had decreased
proportions associated with increase in chronological
age (i.e., significant negative slopes, Supplementary
Table 5). No significant associations were found for
the CD8+ T cells, while granulocytes and monocytes
had increased proportions associated with increase in
chronological age (i.e., significant positive slopes, see
Supplementary Table 5) (Supplementary Figure 3d).
As a few CpG sites within a gene region may be
hypomethylated in one cell type but be hyperme-
thylated on another, the cell type with the biggest
proportion will affect the overall methylation pattern,
so the cell composition can affect the investigated
DNAm patterns in blood [62]. On average, the pro-
portion of granulocyte was higher (60%) than all the
other DNAm-estimated blood cell types (CD8+ T
cells=8%, CD4+ T cells=14%, NK cells=6%, B
cells=4%, monocytes =8%), therefore it was used
to adjust subsequent analyses.
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Fig. 1. Description of the study design. Chronological age and AD onset age of the selected AD cases (pink-to-blue) and their respective sex-
and age-matched controls (green). Y-axis presents the participants’ chronological age at blood sampling, and the color scale bar represents
the age of AD onset. X-axis represents the time-scale, where blood samples for the DNAm analysis were selected aiming three time-points:
long before (16 to —10 years before AD onset), before (-9 to —3 years before AD onset) and after AD onset (0 to 7 years after AD onset).

AD cases are not epigenetically older than
healthy sex- and age-matched controls

In Betula, the estimated Hannum (Fig. 2a), Hor-
vath (Fig. 2b), and PhenoAge (Fig. 2c) DNAm
age clocks showed high and approximately linear
associations with chronological age at blood sam-
pling (rs=0.725-0.783; Supplementary Table 4). As
expected, the DunedinPACE clock showed a less
clear association with chronological age (Fig. 2d).
Unadjusted LMMs with chronological age as time
scale showed no significant differences in the inter-
cepts or the slopes of the DNAm clocks between AD
cases and matched controls (p > 0.05; Supplementary
Table 6).

Delta ages were used to capture EAA, i.e., whether
subjects were epigenetic older or younger than
expected from their chronological ages. AHannum
age (Fig. 2e), AHorvath age (Fig. 2f), and
APhenoAge (Fig. 2g) did not differ significantly
between AD cases and controls in the unadjusted
LMMs, and no evidence was obtained for differen-
tial longitudinal rates of epigenetic aging between
cases and controls (p >0.05; Supplementary Table 6).
As in previous literature, all Aages were negatively
associated with chronological age [70, 71], indicat-
ing a deacceleration of EAA at higher chronological
ages. Aages were not associated with APOE &4 allele
carriage (Supplementary Table 7).

LMMs adjusted for additional covariates, APOE
g4-carriage, granulocyte proportion, and self-
reported smoking, were also used to assess potential
differential longitudinal changes in AHannum age,
AHorvath age, APhenoAge, and DunedinPACE
clock between AD cases and controls (Supplemen-
tary Tables 7 and 8). Independently of the used
time-scale, chronological age (Fig. 2h-k, Supplemen-
tary Table 7) or time to/after AD onset (Fig. 2l-o,
Supplementary Table 8), the adjusted models did
not show any significant differences in DNAm age
markers between AD cases and matched controls. If
anything, AD cases trended towards having epige-
netically younger APhenoAge and a slower Dunedin
PACE age at younger ages and earlier time-points
before AD onset (Supplementary Table 7). Thus, we
did not observe any evidence for AD cases showing
accelerated epigenetic aging in blood, but rather a
trend for the opposite.

We additionally ran a supplementary set of analy-
ses with age at AD onset instead of chronological
age as a covariate to test for potential differences
driven by age of onset of the cases. However, due
to the sampling scheme in this study, which priori-
tized cases with a long follow-up time (i.e., available
blood samples long before AD onset), chronolog-
ical age at blood-sampling was highly correlated
with age at onset (r=0.841; p <2.2E-16), based on
the baseline time-point of each participant, see also
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Fig. 2. Longitudinal analyses of DNAm clocks in AD cases (red) and matched-controls (blue). Unadjusted generalized additive mixed
models (GAMMs) of the raw estimated DNAm clocks (a—d) and Aages (e—g) with chronological age as the time-scale. Note negative
association between Aage and age, indicating a deacceleration of epigenetic ages at higher chronological age for both cases and controls.
Linear mixed-effects models (LMMs) of the Aages and the DunedinPACE clock with chronological age (h—k) and time to/after AD onset
(1-0) as time-scales. LMMSs were adjusted by APOE €4 allele carriage, self-reported smoking, granulocyte proportion, and included an

Alzheimer’s disease (AD) status by time interaction.

Fig. 1). Results from these age-of-onset analyses are
shown in Supplementary Table 9 and Supplemen-
tary Figure 4 and resemble those with chronological
age as the time scale, with cases with younger age
of onset being estimated as epigenetically younger
for AHannum and APhenoAge, and thus does not
support the hypothesis of AD being associated with
accelerated epigenetic aging in blood.

When estimated in the AIBL cohort, the DNAm
clocks were in accordance with the null findings in
the Betula sample, none of the estimated delta ages
nor the DunedinPACE clock were able to significantly
discriminate MCI (p-values: 0.17-0.87, Supplemen-
tary Table 10) or AD cases (p-values: 0.25-0.99,
Supplementary Table 11) from healthy controls in
unadjusted logistic regression models, or in mod-
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els adjusted for APOE &4 carriage, sex, granulocyte
proportion, and chronological age.

Longitudinal AD panel of differentially
methylated sites is predictive of AD 8 years
before clinical onset

In the Betula sample, univariate LMMs were
used to identify differentially methylated sites that
significantly discriminated AD cases from controls
longitudinally, i.e., across the study duration of
20 years. There was no indication of inflation,
as suggested by the obtained genomic inflation
factor (lambda) of 1.050. No CpGs survived FDR-
correction, but the models identified 73 CpG sites
that fulfilled our exploratory criteria of p < 0.001, beta
coefficient > |0.05], and absence of crossover inter-
action with time (Supplementary Table 3). These
CpGs were thereafter used to compose a longitudi-
nal AD panel score (for violin plots of distribution,
see Supplementary Figure 5a). In models addition-
ally adjusted for APOE &4 carriage, sex, granulocyte
proportion, and chronological age, this longitudi-
nal AD panel was able to discriminate AD cases
and matched-controls (see logistic regression in
Supplementary Table 12) and significantly predict
the risk of AD (see Cox regression in Supple-
mentary Table 13) at the baseline time-point of
each participant, on average 8 years before clinical
onset.

Further characterization of the 73 identified sites
showed that the median difference in methylation
B-values between cases and controls was 4.4%
(min 2.6%, max 20.3%) at baseline, and 6.1%
(3.6-17.6%) after AD onset (only sites with beta
coefficient > [0.05] at AD onset, see Methods). A
majority of the identified sites (57 of 73) were
hypomethylated in the AD cases when compared
with the controls, and from the 27 CpGs that had
significant AD-by-time interactions, all but one had
a negative coefficient, i.e., almost all had decreased
methylation over time in AD (Supplementary
Table 3). Moreover, 22 CpGs had significant lon-
gitudinal aging effect (i.e., change over time across
the whole sample), of which 19 (86% of 22 CpGs)
showed an increase in methylation over time (i.e.,
positive beta coefficients, but with low effect sizes).

Complementary enrichment analyses of the anno-
tated genes associated with the longitudinal AD
panel’s CpGs were performed. These analyses did
not show significant enrichment in AD using GeneGo
(‘Alzheimer disease core network’ false discovery

rate (FDR) > 0.1, and °‘Alzheimer disease, late
onset” FDR=0.084) or AD-, neurodegeneration-,
or inflammation-related pathways using Toppgene
(FDRs > 0.1).

Pre- and post-AD scores from sPLS-DA are
predictive of AD 8 years before clinical onset

Multivariate analysis by sPLS-DA was used to
select CpGs that significantly discriminate AD cases
from matched-controls cross-sectionally, at two dif-
ferent time-points. Two sets of PCs were identified in
the long before AD (21 AD cases and 19 controls) and
in the after AD onset (47 AD cases and 49 controls)
subsamples. A unique PC of 7 CpGs (Supplemen-
tary Table 3) was selected from the long before AD
onset subsample, while two PCs with 2 and 25 CpGs
(Supplementary Table 3) were selected from the after
AD onset subsample. We estimated weighted scores
from these PCs, denoted the pre-AD score (for vio-
lin plots, see Supplementary Figure 5b) and post-AD
PC1 and PC?2 scores (Supplementary Figure 5c and
d, respectively). Using models additionally adjusted
for APOE &4 carriage, sex, granulocyte proportion,
and chronological age, we verified that the pre-AD
score was significantly able to discriminate AD cases
and matched-controls (see logistic regression Sup-
plementary Table 12), and was further able to predict
the risk of AD (see Cox regression on Supplementary
Table 13) at the baseline time-point of each partici-
pant of the Betula sample, on average 8 years before
onset. However, note that this analysis is partially cir-
cular as 42% of the samples (21 cases, 19 controls)
was used both for training, and for testing. We fur-
ther verified that the post-AD PC1 and PC2 scores
were both significantly able to discriminate between
AD cases and matched-controls (see logistic regres-
sion Supplementary Table 12), able to predict the
risk of AD (see Cox regression on Supplementary
Table 13) at baseline. Thus, the post-AD PC scores
trained on DNAm patterns from the time-point after
diagnosis were also predictive when estimated from
blood drawn at another time-point, on average 8 years
before.

Similar to the longitudinal AD panel, the DNA sites
of the pre- and post-AD scores were predominantly
hypomethylated in the AD cases (Supplementary
Table 3). The median |AB| of the pre-AD score CpGs
was 1.9% (min 1.3%, max 10.4%) long before AD
onset. In CpGs of the post-AD scores, the median
|AB| was 1.4% (min 0.3%, max 8.4%) after AD
onset. In addition, 3 CpGs overlapped between the
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longitudinal AD panel and the post-AD scores, the
cg03688665 in the gene body/promoter region of
the mitogen-activated protein kinase 4 (MAPK4), and
¢223379980 and cg12934659 outside annotated gene
regions (Supplementary Table 3). Thus, although
there is some convergence between the univariate and
multivariate analysis approaches, they largely iden-
tify separate CpGs.

Enrichment analyses of the annotated genes
associated with pre- and post-AD scores CpGs
were performed and did not show significant
enrichment in AD-associated genes using GeneGo
(‘Alzheimer disease core network” FDR > 0.1, and
‘Alzheimer disease, late onset’ FDRs > 0.1) or AD-,
neurodegeneration-, or inflammation-related path-
ways using Toppgene (FDRs > 0.1).

Finally, we also tested whether the novel DNAm
panels and scores, measured at study baseline,
explained unique variance when considered simul-
taneously in a Cox regression, along with age, sex,
granulocyte proportion, APOE, as well as the RTL
slope as a comparison biomarker. The longitudi-
nal AD panel and the post-AD score PC2 were
significant over and above other predictors (Sup-
plementary Table 14). The correlations between
our novel panels and scores, the epigenetic clocks,
granulocyte proportion, chronological age, and sex
differences are reported descriptively in Supplemen-
tary Table 4.

Internal validation analyses of the novel DNAm
biomarkers

The DNAm biomarkers estimated from the base-
line time-point of each participant, on average 8
years before onset, were compared in an internal
validation analysis to test their discriminatory accu-
racy using C-statistics. Including the well-established
biomarker APOE ¢4 allele carriage in the logistic
model improved model’s AD discriminatory accu-
racy from 0.50 to 0.72, while including the pre-
and post-AD scores improved model’s accuracy to
0.78 and 0.91, respectively (Fig. 3a). Including the
longitudinal AD panel further improved the discrim-
inatory accuracy to 0.99, over and above age, sex,
granulocyte proportion, and APOE e4-carriage (see
C-statistics Forest plot Fig. 3a). Thus, the panel and
scores demonstrated good discriminatory accuracy,
although the C-statistics may have been inflated due
to circularity in these analyses, particularly for the
longitudinal panel.

External validation analyses of the novel DNAm
biomarkers

Next, we estimated the novel DNAm biomark-
ers in the AIBL sample among MCI cases (violin
plots in Supplementary Figure 6) and AD cases
(Supplementary Figure 7), and employed equiva-
lent logistic regression models to compare their
discriminatory ability between the Betula and the
AIBL samples (Supplementary Tables 10 and 11).
The novel DNAm biomarkers did not significantly
discriminate MCI cases from controls (odds ratio
[OR]: 0.98-1.16, p-values: 0.28-0.87), while APOE
€4 allele carriage could discriminate both MCI
(ORs: 3.10-3.30, p-values: 0.00001-0.00002, Sup-
plementary Table 10) and AD (ORs: 12.27-13.58,
p<0.00001) in the AIBL sample. Accordingly, AUC
plots showed no improvement of the discriminatory
accuracy for MCI or AD when including the pre-AD
score, or post-AD PC1 and PC2 scores (Supplemen-
tary Figure 8). In the logistic regression models, the
longitudinal AD panel could significantly discrimi-
nate AD cases from controls (OR=1.38, p=0.012,
Supplementary Table 11), in a model adjusted for
age, sex, granulocyte proportion and APOE. The
obtained OR, reflecting a 38% increase in odds for
AD for one standard deviation increase in the lon-
gitudinal panel score, was however modest when
compared to APOE &4 allele carriage (OR =13.85,
p <0.00001, Supplementary Table 11). In subsequent
analyses, we focused only on the longitudinal AD
panel.

The discriminatory accuracy of the longitudinal
AD panel was lower in the AIBL sample (see AUC
Fig. 3c, d) compared to the Betula sample (Fig. 3b).
In the Betula baseline subsample, on average 8 years
before onset, including APOE €4 allele carriage in
the logistic model improved the AD discriminatory
accuracy (i.e., AUC) from 49.6% to 71.6%, while the
longitudinal AD panel improved model’s discrimina-
tory accuracy to 98.2% (Fig. 3b). In the AIBL sample
MClI cases, APOE &4 allele carriage had low discrim-
inatory accuracy, improving the AUC from 67.2%
to 71.1%, while the longitudinal AD panel main-
tained a similar discriminatory accuracy of 67.3%
as the model with only age, sex, and granulocyte
proportion, AUC =67.2% (Fig. 3c). In the AIBL AD
cases, including APOE &4 allele carriage in the logis-
tic model improved the AD discriminatory accuracy
from 76.7% to 87.0%, while the longitudinal AD
panel maintained a similar discriminatory accuracy
as the model with only age, sex, and granulocyte pro-
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Fig. 3. Accuracy of novel DNAm biomarkers in the Betula and The Australian Imaging, Biomarker & Lifestyle of Ageing (AIBL) samples.
The forest plot shows the discriminatory accuracy (C-statistics) of the logistic regression models comparing AD cases versus matched-
controls when including the biomarkers apolipoprotein E (APOE) &4 allele carriage, pre-AD score, post-AD scores and longitudinal AD
panel in the Betula baseline subsample, on average 8 years before diagnosis (a). Area under the receiver operating characteristic (ROC)
curves (AUC) plots of logistic regression models comparing the accuracy of APOE &4 allele carriage with the longitudinal AD panel in the
Betula at the baseline time-point of each participant, on average 8 years before onset (b), AIBL MCI cases (c), and AIBL AD cases (d).
Models were adjusted by the covariates chronological age, sex, and granulocyte proportion. APOE &4 carriage, and sex is a binary term;
the novel DNAm biomarkers, age and granulocyte proportion are continuous and z-transformed. Binary terms as AD, are interpreted as the
difference between AD and control when all the other covariates are 0. Z-transformed terms are interpreted as the effect of one standard

deviation’s increase in the odds ratio.

portion AUC =77.2% versus 76.7% (Fig. 3d). Thus,
although significantly replicated in the AIBL sam-
ple, the out-of-sample discriminatory accuracy of our
longitudinal panel was limited in comparison to the
established genetic marker APOE &4.

We next explored whether the individual CpGs
obtained in the longitudinal AD panel from the
Betula univariate LMMs were associated with MCI
and/or AD in the AIBL sample. A univariate logis-
tic regression analysis was implemented, adjusted
for APOE &4 carriage, sex, granulocyte propor-
tion, and chronological age (Supplementary Table 3).
From the 73 sites in the panel, 53 showed the
same direction of association in Betula and AIBL.
Only three of these sites, showed nominally signif-
icant (p<0.05) discriminatory accuracy separating

AD cases from controls, being hypomethylated
in both Betula and AIBL samples (Supplemen-
tary Table 3). These were cg05470393 (OR=0.75,
p=0.026), associated with the promoter region of
the gene Inducible T Cell Costimulator — ICOS),
cg08082436 (OR =0.69, p=0.008, associated with
the promoter region of the gene RB Binding Pro-
tein 6, Ubiquitin Ligase — RBBP6), and cg11015557
(OR=0.72, p=0.033, in the gene body of the gene
DNA Polymerase Epsilon Catalytic Subunit A —
POLE). Moreover, cg08082436 could significantly
discriminate MCI cases from controls with similar
effect sizes (OR=0.77, p=0.041) compared to the
AD model, but this was not the case for cg05470393
(OR=0.95, p=0.721) or cgl1015557 (OR=0.76,
p=0.071).
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Previously identified differentially methylated
sites overlap poorly across studies

We additionally conducted a literature search of
studies published until August 2022 to investigate
whether the CpGs of the longitudinal AD panel
were reported in previous array-based epigenome-
wide association study (EWAS) studies reporting
a list of AD-associated CpGs in whole peripheral
blood or white blood cells [10, 43, 72-76]. How-
ever, no DNAm site selected by our analyses was
previously reported (Supplementary Table 15). We
also note that among these previous studies report-
ing several CpGs associated with AD exclusively in
blood, only a few reported overlapping CpGs (Sup-
plementary Table 15). From the 1000 [43], 477 [76],
and 503 [73] CpGs previously reported, in total ten
overlap in two different studies; however, six of these
are reported with opposite directions of association
with AD [43, 73, 76]. Thus, only four CpGs had
the same direction of association in AD between dif-
ferent studies [43, 73, 76]. These were cg08787968
and c¢g01693350 (both in the gene body of the WT'/
Transcription Factor), cg03294458 (in the gene body
of Lysine Deficient Protein Kinase 4 - WNK4) [43,
76] and cg02768721 (in the gene body of Protein
Tyrosine Phosphatase Receptor Type N2 - PTPRN2)
[43, 73]. Even when comparing a thousand differen-
tially methylated sites pre- and post-diagnosis in the
same study (Supplementary Table 15), the number of
overlapping sites is small, totaling only 7 CpGs with
concordant directions [43].

DISCUSSION

The present study aimed at leveraging a unique
longitudinal design with up to 16 years of prospec-
tive pre-diagnosis data from an age- and sex-matched
case-control sample of clinical AD to test the hypoth-
esis that EAA measures in blood are predictive of
AD. A secondary aim was to identify new potentially
predictive or diagnostic CpGs using novel longitu-
dinal and machine learning methods. No evidence
was obtained for EAA being predictive of AD in
our longitudinal cohort, or a cross-sectional valida-
tion sample. Our longitudinal AD panel was the only
novel biomarker identified in Betula that replicated in
AIBL, although with negligible discriminatory value.

The absence of evidence for blood-based EAA
measures as biomarkers of AD conversion is consis-
tent with several recent studies on pre-symptomatic
dementia cases [77, 78], MCI, or manifest dementia

cases [79], as well as observed null associations with
AP, p-tau, or t-tau status in cerebrospinal fluid [36].
Similarly, a previous AIBL study reported largely
null findings between age-acceleration and cross-
sectional and longitudinal measures of neuroimaging,
cognition, and A3 load; except for a robust cross-
sectional association between the Hannum clock and
hippocampal volume in cognitively unimpaired indi-
viduals with high brain AB load [35]. In contrast, a
previous small study from our group suggested an
association between DNAm age and dementia sta-
tus in Betula (n =11, [34]), although lifestyle factors
possibly associated with both AD and EAA [80] were
not accounted for in that study. Further, the Dunedin-
PACE, was recently shown to predict AD status in the
two cohorts [41]. It is unclear why the present anal-
yses did not replicate this association, particularly in
AIBL, which should have adequate statistical power
to detect the relatively modest effect size reported in
that study (0.28 SD units). Future studies are needed
to explore potential cohort-specific factors that influ-
ence predictive power of EEA for AD. However, for
EAA measures to hold practical value for prediction,
itis critical that they replicate across different cohorts
and contexts and show added predictive ability over
and above easily available clinical and lifestyle risk
factors. Thus, currently the clinical utility of EAA is
limited, and the present study extends previous find-
ings by observing similar rates of EAA in cases and
controls across 16 years prior to AD onset. It should
be noted that in our study, as in previous ones, the cor-
relations between epigenetic ages (Horvath, Hannum,
PhenoAge) and chronological age were consistently
high across both AD cases and controls [71], demon-
strating the validity of our data and epigenetic age
estimations in general. The possibility also remains
that EAA in brain tissue significantly differentiates
AD from controls [81], albeit not useful as a pre-
dictive biomarker due to its invasiveness; or that
novel computational solutions improve the reliabil-
ity of epigenetic clocks and thereby their predictive
potential [94].

In addition to our null findings for the epigenetic
clocks, our attempts to identify novel panels/scores
of DNAm biomarkers with predictive value for AD
had limited success. Given the scarcity of replica-
tion evidenced in the literature, it is noteworthy that
our longitudinal AD panel consisting of 73 CpG
sites replicated nominally in the AIBL validation
sample. This despite differences in sample charac-
teristics, such as diagnostic criteria, sex, and APOE
e4-proportions. However, the panel still lacks practi-
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cal usefulness due to its low discriminatory accuracy
in the external validation sample. We further explored
replication of individual sites within this panel, and
found that three of the 73 CpGs located in genes
ICOS, RBBP6, and POLE replicated nominally in
AIBL, all hypomethylated in AD cases across both
cohorts. ICOS may have a role in the brain’s inflam-
mation response by CD4+ and CD8+ T cells [82],
RBBP6 participates in the regulation of inflammatory
and immune processes through activation of the NF-
kB pathway [83], while POLE directly participates in
the DNA repair [84]. Inflammation pathways play a
known but still unclear role in increasing risk of AD
[85-87], and have been highlighted in previous stud-
ies on blood-based DNAm in AD [10, 43, 73] and
other neurodegenerative conditions [53].

A limited replication of CpGs was further observed
in our literature review of blood-based DNAm array
studies of AD with published lists of CpGs. This
literature review showed that only 4 out of 3,275
identified CpGs replicated with concordant direc-
tion of effects across the studies [43, 73, 76]. These
four CpGs were located in genes that participate
in macrophage and immune responses, WNK4 and
PTPN2 [88, 89], and the synaptic plasticity-related
gene WT1 (2 CpGs) [90], respectively. The literature
review did not identify previously replicated findings
from candidate-gene or array-based DNAm stud-
ies, such as BINI, PINI, and BDNF [8, 91-93], but
instead it is in line with the low CpG replication rate
reported for array-based studies in a previous review
[8]. Thus, although limited in number, the replicated
CpGs could be etiologically relevant for AD, and
other studies have also convincingly identified sev-
eral CpG sites with a potential mechanistic role in
the disease [10]. However, the scarcity of CpG-level
replication across studies is a challenge for develop-
ing robust DNAm biomarkers in blood. Particularly
ones that hold predictive value over and above known
well-known predictors like age, sex, or APOE &4
in external samples. Recent attempts at developing
more robust DNAm biomarkers through principal-
component level rather than CpG-level training may
be one way forward [94], as could targeting region-
level methylation instead of CpG-level [44, 73]. The
latter could be particularly valuable when whole-
genome methylation data becomes more accessible,
since array resolution is a limiting factor for identi-
fying differentially methylated regions.

Many factors, in addition to methodological and
analytical ones [94, 95] may contribute to the limited
replication of blood-based DNAm EWAS findings

in AD. The heterogeneity of the disease itself may
also be a main contributor, as AD comprises several
subtypes concerning genetic factors, neuropathol-
ogy, cognitive symptoms, and biological pathways
[7, 59, 96, 97]. Different study cohorts may dif-
fer on important disease characteristics potentially
influencing DNAm. For instance, the Betula and
AIBL samples differed in APOE &4 carriage among
AD cases (54% versus 77%), the number of males
(18% versus 43%), as well as educational attainment
(Table 1)—all factors which may influence DNAm
patterns. One potential future direction for studies
with larger sample sizes could be to test DNAm
biomarkers in individuals with lower genetic AD
risk, e.g., APOE €4 non-carriers who still make up
a sizable proportion of diagnosed AD cases, and for
whom environmental AD risk factors captured by
DNAm patterns [80] may play a larger role in disease
development. Heterogeneity in DNAm alterations
may also characterize different AD stages, i.e., early,
pre-clinical stages, compared to intermediate, or late
AD (see e.g., [98] for similar reasoning/findings on
proteomic biomarkers). This was observed in both
our non-overlapping pre- and post-AD onset sPLS
results, and previous shorter (3—4.5 years) follow-
up studies of pre- and post AD (7/1000 overlapping
CpGs; [43]) and pre- and post all-cause dementia
onset (4% overlap; [44]). However, potential subtype
or stage-specific DNAm patterns still remain to be
systematically investigated and replicated.

With regards to findings from DNAm studies, it
is also relevant to consider the magnitude of the
methylation differences observed. For instance, the
mean methylation differences between Betula cases
and controls after AD onset ranged from 4.7 to
8.2%, when considering the three validated CpGs of
our longitudinal AD panel. This can be compared
with a previous study in monozygotic and dizygotic
AD-discordant twins with median methylation dif-
ferences of 18.4% (min 15.9, max 29.7%) in blood
examined by a different DNAm analysis method
[99]. In previous studies in blood the median |AB|
between AD cases and controls ranged from 1.0%
to 4.6% (min 0, max 19.3%), indicating that methy-
lation differences <5% are commonly reported [43,
72, 73, 76, 92]. It is still unknown if methylation
changes in this range lead to biologically significant
changes in gene expression, but some evidence indi-
cates biological relevance of subtle DNAm changes,
for instance by resulting in protein isoform diversity
[100]. Furthermore, in studies based on several cell
types, small average changes in methylation levels
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may mask larger underlying changes in specific cell
types. Regardless of functional consequences, small
methylation differences could still provide valuable
information as indicators rather than causes of dys-
regulated biological pathways, or serve a predictive
role regardless of their functional relevance, as exem-
plified by the CpGs included in the epigenetic clocks
that successfully predict other age-related disorders
and mortality.

We note that within our longitudinal AD panel
the majority of CpGs (78%), and all three validated
CpGs, were cross-sectionally hypomethylated in AD
cases compared to controls at the time of diagnosis.
This is concordant with some recent studies on blood
DNAm [10, 44, 76, 101] but not with others, that
instead observed hypermethylation [43, 72, 73, 92].
Also longitudinally, almost all sites where DNAm
rate of change significantly differed between cases
and controls (i.e., time-by-AD interaction) in our
longitudinal panel evidenced decreased methylation
over time in AD. A decrease in global methylation
levels with aging has been seen in several tissues
[102], and thus it is possible that DNAm changes
follow the same direction in aging as in AD, as pre-
viously proposed [10, 33].

Our current findings may have methodological and
study design implications. Firstly, we applied a novel
multivariate method, sPLS-DA, to try to identify
CpGs in any parts of the genome that could jointly
differentiate AD cases from controls. Although novel
machine-learning or artificial intelligence methods
are emerging for DNAm analyses [72], the major-
ity of AD studies so far have relied on univariate
methods (or differentially methylated regions across
adjacent CpGs). In our data, the generated pre- and
post-AD scores that were estimated based on sPLS-
DA in the Betula sample were not replicated in AIBL.
sPLS-DA is considered to be able to outperform other
machine learning methods of feature selection due to
its sparsity assumption [68], that aims at reducing
the number of features that conjunctly discriminate
the analyzed condition. This would help avoiding the
selection of “noise” variables [103]. Even so, over-
fitting does happen [103], reinforcing the need for
internal and external validation of the selected fea-
tures. There was low concordance in the identified
CpGs between the two different methods used in the
current study, LMMs for the longitudinal AD panel
and sPLS-DA for the pre- and post-AD scores. The
fact that out-of-sample replication was seen only for
the longitudinal panel, comprising stably differen-
tially methylated sites between cases and controls

across up to 26 years of follow-up, may speak to
the superiority of longitudinal study designs for iden-
tifying DNAm-based disease biomarkers. This may
be particularly true for small sample sizes such as
in the current study, where the repeated measure-
ments may act as intra-individual replication aiding
identification of more reliable CpGs.

A strength of our study is that we considered esti-
mated blood cell proportions in our analyses, which
may otherwise confound DNAm estimates if dif-
ferentially affected by the health status or age of
the study participants [62, 104]. We also separately
analyzed potential longitudinal differences in esti-
mated blood cell counts in AD cases and controls. An
increase in NK cells proportion over time was seen
only in AD cases, again indicating a potential change
in AD inflammation/immune response with aging. To
the best of our knowledge, this is the first study of lon-
gitudinal changes in blood cell compositions in AD,
and additional studies are needed to consolidate this
finding. We also replicated some previous age-related
changes in blood cell counts, like a decrease in sub-
types of CD4+ T cells and B cells [105], and increase
in monocytes [106].

Limitations

The limited AD sample size in the Betula study is
animportant limitation of our study, but uniqueness of
the dataset with longitudinal retrospective blood sam-
ples up to 16 years prior to diagnosis nevertheless had
potential to bring novel insights into the long-term
predictive ability and temporal dynamics of blood-
based DNAm biomarkers for AD. All available AD
cases in the Betula study database who fulfilled the
inclusion and exclusion criteria were included. Still,
we acknowledge that this study was likely under-
powered, particularly for the EWAS analyses, and
lack of correction for multiple comparisons may have
increased risk of false positive results. Another lim-
itation was the lack neuropathological data or gold
standard biomarkers (cerebrospinal fluid or positron
emission tomography neuroimaging) to confirm AD
diagnoses, which were not available in the Betula
study, our primary cohort. Even so, the diagnos-
tic evaluation integrated health-related, clinical, and
cognitive assessments, resulting in a reliable clinical
characterization [37, 45]. An inherent limitation for
epigenetic clocks is the underestimation of epigenetic
age in older subjects, which can lead to a loss of pre-
cision in older samples [70]. Finally, it is important to
stress that the EPIC array covers only a small fraction,
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850,000 of the ~28 million CpG sites in the genome
[107] and CpGs associated with AD could be out-
side the currently analyzed regions. Whole genome
bisulfite sequencing has the potential to identify novel
disease-associated CpGs.

Conclusions

The findings of this 16-year longitudinal study con-
cur with the majority of recent observations in the
literature that blood-based EAA measures developed
so far are of limited value as AD biomarkers, partic-
ularly when other easily available indicators such as
age, sex, and blood cell proportions are accounted
for. Tentatively, inflammation and immune-system
related processed may be reflected in DNAm pat-
terns in AD, but overall our findings underscore the
difficulty of identifying replicable epigenome-wide
DNAm alterations that can reliably distinguish AD
cases from controls beyond known markers such as
APOE &4 genotype.

ACKNOWLEDGMENTS

We thank all the Betula study participants, and
SciLifeLab Uppsala for the array analysis. The
AIBL study (http://www.AIBL.csiro.au) is a consor-
tium between Austin Health, CSIRO, Edith Cowan
University, the Florey Institute (The University of
Melbourne), and the National Ageing Research Insti-
tute. We thank all the investigators within the AIBL
who contributed to the design and implementation
of the resource and/or provided data but did not
actively participate in the development, analysis,
interpretation or writing of this current study. A com-
plete listing of AIBL investigators can be found at
https://aibl.csiro.au/about/aibl-research-team/.

FUNDING

This work was supported by grants from the
Swedish Research Council (2018-01729) and
the Kempe Foundation (JCK-1922.1) to SP.
Financial support was also provided through a
regional agreement between Umeéd University and
Vasterbotten County Council, grants: RV-735451
(2018-2020); RV-453141 (2015-2017); RV-225461
(2012-2014) and year-wise RV-741571, RV-678571,
RV-582111, RV-491371, RV- 400741, RV-322831,
RV-243741(2012-2018) to RA; as well as year-wise
RV- 932787, RV-865381 and RV-745571 to MH.
This work was also supported by the Medical

Faculty at Umea University (SD, MH, SP), the
Kempe Foundation (SD), and Uppsala-Umea
Comprehensive Cancer Consortium (SD, MH).
The Betula project is supported by the Bank of
Sweden Tercentenary Foundation [grant number
1988-0082:17; J2001-0682]; the Swedish Council
for Planning and Coordination of Research [grant
numbers D1988-0092, D1989-0115, D1990-0074,
D1991-0258, D1992-0143, D1997- 0756, D1997-
1841, D1999- 0739, B1999-474]; the Swedish
Council for Research in the Humanities and Social
Sciences [grant number F377/1988-2000]; the
Swedish Council for Social Research [grant numbers
1988-1990:88-0082, 311/1991-2000]; and the
Swedish Research Council [grant numbers 345-
2003-3883, 315-2004- 6977]. AIBL DNAm data was
supported through funding from the National Health
and Medical Research Council (NHMRC) awarded
to SML, specifically project grant GNT1161706 a
Boosting Dementia Research Grant (GNT1151854)
linked to the Joint Programming Neurodegenerative
Disease (JPND) BRAIN-MEND grant.

CONFLICT OF INTEREST
The authors have no conflict of interest to report.
DATA AVAILABILITY

The Betula dataset used and/or analyzed in the cur-
rent study is available from the corresponding author
onreasonable request, as long as the data transfer is in
agreement with the European Union legislation on the
General Data Protection Regulation and Umea Uni-
versity data protection policies. AIBL DNAm data are
available from the GEO repository accession number
GSE153712.

SUPPLEMENTARY MATERIAL

The supplementary material is available in the
electronic version of this article: https://dx.doi.org/
10.3233/JAD-230039.

REFERENCES

[1] AisenPS, Cummings J, Jack CR Jr, Morris JC, Sperling R,
Frolich L, Jones RW, Dowsett SA, Matthews BR, Raskin J,
Scheltens P, Dubois B (2017) On the path to 2025: Under-
standing the Alzheimer’s disease continuum. Alzheimers
Res Ther 9, 60.

[2] Thijssen EH, La Joie R, Strom A, Fonseca C, Iaccarino
L, Wolf A, Spina S, Allen IE, Cobigo Y, Heuer H, Van-


http://www.AIBL.csiro.au
https://aibl.csiro.au/about/aibl-research-team/
https://dx.doi.org/10.3233/JAD-230039

1460

(3]

[4]

(3]

(6]
(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

ES. Hackenhaar et al. / DNA-Methylation and Early AD Prediction

deVrede L, Proctor NK, Lago AL, Baker S, Sivasankaran
R, Kieloch A, Kinhikar A, Yu L, Valentin MA, Jeromin
A, Zetterberg H, Hansson O, Mattsson-Carlgren N, Gra-
ham D, Blennow K, Kramer JH, Grinberg LT, Seeley
WW, Rosen H, Boeve BF, Miller BL, Teunissen CE,
Rabinovici GD, Rojas JC, Dage JL, Boxer AL; Advanc-
ing Research and Treatment for Frontotemporal Lobar
Degeneration investigators (2020) Diagnostic value of
plasma phosphorylated taul81 in Alzheimer’s disease
and frontotemporal lobar degeneration. Nat Med 26,
387-397.

Lantero Rodriguez J, Karikari TK, Suarez-Calvet M,
Troakes C, King A, Emersic A, Aarsland D, Hye A, Zetter-
berg H, Blennow K, Ashton NJ (2020) Plasma p-taul81
accurately predicts Alzheimer’s disease pathology at least
8 years prior to post-mortem and improves the clinical
characterisation of cognitive decline. Acta Neuropathol
140, 267-278.

Sims R, Hill M, Williams J (2020) The multiplex model
of the genetics of Alzheimer’s disease. Nat Neurosci 23,
311-322.

Livingston G, Sommerlad A, Orgeta V, Costafreda SG,
Huntley J, Ames D, Ballard C, Banerjee S, Burns A,
Cohen-Mansfield J, Cooper C, Fox N, Gitlin LN, Howard
R, Kales HC, Larson EB, Ritchie K, Rockwood K, Samp-
son EL, Samus Q, Schneider LS, Selbak G, Teri L,
Mukadam N (2017) Dementia prevention, intervention,
and care. Lancet 390, 2673-2734.

Ferrari C, Sorbi S (2021) The complexity of Alzheimer’s
disease: An evolving puzzle. Physiol Rev 101, 1047-1081.
Frisoni GB, Altomare D, Thal DR, Ribaldi F, van der
Kant R, Ossenkoppele R, Blennow K, Cummings J, van
Duijn C, Nilsson PM, Dietrich PY, Scheltens P, Dubois B
(2022) The probabilistic model of Alzheimer disease: The
amyloid hypothesis revised. Nat Rev Neurosci 23, 53-66.
Fransquet PD, Lacaze P, Saffery R, McNeil J, Woods R,
Ryan J (2018) Blood DNA methylation as a potential
biomarker of dementia: A systematic review. Alzheimers
Dement 14, 81-103.

Jones RS (2007) Epigenetics: Reversing the ‘irreversible’.
Nature 450, 357-359.

Silva TC, Young JI, Zhang L, Gomez L, Schmidt
MA, Varma A, Chen XS, Martin ER, Wang L (2022)
Cross-tissue analysis of blood and brain epigenome-wide
association studies in Alzheimer’s disease. Nat Commun
13, 4852.

Christensen BC, Houseman EA, Marsit CJ, Zheng S,
Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Pad-
bury JF, Bueno R, Sugarbaker DJ, Yeh RF, Wiencke JK,
Kelsey KT (2009) Aging and environmental exposures
alter tissue-specific DNA methylation dependent upon
CpG island context. PLoS Genet 5, e1000602.

Pal S, Tyler JK (2016) Epigenetics and aging. Sci Adv 2,
e1600584.

Horvath S, Raj K (2018) DNA methylation-based
biomarkers and the epigenetic clock theory of ageing. Nat
Rev Genet 19, 371-384.

Levine ME, Lu AT, Quach A, Chen BH, Assimes TL,
Bandinelli S, Hou L, Baccarelli AA, Stewart JD, Li Y,
Whitsel EA, Wilson JG, Reiner AP, Aviv A, Lohman
K, Liu Y, Ferrucci L, Horvath S (2018) An epigenetic
biomarker of aging for lifespan and healthspan. Aging
(Albany NY) 10, 573-591.

Reynolds LM, Taylor JR, Ding J, Lohman K, Johnson
C, Siscovick D, Burke G, Post W, Shea S, Jacobs DR

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Jr, Stunnenberg H, Kritchevsky SB, Hoeschele I, McCall
CE, Herrington D, Tracy RP, Liu Y (2014) Age-related
variations in the methylome associated with gene expres-
sion in human monocytes and T cells. Nat Commun 5,
5366.

ForakerJ, Millard SP, Leong L, Thomson Z, Chen S, Keene
CD, Bekris LM, Yu CE (2015) The APOE gene is differ-
entially methylated in Alzheimer’s disease. J Alzheimers
Dis 48, 745-755.

Poon CH, Tse LSR, Lim LW (2020) DNA methylation
in the pathology of Alzheimer’s disease: From gene to
cognition. Ann N Y Acad Sci 1475, 15-33.

Wei XL, Zhang L, Zeng Y (2020) DNA methylation in
Alzheimer’s disease: In brain and peripheral blood. Mech
Ageing Dev 191, 111319.

Fransquet PD, Ryan J (2019) The current status of blood
epigenetic biomarkers for dementia. Crit Rev Clin Lab Sci
56, 435-457.

Roadmap Epigenomics Consortium; Kundaje A, Meule-
man W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi
A, Kheradpour P, Zhang Z, Wang J, Ziller MJ, Amin V,
Whitaker JW, Schultz MD, Ward LD, Sarkar A, Quon G,
Sandstrom RS, Eaton ML, Wu YC, Pfenning AR, Wang
X, Claussnitzer M, Liu Y, Coarfa C, Harris RA, Shoresh
N, Epstein CB, Gjoneska E, Leung D, Xie W, Hawkins
RD, Lister R, Hong C, Gascard P, Mungall AJ, Moore R,
Chuah E, Tam A, Canfield TK, Hansen RS, Kaul R, Sabo
PJ, Bansal MS, Carles A, Dixon JR, Farh KH, Feizi S,
Karlic R, Kim AR, Kulkarni A, Li D, Lowdon R, Elliott
G, Mercer TR, Neph SJ, Onuchic V, Polak P, Rajagopal N,
Ray P, Sallari RC, Siebenthall KT, Sinnott-Armstrong NA,
Stevens M, Thurman RE, Wu J, Zhang B, Zhou X, Beaudet
AE, Boyer LA, De Jager PL, Farnham PJ, Fisher SJ, Haus-
sler D, Jones SJ, Li W, Marra MA, McManus MT, Sunyaev
S, Thomson JA, Tlsty TD, Tsai LH, Wang W, Waterland
RA, Zhang MQ, Chadwick LH, Bernstein BE, Costello JF,
Ecker JR, Hirst M, Meissner A, Milosavljevic A, Ren B,
Stamatoyannopoulos JA, Wang T, Kellis M (2015) Integra-
tive analysis of 111 reference human epigenomes. Nature
518, 317-330.

Edgar RD, Jones MJ, Meaney MJ, Turecki G, Kobor MS
(2017) BECon: A tool for interpreting DNA methylation
findings from blood in the context of brain. Transl Psychi-
atry7,el187.

Farre P, Jones MJ, Meaney MJ, Emberly E, Turecki G,
Kobor MS (2015) Concordant and discordant DNA methy-
lation signatures of aging in human blood and brain.
Epigenetics Chromatin 8, 19.

Hannon E, Lunnon K, Schalkwyk L, Mill J (2015)
Interindividual methylomic variation across blood, cor-
tex, and cerebellum: Implications for epigenetic studies of
neurological and neuropsychiatric phenotypes. Epigenet-
ics 10, 1024-1032.

Freytag V, Carrillo-Roa T, Milnik A, Sdmann PG, Vuko-
jevic V, Coynel D, Demougin P, Egli T, Gschwind L,
Jessen F, Loos E, Maier W, Riedel-Heller SG, Scherer M,
Vogler C, Wagner M, Binder EB, de Quervain DJ, Papas-
sotiropoulos A (2017) A peripheral epigenetic signature
of immune system genes is linked to neocortical thickness
and memory. Nat Commun 8, 15193.

Aberg KA, Xie LY, McClay JL, Nerella S, Vunck S, Snider
S, Beardsley PM, van den Oord E (2013) Testing two
models describing how methylome-wide studies in blood
are informative for psychiatric conditions. Epigenomics S,
367-377.



[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

(371

[38]

ES. Hackenhaar et al. / DNA-Methylation and Early AD Prediction 1461

Walton E, Calhoun V, Heijmans B, Thompson P, Cecil C
(2020) The rise of neuroimaging epigenetics: A systematic
review of studies examining associations between DNA
methylation and brain imaging. PsyArXiv. Preprint, DOI:
10.31234/0sf.io/4a8xn.

Porter HL, Brown CA, Roopnarinesingh X, Giles CB,
Georgescu C, Freeman WM, Wren JD (2021) Many
chronological aging clocks can be found throughout the
epigenome: Implications for quantifying biological aging.
Aging Cell 20, e13492.

Marioni RE, Harris SE, Shah S, McRae AF, von Zglin-
icki T, Martin-Ruiz C, Wray NR, Visscher PM, Deary 1J
(2016) The epigenetic clock and telomere length are inde-
pendently associated with chronological age and mortality.
Int J Epidemiol 45, 424-432.

Levine ME, Lu AT, Bennett DA, Horvath S (2015) Epi-
genetic age of the pre-frontal cortex is associated with
neuritic plaques, amyloid load, and Alzheimer’s disease
related cognitive functioning. Aging (Albany NY)7, 1198-
1211.

Alzheimer’s disease facts and figures. Alzheimers Dement
17, 327-406.

Maroni M, Wolk D, Das S, Flores R, Wisse L, Xie L,
Yushkevich P, Lee E, McMillan C (2020) Epigenetic mea-
surement of biological age associates with tau load in
normal brain aging. Alzheimers Dement 16, p €042068.
Lu AT, Hannon E, Levine ME, Crimmins EM, Lunnon K,
Mill J, Geschwind DH, Horvath S (2017) Genetic archi-
tecture of epigenetic and neuronal ageing rates in human
brain regions. Nat Commun 8, 15353.

Pellegrini C, Pirazzini C, Sala C, Sambati L, Yusipov I,
Kalyakulina A, Ravaioli F, Kwiatkowska KM, Durso DF,
Ivanchenko M, Monti D, Lodi R, Franceschi C, Cortelli P,
Garagnani P, Bacalini MG (2021) A meta-analysis of brain
dna methylation across sex, age, and Alzheimer’s disease
points for accelerated epigenetic aging in neurodegenera-
tion. Front Aging Neurosci 13, 639428.

Degerman S, Josefsson M, Adolfsson AN, Wennstedt S,
Landfors M, Haider Z, Pudas S, Hultdin M, Nyberg L,
Adolfsson R (2017) Maintained memory in aging is asso-
ciated with young epigenetic age. Neurobiol Aging 55,
167-171.

Milicic L, Vacher M, Porter T, Doré V, Burnham SC,
Bourgeat P, Shishegar R, Doecke J, Armstrong NJ,
Tankard R, Maruff P, Masters CL, Rowe CC, Ville-
magne VL, Laws SM; Alzheimer’s Disease Neuroimaging
Initiative (ADNI); Australian Imaging Biomarkers and
Lifestyle (AIBL) Study (2022) Comprehensive analysis
of epigenetic clocks reveals associations between dispro-
portionate biological ageing and hippocampal volume.
Geroscience 44, 1807-1823.

Sato K, Mano T, Suzuki K, Toda T, Iwatsubo T, Iwata
A, Alzheimers Disease Neuroimaging Initiative (2020)
Attempt to predict A/T/N-based Alzheimer’s disease cere-
brospinal fluid biomarkers using a peripheral blood dna
methylation clock. J Alzheimers Dis Rep 4, 287-296.
Nyberg L, Boraxbekk CJ, Sorman DE, Hansson P, Herlitz
A, Kauppi K, Ljungberg JK, Lovheim H, Lundquist A,
Adolfsson AN, Oudin A, Pudas S, Ronnlund M, Stiernst-
edt M, Sundstrom A, Adolfsson R (2020) Biological and
environmental predictors of heterogeneity in neurocogni-
tive ageing - Evidence from Betula and other longitudinal
studies. Ageing Res Rev 64, 101184.

Nilsson LG, Backman L, Erngrund K, Nyberg L, Adolfs-
son R, Bucht G, Karlsson S, Widing M, Winblad B (1997)

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

The Betula prospective cohort study: Memory, health and
aging. Aging Neuropsychol Cogn 4, 1-32.

Hannum G, Guinney J, Zhao L, Zhang L, Hughes G,
Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, Deconde
R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K
(2013) Genome-wide methylation profiles reveal quanti-
tative views of human aging rates. Mol Cell 49, 359-367.
Horvath S (2013) DNA methylation age of human tissues
and cell types. Genome Biol 14, R115.

Sugden K, Caspi A, Elliott ML, Bourassa KJ, Chamarti
K, Corcoran DL, Hariri AR, Houts RM, Kothari M,
Kritchevsky S, Kuchel GA, Mill JS, Williams BS, Bel-
sky DW, Moffitt TE; Alzheimer’s Disease Neuroimaging
Initiative (2022) Association of pace of aging measured by
blood-based DNA methylation with age-related cognitive
impairment and dementia. Neurology 99, e1402-e1413.
Belsky DW, Caspi A, Arseneault L, Baccarelli A, Corcoran
DL, Gao X, Hannon E, Harrington HL, Rasmussen LJ,
Houts R, Huffman K, Kraus WE, Kwon D, Mill J, Pieper
CF, Prinz JA, Poulton R, Schwartz J, Sugden K, Vokonas
P, Williams BS, Moffitt TE (2020) Quantification of the
pace of biological aging in humans through a blood test,
the DunedinPoAm DNA methylation algorithm. Elife 9,
e54870.

Lardenoije R, Roubroeks JAY, Pishva E, Leber M, Wag-
ner H, Iatrou A, Smith AR, Smith RG, Eijssen LMT,
Kleineidam L, Kawalia A, Hoffmann P, Luck T, Riedel-
Heller S, Jessen F, Maier W, Wagner M, Hurlemann R,
Kenis G, Ali M, Del Sol A, Mastroeni D, Delvaux E,
Coleman PD, Mill J, Rutten BPF, Lunnon K, Ramirez A,
van den Hove DLA (2019) Alzheimer’s disease-associated
(hydroxy)methylomic changes in the brain and blood. Clin
Epigenetics 11, 164.

Fransquet PD, Lacaze P, Saffery R, Phung J, Parker E,
Shah R, Murray A, Woods RL, Ryan J (2020) Blood DNA
methylation signatures to detect dementia prior to overt
clinical symptoms. Alzheimers Dement (Amst) 12,e12056.
Ellis KA, Bush AI, Darby D, De Fazio D, Foster J, Hud-
son P, Lautenschlager NT, Lenzo N, Martins RN, Maruff P,
Masters C, Milner A, Pike K, Rowe C, Savage G, Szoeke
C, Taddei K, Villemagne V, Woodward M, Ames D; AIBL
Research Group (2009) The Australian Imaging, Biomark-
ers and Lifestyle (AIBL) study of aging: Methodology and
baseline characteristics of 1112 individuals recruited for a
longitudinal study of Alzheimer’s disease. Int Psychogeri-
atr 21, 672-687.

Nilsson LG, Adolfsson R, Backman L, de Frias CM,
Molander B, Nyberg L (2004) Betula: A prospective
cohort study on memory, health and aging. Aging Neu-
ropsychol Cogn 11, 134-148.

Fowler C, Rainey-Smith SR, Bird S, Bomke J, Bourgeat P,
Brown BM, Burnham SC, Bush AI, Chadunow C, Collins
S, Doecke J, Doré V, Ellis KA, Evered L, Fazlollahi A,
Fripp J, Gardener SL, Gibson S, Grenfell R, Harrison E,
Head R, Jin L, Kamer A, Lamb F, Lautenschlager NT,
Laws SM, Li QX, Lim L, Lim YY, Louey A, Macaulay
SL, Mackintosh L, Martins RN, Maruff P, Masters CL,
McBride S, Milicic L, Peretti M, Pertile K, Porter T,
Radler M, Rembach A, Robertson J, Rodrigues M, Rowe
CC, Rumble R, Salvado O, Savage G, Silbert B, Soh
M, Sohrabi HR, Taddei K, Taddei T, Thai C, Trounson
B, Tyrrell R, Vacher M, Varghese S, Villemagne VL,
Weinborn M, Woodward M, Xia Y, Ames D; the AIBL
investigators (2021) Fifteen years of the Australian Imag-
ing, Biomarkers And Lifestyle (AIBL) Study: Progress



1462

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

ES. Hackenhaar et al. / DNA-Methylation and Early AD Prediction

and observations from 2,359 older adults spanning the
spectrum from cognitive normality to Alzheimer’s disease.
J Alzheimers Dis Rep 5, 443-468.

McKhann G, Drachman D, Folstein M, Katzman R, Price
D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s
disease: Report of the NINCDS-ADRDA Work Group
under the auspices of Department of Health and Human
Services Task Force on Alzheimer’s Disease. Neurology
34, 939-944.

Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni
L, Wahlund LO, Nordberg A, Biackman L, Albert M,
Almkvist O, Arai H, Basun H, Blennow K, de Leon M,
DeCarli C, Erkinjuntti T, Giacobini E, Graff C, Hardy
J, Jack C, Jorm A, Ritchie K, van Duijn C, Visser P,
Petersen RC (2004) Mild cognitive impairment-beyond
controversies, towards a consensus: Report of the Interna-
tional Working Group on Mild Cognitive Impairment. J
Intern Med 256, 240-146.

Josefsson M, de Luna X, Pudas S, Nilsson LG, Nyberg L
(2012) Genetic and lifestyle predictors of 15-year longi-
tudinal change in episodic memory. J Am Geriatr Soc 60,
2308-2312.

Pudas S, Persson J, Josefsson M, de Luna X, Nilsson
LG, Nyberg L (2013) Brain characteristics of individuals
resisting age-related cognitive decline over two decades.
J Neurosci 33, 8668-8677.

Pudas S, Josefsson M, Adolfsson AN, Landfors M, Kauppi
K, Veng-Taasti LM, Hultdin M, Adolfsson R, Degerman
S (2021) Short leukocyte telomeres, but not telomere
attrition rates, predict memory decline in the 20-year lon-
gitudinal Betula study. J Gerontol A Biol Sci Med Sci 76,
955-963.

Nabais MF, Laws SM, Lin T, Vallerga CL, Armstrong NJ,
Blair IP, Kwok JB, Mather KA, Mellick GD, Sachdev
PS, Wallace L, Henders AK, Zwamborn RAJ, Hop PJ,
Lunnon K, Pishva E, Roubroeks JAY, Soininen H, Tso-
laki M, Mecocci P, Lovestone S, Kloszewska I, Vellas
B; Australian Imaging Biomarkers and Lifestyle study;
Alzheimer’s Disease Neuroimaging Initiative; Furlong S,
Garton FC, Henderson RD, Mathers S, McCombe PA,
Needham M, Ngo ST, Nicholson G, Pamphlett R, Rowe
DB, Steyn FJ, Williams KL, Anderson TJ, Bentley SR,
Dalrymple-Alford J, Fowder J, Gratten J, Halliday G,
Hickie IB, Kennedy M, Lewis SJG, Montgomery GW,
Pearson J, Pitcher TL, Silburn P, Zhang F, Visscher PM,
Yang J, Stevenson AlJ, Hillary RF, Marioni RE, Har-
ris SE, Deary 1J, Jones AR, Shatunov A, Tacoangeli A,
van Rheenen W, van den Berg LH, Shaw PJ, Shaw CE,
Morrison KE, Al-Chalabi A, Veldink JH, Hannon E,
Mill J, Wray NR, McRae AF (2021) Meta-analysis of
genome-wide DNA methylation identifies shared associ-
ations across neurodegenerative disorders. Genome Biol
22, 90.

Nabais M, Laws S, Wray N, Henders A, Wallace
L, McRae A (2020) Meta-analysis of genome-wide
DNA methylation identifies shared associations across
neurodegenerative disorders. GSE153712. Gene Expres-
sion Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE153712.

Zhou WD, Laird PW, Shen H (2017) Comprehensive char-
acterization, annotation and innovative use of Infinium
DNA methylation BeadChip probes. Nucleic Acids Res
45, e22.

Gaunt TR, Shihab HA, Hemani G, Min JL, Woodward G,
Lyttleton O, Zheng J, Duggirala A, McArdle WL, Ho K,

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Ring SM, Evans DM, Davey Smith G, Relton CL (2016)
Systematic identification of genetic influences on methy-
lation across the human life course. Genome Biol 17, 61.

McClay JL, Shabalin AA, Dozmorov MG, Adkins DE,
Kumar G, Nerella S, Clark SL, Bergen SE; Swedish
Schizophrenia Consortium; Hultman CM, Magnusson PK,
Sullivan PF, Aberg KA, van den Oord EJ (2015) High
density methylation QTL analysis in human blood via
next-generation sequencing of the methylated genomic
DNA fraction. Genome Biol 16, 291.

Marioni RE, Suderman M, Chen BH, Horvath S,
Bandinelli S, Morris T, Beck S, Ferrucci L, Pedersen NL,
Relton CL, Deary 1J, Hagg S (2019) Tracking the epige-
netic clock across the human life course: A meta-analysis
of longitudinal cohort data. J Gerontol A Biol Sci Med Sci
74, 57-61.

Scheltens NM, Galindo-Garre F, Pijnenburg YA, van der
Vlies AE, Smits LL, Koene T, Teunissen CE, Barkhof F,
Wattjes MP, Scheltens P, van der Flier WM (2016) The
identification of cognitive subtypes in Alzheimer’s disease
dementia using latent class analysis. J Neurol Neurosurg
Psychiatry 87, 235-243.

Nilsson LG, Adolfsson R, Backman L, Cruts M, Nyberg
L, Small BJ, Van Broeckhoven C (2006) The influence
of APOE status on episodic and semantic memory: Data
from a population-based study. Neuropsychology 20, 645-
657.

Houseman EA, Accomando WP, Koestler DC, Chris-
tensen BC, Marsit CJ, Nelson HH, Wiencke JK, Kelsey
KT (2012) DNA methylation arrays as surrogate measures
of cell mixture distribution. BMC Bioinformatics 13, 86.

Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlen
SE, Greco D, Soderhall C, Scheynius A, Kere J (2012)
Differential DNA methylation in purified human blood
cells: Implications for cell lineage and studies on disease
susceptibility. Plos One 7, e41361.

Hackenhaar FS, Josefsson M, Adolfsson AN, Landfors
M, Kauppi K, Hultdin M, Adolfsson R, Degerman S,
Pudas S (2021) Short leukocyte telomeres predict 25-year
Alzheimer’s disease incidence in non-APOE epsilon 4-
carriers. Alzheimers Res Ther 13, 130.

Cawthon RM (2002) Telomere measurement by quantita-
tive PCR. Nucleic Acids Res 30, e47.

Nordfjall K, Osterman P, Melander O, Nilsson P, Roos G
(2007) hTERT T-1327/C polymorphism is not associated
with age-related telomere attrition in peripheral blood.
Biochem Biophys Res Commun 358, 215-218.

Husquin LT, Rotival M, Fagny M, Quach H, Zidane N,
McEwen LM, Maclsaac JL, Kobor MS, Aschard H, Patin
E, Quintana-Murci L (2018) Exploring the genetic basis
of human population differences in DNA methylation and
their causal impact on immune gene regulation. Genome
Biol 19, 222.

Smyth G (2005) Limma: Linear models for microarray
data. In Bioinformatics and computational biology solu-
tions using R and Bioconductor. Gentleman R, Carey V,
Dudoit S, Irizarry I, Hube W, eds. Springer, New York, pp.
397-342.

Cao KAL, Boitard S, Besse P (2011) Sparse PLS discrim-
inant analysis: Biologically relevant feature selection and
graphical displays for multiclass problems. BMC Bioin-

formatics 12, 253.

Midi H, Sarkar S, Rana S (2013) Collinearity diagnostics
of binary logistic regression model. J Interdisc Math 13,
253-267.


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE153712

[70]

[71]

[72]

(73]

[74]

(751

[76]

[77]

[78]

[79]

[80]

ES. Hackenhaar et al. / DNA-Methylation and Early AD Prediction 1463

El Khoury LY, Gorrie-Stone T, Smart M, Hughes A, Bao
Y, Andrayas A, Burrage J, Hannon E, Kumari M, Mill J,
Schalkwyk LC (2019) Systematic underestimation of the
epigenetic clock and age acceleration in older subjects.
Genome Biol 20, 283.

Grodstein F, Lemos B, Yu L, Iatrou A, De Jager PL, Ben-
nett DA (2021) Characteristics of epigenetic clocks across
blood and brain tissue in older women and men. Front
Neurosci 14, 555307.

Bahado-Singh RO, Vishweswaraiah S, Aydas B, Yilmaz
A, Metpally RP, Carey DJ, Crist RC, Berrettini WH, Wil-
son GD, Imam K, Maddens M, Bisgin H, Graham SF,
Radhakrishna U (2021) Artificial intelligence and leuko-
cyte epigenomics: Evaluation and prediction of late-onset
Alzheimer’s disease. Plos One 16, €0248375.

Roubroeks JAY, Smith AR, Smith RG, Pishva E, Ibrahim
Z, Sattlecker M, Hannon EJ, Kloszewska I, Mecocci P,
Soininen H, Tsolaki M, Vellas B, Wahlund LO, Aars-
land D, Proitsi P, Hodges A, Lovestone S, Newhouse
SJ, Dobson RJB, Mill J, van den Hove DLA, Lun-
non K (2020) An epigenome-wide association study of
Alzheimer’s disease blood highlights robust DNA hyper-
methylation in the HOXB6 gene. Neurobiol Aging 95,
26-45.

Vasanthakumar A, Davis JW, Idler K, Waring JF, Asque
E, Riley-Gillis B, Grosskurth S, Srivastava G, Kim S,
Nho K, Nudelman KNH, Faber K, Sun Y, Foroud TM,
Estrada K, Apostolova LG, Li QS, Saykin AJ; Alzheimer’s
Disease Neuroimaging Initiative (ADNI) (2020) Har-
nessing peripheral DNA methylation differences in the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) to
reveal novel biomarkers of disease. Clin Epigenetics 12,
84.

Walker RM, Vaher K, Bermingham ML, Morris SW,
Bretherick AD, Zeng Y, Rawlik K, Amador C, Camp-
bell A, Haley CS, Hayward C, Porteous DJ, McIntosh
AM, Marioni RE, Evans KL (2021) Identification of
epigenome-wide DNA methylation differences between
carriers of APOE epsilon 4 and APOE epsilon 2 alleles.
Genome Med 13, 1.

Madrid A, Hogan KIJ, Papale LA, Clark LR, Asthana S,
Johnson SC, Alisch RS (2018) DNA hypomethylation in
blood links B3GALT4 and ZADH2 to Alzheimer’s dis-
ease. J Alzheimers Dis 66, 927-934.

Fransquet P, Lacaze P, Saffery R, Shah R, Vryer R, Murray
A, Woods R, Ryan J (2021) Accelerated epigenetic aging
in peripheral blood does not predict dementia risk. Curr
Alzheimer Res 18, 443-451.

Sibbett RA, Altschul DM, Marioni RE, Deary 1J, Starr
JM, Russ TC (2020) DNA methylation-based measures of
accelerated biological ageing and the risk of dementia in
the oldest-old: A study of the Lothian Birth Cohort 1921.
BMC Psychiatry 20, 91.

Shadyab AH, McEvoy LK, Horvath S, Whitsel EA, Rapp
SR, Espeland MA, Resnick SM, Manson JE, Chen JC,
Chen BH, Li W, Hayden KM, Bao W, Kusters CDJ,
LaCroix AZ (2022) Association of epigenetic age accel-
eration with incident mild cognitive impairment and
dementia among older women. J Gerontol A Biol Sci Med
Sci 77, 1239-1244.

McCartney DL, Stevenson AJ, Walker RM, Gibson J,
Morris SW, Campbell A, Murray AD, Whalley HC,
Porteous DJ, McIntosh AM, Evans KL, Deary 1J, Mar-
ioni RE (2018) Investigating the relationship between
DNA methylation age acceleration and risk factors for

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

Alzheimer’s disease. Alzheimers Dement (Amst) 10, 429-
437.

Thrush KL, Bennett DA, Gaiteri C, Horvath S, Dyck
CHYV, Higgins-Chen AT, Levine ME (2022) Aging the
brain: Multi-region methylation principal component
based clock in the context of Alzheimer’s disease. Aging
(Albany NY) 14, 5641-5668.

Bjursten S, Pandita A, Zhao Z, Frojd C, Ny L, Jensen C,
Ullerstam T, Jespersen H, Borén J, Levin M, Zetterberg H,
Rudin A, Levin M (2021) Early rise in brain damage mark-
ers and high ICOS expression in CD4+ and CD8+ T cells
during checkpoint inhibitor-induced encephalomyelitis. J
Immunother Cancer 9, €002732.

Xiao C, Wu G, Zhou Z, Zhang X, Wang Y, Song G, Ding
E, Sun X, Zhong L, Li S, Weng J, Zhu Z, Chen J, Wang X
(2019) RBBP6, a RING finger-domain E3 ubiquitin ligase,
induces epithelial-mesenchymal transition and promotes
metastasis of colorectal cancer. Cell Death Dis 10, 833.
Ogi T, Limsirichaikul S, Overmeer RM, Volker M, Take-
naka K, Cloney R, Nakazawa Y, Niimi A, Miki Y, Jaspers
NG, Mullenders LH, Yamashita S, Fousteri MI, Lehmann
AR (2010) Three DNA polymerases, recruited by differ-
ent mechanisms, carry out NER repair synthesis in human
cells. Mol Cell 37, 714-727.

Leng F, Edison P (2021) Neuroinflammation and
microglial activation in Alzheimer disease: Where do we
go from here? Nat Rev Neurol 17, 157-172.

Newcombe EA, Camats-Perna J, Silva ML, Valmas N,
Huat TJ, Medeiros R (2018) Inflammation: The link
between comorbidities, genetics, and Alzheimer’s disease.
J Neuroinflammation 15, 276.

Sif P, Hoffmann A, Rothe T, Ouyang Z, Baum W,
Staszewski O, Schett G, Prinz M, Kronke G, Glass CK,
Winkler J, Schlachetzki JCM (2020) Chronic peripheral
inflammation causes a region-specific myeloid response
in the central nervous system. Cell Rep 30, 4082-4095.e6.
Mayes-Hopfinger L, Enache A, Xie J, Huang CL, Kochl
R, Tybulewicz VLJ, Fernandes-Alnemri T, Alnemri ES
(2021) Chloride sensing by WNKI1 regulates NLRP3
inflammasome activation and pyroptosis. Nat Commun 12,
4546.

Flosbach M, Oberle SG, Scherer S, Zecha J, von Hoesslin
M, Wiede F, Chennupati V, Cullen JG, List M, Pauling
JK, Baumbach J, Kuster B, Tiganis T, Zehn D (2020)
PTPN2 deficiency enhances programmed T cell expan-
sion and survival capacity of activated T cells. Cell Rep
32, 107957.

Mariottini C, Munari L, Gunzel E, Seco JM, Tzavaras
N, Hansen J, Stern SA, Gao V, Aleyasin H, Sharma A,
Azeloglu EU, Hodes GE, Russo SJ, Huff V, Birtwistle
MR, Blitzer RD, Alberini CM, Iyengar R (2019) Wilm’s
tumor 1 promotes memory flexibility. Nat Commun 10,
3756.

De Jager PL, Srivastava G, Lunnon K, Burgess J, Schalk-
wyk LC, Yu L, Eaton ML, Keenan BT, Ernst J, McCabe
C, Tang A, Raj T, Replogle J, Brodeur W, Gabriel S, Chai
HS, Younkin C, Younkin SG, Zou F, Szyf M, Epstein
CB, Schneider JA, Bernstein BE, Meissner A, Ertekin-
Taner N, Chibnik LB, Kellis M, Mill J, Bennett DA
(2014) Alzheimer’s disease: Early alterations in brain
DNA methylation at ANK1, BIN1, RHBDF2 and other
loci. Nat Neurosci 17, 1156-1163.

Walker RM, Bermingham ML, Vaher K, Morris SW,
Clarke TK, Bretherick AD, Zeng Y, Amador C, Rawlik K,
Pandya K, Hayward C, Campbell A, Porteous DJ, Mcln-



1464

[93]

[94]

[95]

[96]

[97]

[98]

ES. Hackenhaar et al. / DNA-Methylation and Early AD Prediction

tosh AM, Marioni RE, Evans KL (2020) Epigenome-wide
analyses identify DNA methylation signatures of dementia
risk. Alzheimers Dement (Amst) 12, €12078.

Yu L, Chibnik LB, Srivastava GP, Pochet N, Yang JY, Xu
JS, Kozubek J, Obholzer N, Leurgans SE, Schneider JA,
Meissner A, De Jager PL, Bennett DA (2015) Association
of brain DNA methylation in SORL1, ABCA7, HLA-
DRBS, SLC24A4, and BIN1 with pathological diagnosis
of Alzheimer disease. JAMA Neurol 72, 15-24.
Higgins-Chen AT, Thrush, KL, Wang YZ, Minteer CJ,
Kuo PL, Wang M, Niimi P, Sturm G, Lin J, Moore AZ,
Bandinelli S, Vinkers CH, Vermetten E, Rutten BPF,
Geuze E, Okhuijsen-Pfeifer C, van der Horst MZ, Schre-
iter S, Gutwinski S, Luykx JJ, Picard M, Ferrucci L,
Crimmins EM, Boks MP, Haegg S, Hu-Seliger TT, Levine
ME (2022) A computational solution for bolstering relia-
bility of epigenetic clocks: Implications for clinical trials
and longitudinal tracking. Nat Aging 2, 644-661.

Hampel H, O’Bryant SE, Molinuevo JL, Zetterberg H,
Masters CL, Lista S, Kiddle SJ, Batrla R, Blennow K
(2018) Blood-based biomarkers for Alzheimer disease:
Mapping the road to the clinic. Nat Rev Neurol 14, 639-
652.

Tijms BM, GobomJ, Reus L, Jansen I, Hong S, Dobricic V,
Kilpert F, Ten Kate M, Barkhof F, Tsolaki M, Verhey FRJ,
Popp J, Martinez-Lage P, Vandenberghe R, Lle A, Molin-
uevo JL, Engelborghs S, Bertram L, Lovestone S, Streffer
J, Vos S, Bos I; Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI); Blennow K, Scheltens P, Teunissen CE,
Zetterberg H, Visser PJ (2020) Pathophysiological sub-
types of Alzheimer’s disease based on cerebrospinal fluid
proteomics. Brain 143, 3776-3792.

Vogel JW, Young AL, Oxtoby NP, Smith R, Ossenkop-
pele R, Strandberg OT, La Joie R, Aksman LM, Grothe
M, Iturria-Medina Y; Alzheimer’s Disease Neuroimaging
Initiative; Pontecorvo MJ, Devous MD, Rabinovici GD,
Alexander DC, Lyoo CH, Evans AC, Hansson O (2021)
Four distinct trajectories of tau deposition identified in
Alzheimer’s disease. Nat Med 27, 871-881.

Jiang Y, Zhou X, Ip FC, Chan P, Chen Y, Lai NCH, Che-
ung K, Lo RMN, Tong EPS, Wong BWY, Chan ALT, Mok
VCT, Kwok TCY, Mok KY, Hardy J, Zetterberg H, Fu
AKY, Ip NY (2022) Large-scale plasma proteomic pro-
filing identifies a high-performance biomarker panel for
Alzheimer’s disease screening and staging. Alzheimers
Dement 18, 88-102.

[99]

[100

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Konki M, Malonzo M, Karlsson IK, Lindgren N, Ghimire
B, Smolander J, Scheinin NM, Ollikainen M, Laiho A,
Elo LL, Lonnberg T, Roytta M, Pedersen NL, Kaprio
J, Lahdesmaki H, Rinne JO, Lund RJ (2019) Peripheral
blood DNA methylation differences in twin pairs discor-
dant for Alzheimer’s disease. Clin Epigenetics 11, 130.
Leenen FA, Muller CP, Turner JD (2016) DNA methy-
lation: Conducting the orchestra from exposure to
phenotype? Clin Epigenetics 8, 92.

Wen KX, Mili¢ J, El-Khodor B, Dhana K, Nano J, Pulido T,
Kraja B, Zaciragic A, Bramer WM, Troup J, Chowdhury
R, Ikram MA, Dehghan A, Muka T, Franco OH (2016)
The role of DNA methylation and histone modifications
in neurodegenerative diseases: A systematic review. PLoS
One 11, e0167201.

Unnikrishnan A, Hadad N, Masser DR, Jackson J, Free-
man WM, Richardson A (2018) Revisiting the genomic
hypomethylation hypothesis of aging. Ann N Y Acad Sci
1418, 69-79.

Ruiz-Perez D, Guan H, Madhivanan P, Mathee K,
Narasimhan G (2020) So you think you can PLS-DA?
BMC Bioinformatics 21, 2.

Cheng CK, Chan J, Cembrowski GS, van Assendelft OW
(2004) Complete blood count reference interval diagrams
derived from NHANES III: Stratification by age, sex, and
race. Lab Hematol 10, 42-53.

Carr EJ, Dooley J, Garcia-Perez JE, Lagou V, Lee JC,
Wouters C, Meyts I, Goris A, Boeckxstaens G, Linter-
man MA, Liston A (2016) The cellular composition of the
human immune system is shaped by age and cohabitation.
Nat Immunol 17, 461-468.

Seidler S, Zimmermann HW, Bartneck M, Trautwein
C, Tacke F (2010) Age-dependent alterations of mono-
cyte subsets and monocyte-related chemokine pathways
in healthy adults. BMC Immunol 11, 30.

Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger
GP, Molloy P, Van Djik S, Muhlhausler B, Stirzaker C,
Clark SJ (2016) Critical evaluation of the Illumina Methy-
lationEPIC BeadChip microarray for whole-genome DNA
methylation profiling. Genome Biol 17, 208.



