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Abstract.

Background: Despite reports of gross motor problems in mild cognitive impairment (MCI) and Alzheimer’s disease (AD),
fine motor function has been relatively understudied.

Objective: We examined if finger tapping is affected in AD, related to AD biomarkers, and able to classify MCI or AD.
Methods: Forty-seven cognitively normal, 27 amnestic MCI, and 26 AD subjects completed unimanual and bimanual
computerized tapping tests. We tested 1) group differences in tapping with permutation models; 2) associations between
tapping and biomarkers (PET amyloid-8, hippocampal volume, and APOE &4 alleles) with linear regression; and 3) the
predictive value of tapping for group classification using machine learning.

Results: AD subjects had slower reaction time and larger speed variability than controls during all tapping conditions, except
for dual tapping. MCI subjects performed worse than controls on reaction time and speed variability for dual and non-
dominant hand tapping. Tapping speed and variability were related to hippocampal volume, but not to amyloid-f3 deposition
or APOE &4 alleles. Random forest classification (overall accuracy = 70%) discriminated control and AD subjects, but poorly
discriminated MCI from controls or AD.
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Conclusions: MCI and AD are linked to more variable finger tapping with slower reaction time. Associations between finger
tapping and hippocampal volume, but not amyloidosis, suggest that tapping deficits are related to neuropathology that presents
later during the disease. Considering that tapping performance is able to differentiate between control and AD subjects, it
can offer a cost-efficient tool for augmenting existing AD biomarkers.
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INTRODUCTION

In addition to well-defined cognitive problems,
Alzheimer’s disease (AD) and its precursor mild
cognitive impairment (MCI) present with problems
in a variety of motor domains. Some of the most
prominent motor deficits that have been linked to an
increased risk for AD include slower walking speed
[1], poorer balance [2], larger cognitive-motor dual-
tasking cost [3, 4], and weaker muscle strength [5,
6]. Gait dysfunction can already present during the
preclinical phase of AD [7], even before the onset
of cognitive deficits [8] and can predict incident
dementia [9]. Relatively few studies have investigated
manual performance in MCI and AD subjects [10],
despite evidence that drawing [11] and dexterity as
measured by pegboard tests [12—17] are slower, less
accurate, and more variable in MCI and AD when
compared to control subjects.

Finger tapping is also found to be affected in MCI
and AD, with studies generally showing that com-
pared to healthy controls these groups have longer
response times (AD [18]), slower tapping speed
[19-22] (although one study reported no significant
differences in tapping speed between controls and AD
subjects [23]), more variable tapping speed [20-22,
24, 25], longer tap intervals [18, 20, 21], longer tap
duration [18, 21, 22], weaker tapping force [22],
slower finger flexion [22], and less steady hands dur-
ing tapping [19]. Although some of these results were
less pronounced in MCI than in AD [18], index finger
tapping speed was not different between individuals
with MCI and unspecified dementia in another study
[26], which could indicate that tapping is affected
early in the disease process, but does not further dete-
riorate over later stages of AD. While most studies
on finger tapping in AD focus on unimanual perfor-
mance, there have been some reports that bimanual
motor function may be more sensitive to the neurode-
generative processes of AD than unimanual function
as it requires intact inter-hemispheric communication
[15] and because of differences in brain activation
underlying these conditions [27]. For instance, Suzu-
mura and colleagues reported that bimanual tasks

were more strongly impaired than unimanual tasks
in MCI [21] and AD [28] and that contributions
of the non-dominant hand more so than the domi-
nant hand are affected during bimanual tasks [18].
Another study revealed that bimanual performance
was more often affected than unimanual perfor-
mance, especially when the bimanual test required
the left and right fingers to operate alternating versus
synchronous [15]. Changes in asymmetrical motor
performance have been reported in MCI and AD
before [17, 29-32] and may be related to lateralized
differences in neural degeneration [33, 34]. Although
there is some indication that deterioration of more
complex motor function in AD is partly related to the
cognitive dysfunction [35, 36], atrophy of motor brain
regions such as the cerebellum suggests that primar-
ily regression of core motor function underlies finger
tapping degeneration [37—-41]. Moreover, alterations
of neurotransmitter systems may also be responsible
for changes in tapping performance over the dis-
ease course, as AD is associated with a reduction
in gamma-aminobutyric acid (GABA) [42], which
is involved in motor inhibition [43]. Results from a
study that measured primary motor cortex excitability
with electromyography in AD during a finger tap-
ping test showed that movement slowness correlated
with reduced short-latency afferent inhibition, sug-
gesting cholinergic system degeneration [24]. The
cholinergic system is affected early on in MCI [44].
These studies indicate that finger performance, espe-
cially bimanual tapping, could be a potential early
biomarker for AD. To the best of our knowledge, no
studies have compared quantitative tapping measures
to established AD biomarkers such as amyloid-f3
deposition, although one study reported that the AB42
levels from cerebrospinal fluid were related to scores
on part 3 of the Unified Parkinson Disease Rating
Scale, which includes a finger-to-thumb tapping task
[45]. Although hippocampal involvement in finger
tapping has not been unequivocally determined [46],
the limited number of investigations into this area
warrant further study. Despite the reported tapping
deficits in MCI and AD, only one study has evaluated
tapping performance as a classification method [21]
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and reported that tapping speed yields an area under
the curve of 0.79 to distinguish MCI from controls.

In this study, we evaluated whether finger tap-
ping, especially bimanual performance, could be a
sensitive measure for the identification of MCI and
AD. To this end, we 1) compared unimanual and
bimanual motor performance between controls and
amnestic MCI and AD subjects; 2) tested the asso-
ciation between finger tapping and well-validated
and global biomarkers of AD; and 3) used machine
learning to build and evaluate an optimized finger
tapping classification model for MCI and AD by
using information from multiple tapping measures.
Achieving these aims could allow us to examine if
finger tapping measures can serve as substitute mark-
ers or augment existing AD biomarkers to improve
the diagnostic process and ultimately reduce clinical
trial costs through enrichment [47]. Finger tapping
tests are particularly well-suited to serve as biomarker
considering that they are inexpensive, can be admin-
istered almost everywhere without the need for highly
trained personnel, and have a short administration
time. We hypothesized that both unimanual and
bimanual performance would be better in controls
than in participants with amnestic MCI or AD, and
that across all individuals worse tapping performance
would significantly correlate with a higher load of
existing AD biomarkers. We further expected that by
building a prediction model that combines multiple
tapping measures, we would be able to accurately
classify group membership.

MATERIALS AND METHODS

Participants

Participants were sampled from an ongoing study
(RO1AG055428; [48-50]) of brain imaging and
neuropsychological testing across the dementia spec-
trum. Cognitively normal subjects were recruited
from the community. The majority of amnestic MCI
(single or multi-domain) and AD participants were
recruited from the University of Utah cognitive dis-
orders’ clinic [51]. Their diagnosis was based on
a neurological visit, neuropsychological evaluation,
and brain imaging. A minority of amnestic MCI sub-
jects ~15% came from the community sample who
met criteria for amnestic MCI after cognitive evalu-
ation. Confirmation of group assignment was made
with the Alzheimer’s Disease Neuroimaging Initia-
tive [52] classification battery, which comprises the
Mini-Mental Status Examination [53], the Clinical

Dementia Rating Scale [54], and the Wechsler Mem-
ory Scale-Revised [55] Logical Memory II Paragraph
A. Forty-seven participants were classified as cogni-
tively intact, twenty-seven as amnestic MCI (single
or multi-domain), and twenty-six as mild or moderate
AD. This study was performed in accordance with the
Declaration of Helsinki and was approved by the Uni-
versity of Utah Institutional Review Board. Control
subjects and MCI subjects signed informed consent.
Individuals with AD signed assent while a Legally
Authorized Representative signed informed consent
in their name.

Inclusion criteria were 1) age 65 years or older;
and 2) availability of a knowledgeable collateral
source to comment on their cognition and daily
functioning. Exclusion criteria comprised 1) med-
ical comorbidities likely to affect cognition (i.e.,
neurological conditions, current severe depression,
substance abuse, and major psychiatric conditions);
2) inability to complete magnetic resonance imaging
(MRI) or positron emission tomography (PET) imag-
ing; 3) inability to complete cognitive assessments
due to inadequate vision, hearing, or manual dexter-
ity; 4) being enrolled in a clinical drug trial related to
anti-amyloid agents; 5) elevated depression as indi-
cated by a score of greater than 5 on the 15-item
Geriatric Depression Scale; and 6) severe dementia
as indicated by a Clinical Dementia Rating score of 2
or greater or a Mini-Mental Status Examination score
of less than 20.

Complete finger tapping data was available for 100
subjects. Demographic and clinical information is
presented in Table 1. The overall group mean age
was 74.5 £5.9 years of age. Of the participants in
our sample, 58.0% were female, and 98.0% were
Caucasian or white. Mean premorbid intellectual
functioning, as measured by the Reading subtest of
the 4 edition of the Wide Range Achievement Test
[56], was in the normal range for all three groups.
Symptoms of depression, which were assessed using
the Geriatric Depression Scale [57], were minimal
and below the cut-off score for clinical depression.

Finger tapping

Collection of finger tapping data

Finger tapping performance was measured using
a computerized test that we developed in-house
using version 3 of the PsychoPy software suite
[58-60]. The task can be downloaded from:
https://github.com/vnckppl/FingerTappingTask [61].
We used the same 2017 13” MacBook Pro for task
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Table 1
Demographics
Variable Metric Controls MCI AD Total
)4 )4

Sample size n 47 27 26 100
Age (y) m (sd) 73.7 (5.5) 74.6 (6.3) 0.53 75.7 (6.1) 0.17 74.5(5.9)
Sex (female) n (%) 31 (66) 11 (40.7) 0.1 16 (61.5) 0.1 58 (58)
Right-handed n (%) 44 (93.6) 26 (96.3) 0.84 25 (96.2) 0.84 95 (95)
Education m (sd) 16.6 (2.3) 16 (2.7) 0.31 15.2 (2.3) 0.02 16.1 (2.5)
WRAT m (sd) 112 (7.2) 108.7 (8.8) 0.1 108 (9.1) 0.049 110 (8.3)
GDS m (sd) 1(1.3) 1.6 (1.3) 0.09 1.5(1.4) 0.16 1.3(1.3)
MMSE m (sd) 28.9 (1.2) 26.4(1.9) <0.001 22.8 (2.6) <0.001 26.6 (3.1)
Caucasian n (%) 47 (100) 26 (96.3) 0.4 25 (96.2) 04 98 (98)
AD Biomarkers
SUVR m (sd) 0.52 (0.11) 0.73 (0.15) <0.001 0.77 (0.16) <0.001 0.6 (0.2)
Hippocampal Volume m (sd) 4.3 (0.48) 3.66 (0.82) <0.001 3.19 (0.85) <0.001 3.8 (0.8)
Number of APOE &4 alleles <0.001 <0.001

0 n (%) 35 (76.1) 7 (28.0) 9 (34.6) 51 (52.6)

1 n (%) 10 (21.7) 12 (48.0) 11 (42.3) 33 (34.0)

2 n (%) 1(2.2) 6 (24.0) 6(23.1) 13 (13.4)

Linear regression analysis was used for continuous variables and Chi-square tests to compare proportions. m, mean; sd, standard deviation;
n, number; p, p-value compared to the control group.; Education, years of education completed; WRAT, normative, age corrected standard
score of the wide range achievement test-4 reading subtest; GDS, total score on the Geriatric Depression Scale; MMSE, Mini-Mental State
Examination; Caucasian, self-reported Caucasian or white race; SUVR, '8F-Flutemetamol PET scan global composite standardized uptake
value ratio; Hippocampal volume, bilateral hippocampal volume expressed as per-thousand of the estimated total intracranial volume.

presentation and recording of all the participants’
input. Throughout the data collection period, no soft-
ware updates (of either the operating system, or the
PsychoPy software) were performed. The task that
was built to be run independently, without the need
for interaction with a study coordinator, has four
conditions (left index finger tapping, right index fin-
ger tapping, simultaneous index finger tapping, and
alternate finger tapping). Each condition consists of
three trials which last 10 s. Finger taps are registered
by left and right finger presses on the correspond-
ing shift keys on the keyboard. The test starts with
on-screen written and video instructions on how to
perform each of the four conditions. Next, partic-
ipants are instructed to place their finger(s) on the
correct key(s) and to start the trial by pressing a tap-
ping key. Upon the key press, a ‘Get Ready!” message
appears on the screen for 3 s, immediately followed
by ‘Start Pressing!’. During the 10-s trial, a message
is displayed on the screen to encourage the partici-
pant to press as fast as possible. For example: ‘Press
AS FAST AS POSSIBLE with your RIGHT INDEX
FINGER’. After 10s, the screen shows ‘Done!’ for
3 s, immediately followed by information for the next
trial. After all conditions are completed once, they are
being repeated two more times in the same order. For
single finger tapping, participants are instructed to
press as fast as possible. For dual finger tapping, par-
ticipants are instructed to press simultaneously with

their left and right index fingers as fast as possible
with the goal to complete as many pairs within 10s.
For the alternate tapping test, subjects are instructed
to tap using one index finger after the other, as fast
as possible. Subjects are allowed to start with either
their left or right index finger.

Pre-processing and outcome measures of finger
tapping data

Handedness was recorded with the Dutch Handed-
ness Questionnaire [62]. These scores were binarized
into left/right handedness and subsequently used to
recode left and right hand tapping into dominant and
non-dominant tapping scores.

Presence of tapping gaps, defined as periods where
subjects paused tapping for 1 s or more were extracted
from the raw data for all conditions. An overview
of continuous outcome measures is presented in
Table 2. Supplementary Figure 1 provides a graphi-
cal overview of the outcome measures. Each outcome
measure was collected three times. We selected the
subject’s median score for each of these outcome
measures to yield scores robust against outliers at the
subject level.

By selecting a broad variety of tapping outcome
measures, while also statistically adjusting for multi-
ple comparisons, we were able to evaluate the effects
of AD pathology on multiple aspects of tapping per-
formance, while also preventing Type I errors.
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Table 2

Overview of Continuous Tapping Metrics. ’*All Conditions’ indicates that these measures are collected for unimanual dominant and non-
dominant, and bimanual synchronous and alternate tapping. Supplementary Figure 1 provides a graphical overview of these outcome

measures
Condition Tapping Measure Description
All Conditions Initial Reaction Time Time in seconds from the start of the test to the first key press
Taps per Second Rate of finger tapping speed expressed as taps per second
Taps per Second Variance Variance in rate of finger tapping speed expressed as taps per second
Dual Tapping Unpaired Taps Rate Total number of left or right taps that could not be paired with a right or left tap
respectively, divided by the total number of taps
Tap Pair Duration Average time between the two taps that make up a pair
Tap Pair Duration Variance Variance in time between the two taps that make up a pair
Number of Pairs Total number of left and right tapping pairs
Alternating Error Rate The number of incorrect transitions (i.e., left-to-left tap, or right-to-right tap)

Alternating Transition Time

Alternating Transition Time
Variance
Alternating Transitions

divided by the total number of taps

Average time between taps in seconds for correct transitions only (i.e.,
left-to-right tap and right-to-left tap transition)

Variance in average time between taps for correct transitions only (i.e.,
left-to-right tap and right-to-left tap transition)

Number of consecutive taps for correct transitions only (i.e., left-to-right tap

and right-to-left tap transition)

Alzheimer’s disease biomarkers

The well-established AD biomarkers [63] that we
cross-correlate with tapping performance are whole
brain amyloid-3 deposition, hippocampal volume,
and APOE &4 allele status.

Amyloid-B deposition

I8F_Flutemetamol, a radioactive diagnostic agent
indicated for PET imaging of the brain, was used
to estimate amyloid-f neuritic plaque density. The
ligand was produced under PET ¢cGMP standards
and conducted under an approved FDA Investiga-
tional New Drug application (IND). Imaging was
performed on a GE Discovery PET/CT 710 (GE
Healthcare), which has a full width at half-maximum
spatial resolution of 5.0mm and excellent perfor-
mance characteristics [64, 65]. Emission imaging
took 20min and was performed 90 min after the
injection of approximately 185 mBq (5 mCi) of '8F-
Flutemetamol. We used a regional semi-quantitative
technique described by [66] and refined by Thurfjell
et al. [67] to analyze the BE_Flutemetamol binding.
The CortexID Suite software (GE Healthcare) was
used to automatically obtain a composite standard-
ized uptake value ratio (SUVR) in the cerebral cortex
which was normalized to the pons [68]. PET imaging
was collected on average 27.7 +43.2 weeks prior to
the motor behavioral assessments.

Hippocampal volume
MRI images were acquired on a 3.0 Tesla
Siemens Prisma scanner with a 64-channel head

coil. T1-weighted data were acquired using a sagittal
MP2RAGE sequence (TR=5000ms, TE=2.93 ms,
flip angles=4° and 5° respectively, acquisition
matrix =256x256, field of view =256x256 mm, slice
thickness 1 mm, resolution = 1x1x1 mm, acquisition
time=~7 min). All scans were examined for the
presence of common artifacts, including motion,
susceptibility, and distortion, and were deter-
mined to be of sufficient quality for quantitative
analysis. All data were processed on the same
workstation using FreeSurfer image analysis suite
v6.0 (https://surfer.nmr.mgh.harvard.edu/) to esti-
mate total intracranial and hippocampal volumes.
Technical details have been described previously
[69-71]. Hippocampal volumes were expressed
as proportion of the estimated total intracra-
nial volume to account for differences in head
size [72]. MRI scans were collected on average
32.31+39.9 weeks prior to the motor behavioral
assessments.

APOE genotyping

Polymerase chain reaction and fluorescence
monitoring using hybridization probes for APOE
genotyping was conducted using whole blood sam-
ples. Participants were classified into three groups of
having either O, 1, or 2 APOE &4 alleles.

Statistical analysis
Except for classification modeling, all statistical

analyses were conducted in R version 4.2.1. The
alpha level was set at 0.05 and false discovery rate
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(FDR) correction was applied to adjust for multiple
comparisons.

Demographical information

Group differences in continuous potentially con-
founding variables were compared using linear
regression models. Group differences in categori-
cal potentially confounding variables were compared
using x? tests using the MASS package (7.3-58).

Group comparisons of motor performance

Logistic regression analysis was used to compare
control subjects to the amnestic MCI and AD groups
on presence or absence of tapping gaps, defined as
periods of 1s or longer during the 10-s tapping trial
where no key was tapped.

Non-parametric tests in the framework of the lin-
ear model were conducted using the ImPerm package
(2.1.0) to evaluate measures of initial reaction time,
tapping rate, tapping variance, and specific measures
for alternate and dual tapping (see Table 3). We
selected permutation tests in favor of their paramet-
ric equivalents for robustness against non-normality
of residuals. Permutation tests were set to complete
100,000,000 random permutations. Because we were
interested in how (pre)clinical AD differed from
cognitively intact individuals with respect to motor
function, we tested differences between 1) control
subjects and amnestic MCI subjects; and 2) control
subjects and AD subjects. The 5?2 value for the group
factor, i.e., the proportion of variance in the model
explained by group, is reported as a measure of effect
size. All models were adjusted for age and sex.

Multiple comparison correction was applied by
running FDR correction on the total, single array of
p-values resulting from both the logistic regression
analyses and non-parametric linear models for both
the comparisons of controls versus amnestic MCI
subjects and controls versus AD subjects.

Associations between motor performance and
AD biomarkers

We assessed the association between finger tap-
ping performance and our continuous biomarkers
(hippocampal volume and amyloid-f3) using linear
regression models adjusted for age and sex. We report
partial correlations (adjusted for age and sex) as a
measure of effect size. Variables with a skewness > 1
(i.e., Initial Reaction Time and Taps per Second Vari-
ance for all tapping conditions, Tap Pair Duration
Variance for dual tapping, and Error Rate, Alter-
nating Transition Time, and Alternating Transition

Time Variance for alternating finger tapping) were
transformed to ensure assumptions for linear asso-
ciations were met. This transformation process was
a two-step approach: First outliers, defined as val-
ues that were outside the range of the mean +2.5
standard deviations, were set to the mean + 2.5 stan-
dard deviation. Note that applying or not applying this
step did not result in significantly different outcomes.
Second, a log transformation was applied to the vari-
able. Associations between tapping performance and
our categorical biomarker measure (APOE &4 alle-
les) were tested using Poisson regression models,
adjusted for age and sex, with Incidence Rate Ratios
as a measure of effect size.

Classification modeling

We used Balanced Random Forest Classification
from the Imbalanced Learn (0.9.1) package, imple-
mented in Python 3.8.10 for classification. Variables
considered in the model included 1) the set of 20
continuous tapping performance measures reported
in Table 4; 2) a count variable that lists the num-
ber of trials with either an onset delay of more than
1's, a gap of more than 1s or both; and 3) age and
sex. Age and sex were considered to account for
any imbalances in these metrics between groups. To
reduce the number of variables in the model, we only
selected variables that correlated (Spearman) for less
than 90% with other variables in the dataset. This
resulted in the exclusion of the variable ‘Number of
Pairs’ for dual tapping and three alternating tapping
variables: 1) ‘Alternating Transition Time’; 2) ‘Alter-
nating Transition Time Variance’; and 3) ‘Alternating
Transitions’.

Balanced random forest classification was selected
to account for differences in the sample sizes per
group, which could otherwise lead to a classifica-
tion model that has a higher likelihood to predict
the largest class [73]. GridSearchCV from the Scikit
Learn (1.1.2) package was used to detect the opti-
mal set of hyper parameters with the maximum tree
depth ranging from 1-10, 5 levels of number of trees
in the forest (5, 10, 25, 50, 100), and either ‘gini’ or
‘entropy’ as the information gain criteria. The data
were divided into a training set (70% of the data) and
a test set (30% of the data) using the train_test_split
algorithm. GridSearchCV was then run on the train-
ing set using five-fold cross-validation to obtain a
model robust against overfitting. Results indicated
that a model with a maximum tree depth of 5, 50
trees in the forest, and ‘gini’ as information gain cri-
teria were optimal given our training data. We finally
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trained our random forest classification model using
these parameters on our training data and applied it
to our hold-out testing set.

To investigate the contribution of individual vari-
ables to the classification model, we conducted
permutation feature importance analysis. This tool,
which is part of Scikit learn, recalculates the model
accuracy after randomly permuting one individual
feature at a time. More specifically, all values of the
feature in question are randomly shuffled after which
the entire random forest model is being recalculated
but now with the reshuffled variable instead of the
original data. Changes in the overall model accuracy
with the reshuffled values compared to the original
data provide an indication how much the particu-
lar variable contributes to the overall accuracy of the
model. By shuffling the values of the feature multiple
times and calculating the new model accuracy each
time, a distribution of the feature contribution to the
model can be obtained. This process is being repeated
for each feature in the model, and each feature was
set to be permuted 200 times.

Exploratory analysis of the association between
motor brain volume and finger tapping

Frontal regions such as the primary motor cortex
(M1) [74-76] and the inferior frontal gyrus (IFG)
[77] are involved in rhythm production and percep-
tion. Furthermore, degeneration of these areas in MCI
and AD has been related to motor dysfunction [10].
Another brain region that regulates finger tapping
rhythm [78] and which is affected in AD is the cere-
bellum [37-39].

In an exploratory analysis, group differences in
bilateral volume of the IFG, M1, and the cerebellum
were tested. Bilateral motor volumes were obtained
in the same FreeSurfer process used to obtain hip-
pocampal volumes and were expressed as percentage
of the total intracranial volume to adjust for pre-
morbid brain volume. Group differences were tested

Table 3
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using the same linear models as described for test-
ing hippocampal volume. Additionally, motor brain
volumes were tested for associations with all tapping
outcome measures as described in Table 2, using the
same linear regression models as those used to test
hippocampal volume and tapping outcome measure
associations.

RESULTS

No group differences were observed in mean age or
average amount of depressive symptoms as measured
with the Geriatric Depression Scale, or the distribu-
tion of sex or race. Control subjects had on average
completed 1.5 years more education than AD subjects
and scored higher on the MMSE than both amnes-
tic MCI and AD subjects. AD subjects had a slightly
lower premorbid verbal intelligence as measured with
the WRAT.

Group comparisons of motor performance

Binary tapping measures

Logistic regression analysis showed that, com-
pared to control subjects, both amnestic MCI and AD
subjects had higher odds of having gaps of 1 second or
more during dual tapping, but not for the other tapping
conditions (see Table 2). This was potentially related
to the rareness of this outcome; for both dominant and
alternate tapping none of the control subjects had any

gaps.

Continuous tapping measures

Results from our permutation-based linear models
to assess group differences in tapping performance
are displayed in Table 4. AD subjects performed
worse on all single finger tapping measures than
control subjects, except for dominant hand Taps per
Second (see Fig. 1). Dominant hand tapping was not
different between amnestic MCI and control subjects.
For the non-dominant finger, however, those with

Group differences in presence of tapping gaps

aMCI versus Controls

AD versus Controls

Condition OR SE P OR SE D
Dominant Inf Inf NA Inf Inf NA
Non-Dominant 2.76 2.06 0.159 1.69 2.16 0.495
Dual Tapping 20.26 3.16 0.009 25.99 3.06 0.004
Alternating Inf Inf NA Inf Inf NA

All metrics are calculated from the maximum values over the subjects’ completed trials; aMCI, amnestic mild cognitive impairment; OR,
odds ratio; SE, standard error; Inf, approaches infinity because for these conditions, there were no control subjects with tapping gaps; NA,
unable to estimate p-value; bold indicate tests that retain significance after FDR correction.
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Table 4
Group differences in continuous tapping metrics

MCI versus Controls AD versus Controls

Condition Tapping Measure beta P [re beta P 0
Dominant Initial Reaction Time (s) 0.16 0.093 0.03 0.24 0.011 0.06
Taps per Second -0.01 0.974 0.00 -0.30 0.108 0.03
Taps per Second Variance 0.00 1.00 0.02 0.01 0.003 0.08
Non-Dominant Initial Reaction Time (s) 0.46 0.006 0.07 0.57 0.001 0.11
Taps per Second -0.14 0.523 0.00 —0.42 0.047 0.04
Taps per Second Variance 0.01 0.019 0.05 0.01 0.009 0.06
Dual Tapping Initial Reaction Time (s) 0.49 <0.001 0.12 0.19 0.152 0.02
Unpaired Taps Rate® 0.00 1.00 0.00 0.00 0.758 0.00
Taps per Second -0.30 0.425 0.01 -0.79 0.039 0.04
Taps per Second Variance 0.01 0.002 0.09 0.01 0.014 0.05
Tap Pair Duration (s) 0.00 0.129 0.02 0.00 0.228 0.01
Tap Pair Duration Variance (s) 0.00 0.385 0.01 0.00 0.548 0.00
Number of Pairs -1.68 0.402 0.01 -4.28 0.035 0.04
Alternating Initial Reaction Time (s) 0.17 0.097 0.01 0.40 <0.001 0.14
Error Rate® 0.00 0.548 0.00 0.00 1.00 0.00
Taps per Second 0.31 0.414 0.01 -0.83 0.033 0.04
Taps per Second Variance 0.00 0.14 0.02 0.01 <0.001 0.15
Alternating Transition Time (s)° -0.01 0.619 0.00 0.02 0.077 0.03
Alternating Transition Time Variance (s)° 0.00 0.782 0.00 0.01 0.058 0.03
Alternating Transitions® 3.61 0.35 0.01 -8.31 0.033 0.04

All metrics are calculated from the median values over the subjects’ completed trials; *number of unpaired taps divided by total number of
taps; "number of incorrect transitions (i.e., left-to-left tap, or right-to-right tap) divided by the number of taps; ®Applies to correct transitions
only (i.e., left-to-right tap and right-to-left tap transitions). Values printed in bold indicate tests that retain significance after FDR correction.

amnestic MCI had a longer Initial Reaction Time and
larger Taps per Second Variance when compared to
control subjects.

Amnestic MCI subjects had a longer Initial Reac-
tion Time and larger Taps per Second Variance in the
dual tapping condition (see Fig. 2) than control sub-
jects. AD subjects also had larger Taps per Second
Variance than controls, but also fewer Taps per Sec-
ond during dual tapping. They also had fewer Number
of Pairs than control subjects.

AD subjects performed worse than control subjects
(see Fig. 3) on the alternate tapping condition. Specif-
ically, they showed a longer Initial Reaction Time,
fewer Taps per Second, larger Taps per Second Vari-
ance, and completed fewer Alternating Transitions.
Alternating tapping performance was not statistically
different between control and amnestic MCI subjects.

Associations between motor performance and
AD biomarkers

For the entire sample, hippocampal volume was
positively related to 1) Taps per Second (Cohen’s
d=0.53, p=0.014) and Taps per Second Variance
(Cohen’s d=0.60, p=0.005) for dominant finger
tapping; 2) Taps per Second (Cohen’s d=0.58,
p=0.007), Taps per Second Variance (Cohen’s
d=0.50, p=0.019), and Number of Pairs (Cohen’s

d=0.57, p=0.008) for synchronous dual finger tap-
ping; and 3) Taps per Second Variance (Cohen’s
d=0.58, p=0.007), Alternating Transition Time
(Cohen’s d=0.44, p =0.038), and Alternating Transi-
tion Time Variance (Cohen’s d=0.44, p=0.037) for
alternate finger tapping. The four significant associ-
ations with a Cohen’s d > 0.57, i.e., medium to large
effect size [79], survived FDR correction for multiple
comparisons. Correlation plots of these outcomes are
displayed in Fig. 4. Only one association between fin-
ger tapping performance and APOE &4 allele status
was observed (non-dominant hand Initial Reaction
Time, Incidence Rate Ratio=1.35, p=0.033) and
one association between finger tapping performance
and amyloid-3 was observed (dual synchronous fin-
ger tapping Initial Reaction Time, Cohen’s d=0.54,
p=0.010). These two observations did not survive
FDR correction.

Tapping performance as classifier of group

The overall classification accuracy of the training
data was 56%, while the overall classification accu-
racy of the test data was 70%. This indicates that 70%
of the subjects of an independent data set were accu-
rately labeled by our classification model. This is a
22% increase over a null model that would simply
predict the most frequent class for all observations
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Fig. 1. Unimanual Finger Tapping: Group Comparisons. Rain cloud plots with density curves, boxplots, and individual subject scores divided
over 75 bins. The top cloud (red) presents data from the AD subject group, the middle cloud (salmon colored) presents data from the amnestic
MCI subject group, the bottom cloud (white) presents data from the control group. Above each figure, p-values and eta” as measure of effect
size are reported 1) for the analysis comparing controls to amnestic MCI subjects ("HC vs. MCI’) and 2) for the analysis comparing controls
to AD subjects CHC vs. AD’). For dominant finger tapping AD performed worse than controls on Initial Reaction Time and Taps per Second
Variance. For the non-dominant finger tapping, both AD and amnestic MCI performed worse on these measures, while AD also had fewer

Taps per Second than controls.

(i.e., 47 controls would be accurately predicted out
of 98 participants).

The group-specific precision, defined as the pro-
portion of a group that was classified correctly (i.e.,
‘true positives’) was 76% for controls, 100% for
amnestic MCI, and 45% for AD. The confusion
matrix (see Fig. 5a) shows in each cell the proportion
of the class in the row that is predicted as the class
in the column. The diagonal represents the group-
wise ‘recall’ of the classification model. It shows that
76% of the healthy controls among all control sub-
jects and 86% of AD subjects among all AD subjects
were accurately classified, while 33% of amnestic
MCI subjects among all amnestic MCI subjects were

correctly labeled. In 50% of the cases amnestic MCI
subjects were classified as control subjects, and in
17% of the cases as AD subjects. Precision and recall
can be combined into a single ‘F1” score [80], which
is defined as:

Precision x Recall

F| — score =2 x —
Precision 4+ Recall

F1 is less biased against disproportional sample
size of classes and ranges from 0-1 with higher scores
indicating more specific and sensitive models. F1
scores for control, amnestic MCI, and AD subjects
were 0.76, 0.50, and 0.67 respectively. The over-
all multi-class area under the curve (AUC) score
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Fig. 2. Synchronous Dual Finger Tapping: Group Comparisons. Rain cloud plots with density curves, boxplots, and individual subject scores
divided over 75 bins. Compared to controls, amnestic MCI subjects had a longer Initial Reaction Time and larger Taps per Second Variance.
Compared to controls, AD subjects had fewer Taps per Second, larger Taps per Second Variance, and fewer Number of Pairs.
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Fig. 3. Alternate Finger Tapping: Group Comparisons. Rain cloud plots with density curves, boxplots, and individual subject scores divided
over 75 bins. Compared to controls, AD subjects had a longer Initial Reaction Time, fewer Taps per Second, larger Taps per Second Variance,

and fewer Consecutive Taps.

for the classification model was 0.76. Figure 5c
shows receiver-operator curves and corresponding
AUC scores for each group in comparison to the

two other groups. AUC scores for the control group,
amnestic MCI group, and AD group were 0.75, 0.60,
and 0.78 respectively. While the AUC for the con-
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were calculated for the entire collapsed sample.

trol and AD groups indicates acceptable, bordering
excellent, discrimination, the AUC for the amnestic
MCI group equals poor discrimination [81].

An overview of the permutation feature importance
is displayed in Fig. 5b. Values indicate the decrease
in model accuracy after random permutation of its
values. The five most important features that were
used for classification of the test hold-out data were
1) variance in tapping speed during dominant hand
finger tapping; 2) the number of dual tapping trials
without gaps or onset delays; 3) initial reaction time
for non-dominant hand finger tapping; 4) variance in

tapping speed during alternate finger tapping; and 5)
initial reaction time during dual finger tapping.

Exploratory analysis of the association between
motor brain volume and finger tapping

No significant between-group differences in the
volume of the bilateral IFG, M1, and the cerebellum
were observed between controls and aMCI sub-
jects (all p>0.26), or controls and AD subjects (all
p>0.82). Dominant hand Taps per Second was signif-
icantly associated with volume of the bilateral inferior
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frontal gyri (beta=-0.05, p =0.005, Cohen’s d=0.61), sure for AD. Our results show that both amnestic

but none of the brain-behavioral associations sur-
vived FDR correction for multiple comparisons.

DISCUSSION
Finger tapping performance in AD

We studied the association between different stages
of AD and uni/bimanual finger tapping performance,
as significant associations could point towards this
motor task as a quick and affordable screening mea-

MCI and AD are associated with slower initial reac-
tion time, regardless of tapping condition or hand
side. Relative to control subjects, amnestic MCI
subjects performed worse on 4/20 tapping outcome
measures, while AD subjects performed worse on
12/20 outcome measures. Finger tapping variability
of the non-dominant hand and during dual tapping
were affected in both amnestic MCI and AD. The
AD group additionally showed more variability in
dominant and alternate finger tapping, slower non-
dominant, dual, and alternate finger tapping, as well
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as fewer dual tapping pair construction, and alternate
tapping correct consecutive taps.

While AD subjects performed worse on both the
dominant and the non-dominant hand tapping tests,
amnestic MCI subjects only performed worse than
controls when using their non-dominant hand. This
gradual loss of asymmetry has been observed in MCI
and AD previously and is independent of aging in
general [29-31]. For example, compared to control
subjects, MCI participants displayed more symmet-
ric grasping and inserting movements on the Purdue
Pegboard test [17], and AD subjects exhibited more
similar finger tapping pace for both hands [32]. Con-
sidering handedness-related cortical morphological
asymmetry (e.g., deeper central sulcal depth of the
hemisphere controlling the dominant hand [33]), our
observed pattern could potentially be explained by
accelerated asymmetric cortical thinning that has
been observed in AD [34]. Alternatively, between-
group differences in cognitive function required for
learning a novel motor task [82] could explain why
AD subjects performed worse than amnestic MCI
subjects [83]. Yet another potential explanation is that
non-dominant hand performance is more suscepti-
ble to pathological changes related to AD, because
the non-dominant hand is less trained than the dom-
inant hand. As such, there is less motor reserve
[84] of non-dominant hand performance, and deteri-
oration of non-dominant performance will therefore
show up earlier in the course of the disease than
dominant-hand performance. Our results show that
in comparison with controls, alternate tapping was
worse in AD subjects but not in amnestic MCI
subjects. Gamma-aminobutyric acid (GABA) is an
amino acid that is involved in cerebral inhibition
of motor function required for alternating bilateral
movements [43]. Reductions of GABA levels that
have been observed in AD, but not in MCI, could
explain the discrepancy in alternate tapping perfor-
mance of these two groups [42]. Changes in the
cholinergic system may also be underlying the perfor-
mance deficits in AD, as previous research has shown
that tapping slowness in AD correlated with reduced
short-latency afferent inhibition measured with tran-
scranial magnetic stimulation that could be explained
by reduced cholinergic interneuron excitability [24].

Of all measures affected in amnestic MCI and
AD participants, Initial Reaction Time and Taps per
Second Variance had the largest effect sizes for all
tapping conditions that survived multiple compar-
isons correction. Taps per Second was significant
for all but the dominant hand condition, but these

outcomes did not survive multiple comparison cor-
rection. A meta-analysis on simple reaction time
in MCI corroborates our findings and suggests that
slower response time in this population is related to
attention as well as motor processes at the neural level
[35]. Previous research has shown that tapping vari-
ability, but not tapping speed in older adults is affected
when adding a secondary task [36], thus suggesting
a cognitive component to performance. Variability
in tapping speed [40] as well as bimanual coordina-
tion [41] have been linked to cerebellar functioning,
a region that until recently was thought to be rel-
atively unaffected by AD because it exhibits much
less amyloid deposition than supratentorial regions
[85]. Current research, however, has indicated that the
cerebellum is in fact affected by AD pathology and
could therefore be a region of interest when studying
motor dysfunction in AD [37-39].

It should be noted that while our tapping speed and
pair-forming outcome measures did not exhibit sig-
nificant deviations from normality, the distributions
of the initial reaction time and variance measures
were highly skewed. The long tail of the skewed
distributions suggests that only a small subset of
individuals with amnestic MCI and AD performed
extremely poorly, while the majority performs more
similar to control subjects. Potentially, tapping per-
formance deficits and motor problems in general
define a subgroup of AD patients [86]. Alternatively,
subjects with substantially poorer motor performance
may have other neurological comorbidities that com-
monly present with AD, that we were unable to
detect during subject screening such as cerebrovas-
cular disease including atherosclerosis, white matter
pathology, and infarctions, but also Lewy bodies [87,
88]. Lewy body disease in particular is known to be
associated with motor dysfunction, including slower
tapping speed [89]. Ideally, future studies would eval-
uate such comorbidities to statistically control for
them.

Associations between motor performance and
AD biomarkers

Hippocampal volume was related to finger tap-
ping speed and variability under both unimanual and
bimanual conditions. These observations remained
significant after multiple comparisons correction.
Although we found some indications that finger tap-
ping performance was related to global amyloid-f3
deposition and the number of APOE &4 alleles, these
results did not survive multiple comparison correc-
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tion. The pattern of associations of finger tapping
with individual AD biomarkers indicates that tap-
ping performance is more affected by structural brain
changes that generally occur later in the disease pro-
cess [90], and less by amyloidosis which starts earlier
in the disease process [91, 92]. Surprisingly, volume
of brain regions that had previously been implicated
in finger tapping performance such as the cerebellum,
primary motor cortex, and IFG were not associated
with tapping performance in our sample. Poten-
tially, functional compensation through increased
brain activation may have attenuated the volumet-
ric associations [93]. A previous study reported a
positive association in AD patients between A4;
levels from cerebrospinal fluid and scores on part
3 of the Unified Parkinson Disease Rating Scale,
which measures various motoric functions includ-
ing gait, balance, finger-to-thumb tapping, tremor,
and speech [45]. Potentially, the gait and balance
measures may have been driving this association,
explaining the discrepancy between these results and
those reported here. The lack of a statistically signifi-
cant association between finger tapping performance
and well-validated, global amyloid-3 depositions
resembles reports that show amyloid- deposits in
cognitively normal individuals [94], underlining that
not all brain pathology directly affects behavior,
potentially due to motor reserve [95]. Alternatively,
despite our observation that a global amyloid-3 mea-
sure may be relatively insensitive to motor function,
regional measures of amyloid-3 could be predictive,
the same way different cognitive functions display
region-specific associations with amyloid-3 depo-
sition [96]. Future studies should estimate regional
depositions of amyloid-{3, for example of the primary
motor cortex, to assess if they are predictive of finger
tapping performance.

Although there is limited evidence that the hip-
pocampus plays a role in simple finger tapping
[46], we did observe an association between sev-
eral tapping measures and hippocampal volume. It
is possible that, in this case, hippocampal volume
reflects general brain atrophy or even that of motor
brain regions, which has resulted in the observed
brain-behavioral association. To the best of our
knowledge, few studies have explicitly looked at
the neural underpinnings of finger tapping perfor-
mance in AD [10]. A recent study however has
revealed that reduced short-latency afferent inhibi-
tion partially explains slow movement in AD [24].
To better understand if motor dysfunction in AD is
related to general neurodegeneration, or linked to

specific brain regions, whole-brain functional and
structural imaging mechanistic studies are warranted.
More specifically, morphological and brain activation
studies of the primary motor cortex could explain
variation in our observed tapping deficits in aMCI
and AD, as previous work indicates that tapping per-
formance largely depends on primary motor cortex
activation [97], bradykinesia in AD is related to motor
cortex dysfunction [24,45], and primary motor cortex
plasticity and excitability are affected already in MCI
[25, 98, 99].

The range of Cohen’s d coefficients for the
four observed significant associations between hip-
pocampal volume and finger tapping performance
that survived multiple comparisons correction was
0.57-0.60. This equates to medium-to-large effect
sizes [79]. Taps per Second Variance for alternating
tapping was the measure that most strongly dif-
fered between controls and AD subjects (n*=0.15)
and also significantly correlated with hippocampal
volume, while surviving multiple comparisons cor-
rection for both analyses. All finger tapping outcome
measures that significantly related to hippocampal
volume also showed significant differences between
controls and either amnestic MCI or AD subjects.
Based on these results, finger tapping speed may sub-
stitute hippocampal volume as AD biomarker but is
not suited to substitute amyloid- or APOE &4 allele
status. It may also provide non-redundant informa-
tion, considering that even these existing biomarkers
are limited in predicting AD development [100]. Tap-
ping measures could also be a cost-efficient tool for
augmenting existing biomarkers [47] or they can form
part of a set of motor measures that together make up
a sensitive biomarker for AD [101, 102].

Tapping performance as classifier of group

Our random forest classifier that used finger
tapping performance measures to predict group
membership had an overall accuracy of 70%, outper-
forming the null model. Permutation feature analysis
revealed that dominant hand Taps per Second Vari-
ance contributed most strongly to the classification
model. This is in line with the results of our regres-
sion models that show that dominant hand Taps per
Second Variance is moderately to strongly affected
in AD, but not significantly in amnestic MCI.

Inspection of individual classes indicates that pre-
diction model accuracy is driven by the classification
of control and AD subjects. Our model predicted con-
trol subjects with both good precision (i.e., ‘most
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subjects classified as controls were truly controls in
the sample’) and recall (i.e., ‘most true control sub-
jects in the sample were classified as controls’). For
AD subjects, precision was lower (i.e., not everybody
who was classified as AD was actually an AD subject,
sometimes they were control subjects), but recall was
even higher. For amnestic MCI subjects, however,
the model precision was high (i.e., if a subject was
classified as amnestic MCI they were always truly
amnestic MCI), but the recall was at chance level:
amnestic MCI subjects had an equal chance to be
classified as controls, amnestic MCI and AD. The
AUC metrics further demonstrate the discrepancy in
the predictive ability of our model for controls and
AD versus amnestic MCI. The overall AUC value
of 0.76 and those for the control and AD groups are
comparable to a classification study that used random
forest classification on speech and eye-tracking data
to distinguish control subjects from a mixed sample
of subjects with MCI, subjective memory complaints,
and AD [103]. A meta-analysis on machine learn-
ing methods employing neuropsychological tests to
discriminate controls from MCI and AD participants
showed that cognitive measures had similar sensi-
tivity to distinguish controls from AD as we report
here, but that cognitive measures are better at telling
apart controls from MCI [104] than our tapping mea-
sures. Although our outcomes thus suggest that finger
tapping performance may not be suited as an early
detection tool, it is a simple, inexpensive, 10-min test
that requires little training and for which the scoring is
fully automated that is able to accurately distinguish
individuals with and without AD, at 86% accuracy.
As such, it could be used in conjunction with other
measures and biomarkers as combined outcome mea-
sure for clinical trials aiming to prevent development
of MCI or AD. Decreases in tapping performance
could contribute to this joint outcome measure, as an
indicator of disease progression.

Strengths and limitations

This is one of few studies applying an elaborate
assessment of unimanual and bimanual finger tapping
function in a well-defined sample along the AD con-
tinuum. Our study is unique in that it directly relates
motor performance measures to three established AD
biomarkers: hippocampal volume, brain amyloid-8
deposition, and APOE &4 allele status. By combining
frequentist statistical methods and machine learning
modeling we were able to yield an understanding of
how AD pathology affects motor function and how it

can be used as a disease classifier. Although we col-
lect a variety of validated, global biomarkers, we did
not collect tau, which plays a major role in AD neu-
ropathology [105]. Because tau deposits present later
in the AD trajectory than amyloid-f3, but before hip-
pocampal atrophy [90], finger tapping may be more
sensitive to this biomarker.

Our sample included almost exclusively white,
Caucasian subjects. Although, to the best of our
knowledge, there are no studies showing racial differ-
ences in finger tapping performance, we cannot rule
out that they exist. Itis thus not possible to extrapolate
our results to other populations, and we should there-
fore aim to include diverse populations in studies on
tapping performance and dementia.

AD has been investigated thoroughly from a neural
and cognitive perspective and large datasets with such
features are readily available in the public domain.
Motor measures have been studied much less in AD,
and large datasets of motor behavior in MCI and AD
are not available. Though our moderate sample size
allowed us to gauge tapping performance in AD, it
was less optimal for classification model construc-
tion. Combining datasets or adding motor measures
to ongoing large studies will help identifying if motor
measures could be viable predictors for preclinical
AD.

Our finger tapping test is light-weight and can be
freely installed on any operating system. It also does
not require special hardware to run. However, this test
has not been validated, although it has been modeled
after existing tapping tests in terms of the information
that is recorded. Additionally, because it only uses
a keyboard as input device, it is not able to collect
certain information, such as pressure of the key press,
that may be informative. To collect such information,
additional hardware and alterations of the software
are required.

Although we excluded individuals with neurologi-
cal disorders and those who were using antipsychotic
or anticonvulsant medications that could affect the
motor system, we did not exclude individuals tak-
ing medications that might have adversely affected
motor function. Future studies should record medica-
tions affecting the motor system to allow adjustment
or stratification to explore such potential effects.

The time difference between collection of our MRI
and PET imaging biomarkers and our tapping data
was approximately 30 weeks on average. Although
this amount of time is relatively short for consid-
erable neurodegeneration to accumulate [106], we
acknowledge that not collecting the behavioral and
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biomarker data at the exact same time may have led
to weaker correlations. Future studies should aim to
collect motor and AD imaging biomarkers closer in
time to reduce the chance of Type II errors.

Conclusions and future directions

This study indicates that unimanual and bimanual
finger tapping performance are affected in amnestic
MCI and more so in AD. Especially initial reac-
tion time and tapping speed variability are affected,
though it seems that these differences are driven by
a select group of amnestic MCI and AD partici-
pants that perform particularly poor, even compared
to other amnestic MCI and AD subjects. In AD sub-
jects, both dominant and non-dominant unimanual
finger tapping and alternate and simultaneous tap-
ping were significantly affected, while in amnestic
MCI subjects only unimanual non-dominant hand
and synchronous bimanual tapping were affected.
Finger tapping speed and variance in speed were pre-
dictive of hippocampal volume, but tapping measures
were not significantly related to other conventional
AD biomarkers such as amyloid-f3 deposition and
APOE &4 allele status. The link between tapping
performance and hippocampal volume could reflect
general neurodegeneration rather than hippocampal
atrophy in particular. A machine learning classifi-
cation model was well able to discriminate control
subjects from AD subjects but did poorly when try-
ing to distinguish MCI from the other two groups.
Our findings indicate that AD is linked to poorer fin-
ger tapping, but that this may not be used to identify
patients early in the AD disease process but may be
better suited for later in the course of the disease. In
their current form, finger tapping tests could be a cost-
efficient tool for augmenting existing AD biomarkers.

Future research should focus on the specificity of
unimanual and bimanual finger tapping dysfunction
for amnestic MCI and AD. Comparing finger tap-
ping performance between individuals with amnestic
MCI, AD, dementia with Lewy bodies [89] and
Parkinson’s disease [20] can help identify if there are
differences in patterns of tapping performance that
are unique to these groups. This in turn could facilitate
the development of prediction and classification mod-
els. Combining motor measures with assessments of
activities of daily living (see for example [107]) in
individuals with amnestic MCI and AD can provide
information on the clinical relevance of motor mea-
sures assessed in a lab environment.
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