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Abstract.
Background: Alzheimer’s disease (AD) and related dementia (ADRD) risk is affected by multiple dependent risk factors;
however, there is no consensus about their relative impact in the development of these disorders.
Objective: To rank the effects of potentially dependent risk factors and identify an optimal parsimonious set of measures for
predicting AD/ADRD risk from a larger pool of potentially correlated predictors.
Methods: We used diagnosis record, survey, and genetic data from the Health and Retirement Study to assess the rela-
tive predictive strength of AD/ADRD risk factors spanning several domains: comorbidities, demographics/socioeconomics,
health-related behavior, genetics, and environmental exposure. A modified stepwise-AIC-best-subset blanket algorithm was
then used to select an optimal set of predictors.
Results: The final predictive model was reduced to 10 features for AD and 19 for ADRD; concordance statistics were about
0.85 for one-year and 0.70 for ten-year follow-up. Depression, arterial hypertension, traumatic brain injury, cerebrovascular
diseases, and the APOE4 proxy SNP rs769449 had the strongest individual associations with AD/ADRD risk. AD/ADRD
risk-related co-morbidities provide predictive power on par with key genetic vulnerabilities.
Conclusions: Results confirm the consensus that circulatory diseases are the main comorbidities associated with AD/ADRD
risk and show that clinical diagnosis records outperform comparable self-reported measures in predicting AD/ADRD risk.
Model construction algorithms combined with modern data allows researchers to conserve power (especially in the study
of disparities where disadvantaged groups are often grossly underrepresented) while accounting for a high proportion of
AD/ADRD-risk-related population heterogeneity stemming from multiple domains.

Keywords: Alzheimer’s disease, environmental exposure, genetic factors, Medicare, polygenic risk scores, predictive models,
risk factors

INTRODUCTION

Alzheimer’s disease (AD) is a progressive
neurodegenerative disorder, which accounts for
approximately 80% of all dementia cases diagnosed
in the U.S. with associated healthcare costs approach-
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ing $215 billion a year [1]. The importance of
the assessment of risk-related and protective factors
associated with AD and related dementias (ADRD)
becomes increasingly important as the population of
individuals at risk for AD/ADRD grows both in size
(e.g., population growth) and exposure times (e.g.,
gains in longevity). However, existing literature on
AD/ADRD risk provides a highly varied picture span-
ning a wide range of study design, structure of utilized
data, and population focus [2]. Multiple studies inves-
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tigated the role of cardiovascular disease [3, 4], cancer
[5], and diabetes mellitus [6] in AD/ADRD risk [7, 8],
but results often remained inconsistent, likely due to
the differences in methodological approaches across
the studies, different target populations, and a focus
on identifying individual risk factors without deter-
mining the role of multiple co-existing factors [9,
10]. More recently, the 2020 Lancet Commission
on dementia prevention, identified twelve potentially
modifiable risk factors suggested to increase demen-
tia risk [11] across three groups based on the critical
age region for modifying each risk factor. These
were: 1) early life (education), 2) midlife (hyper-
tension, obesity, hearing loss, traumatic brain injury
(TBI), and alcohol misuse), and 3) later life (smoking,
depression, physical inactivity, social isolation, dia-
betes, and air pollution) [11]. This framework can be
extended with further modifiable or non-modifiable
(genetics) risk factors; but the original 12 features
clearly demonstrate the complexity of the multifac-
torial process of AD/ADRD onset.

Increased scope and availability of high-power
longitudinal studies of aging as well as individual-
level administrative/health records from health and
health insurance providers, makes the incorporation
of the multiple aspects of AD/ADRD development
into a single, sufficiently powered model, increas-
ingly feasible, especially with the growing trend
in the incorporation of data on genetics and other
biomarkers. However, the construction of such com-
plex models brings its own challenges. Among them
are the multiple pathways of creating an indica-
tor/measure of a risk-related characteristic, and the
multiple dependencies between AD/ADRD risk fac-
tors, which reflect real-life disease processes, but
are a significant challenge for risk models, many
of which require independence between included
features. In this study, we will use data from the
Health and Retirement Study (HRS) to assess the
impacts and relative ranks of known AD/ADRD
risk factors spanning several domains: comorbidi-
ties, demographics/socioeconomics, health-related
behavior, genetics, and environmental exposure. All
twelve factors identified by the 2020 Lancet Com-
mission on dementia prevention were represented by
at least one measure and expanded with additional
modifiable and non-modifiable risk factors. The HRS
is a complex study linkable to administrative health
insurance records from the Medicare health insurance
program and genetic biomarkers [9, 12] and has the
necessary scope and power for the construction and
testing of such a model. This study offers an approach

for the selection of an optimal set of AD/ADRD pre-
dictors, that recognizes that many of these predictors
demonstrate mutual dependencies or can be repre-
sented through alternative data features. We estimate
the strength of the associations between AD/ADRD
and risk-related/protective factors (collectively “pre-
dictors”) in univariable analyses, identify optimal
predictors of AD/ADRD risk, create a multivariable
predictive model, and study its predictive power.

METHODS

Data

The Health and Retirement Study is an ongoing
study that has been fielded every other year since
1992. It collects data on a battery of demographic,
socioeconomic, behavioral, and health-related char-
acteristics and is nationally representative of U.S.
older adults age 50+ [13]. The HRS provides link-
ages to administrative claims data from the Medicare
program for eligible individuals (most of the U.S.
population becomes eligible at age 65), which con-
tains information on medical services paid by either
Medicare Part A (facility-based services), Medicare
Part B (professional services), or Medicare Part D
(prescription drugs), as well as supplementary demo-
graphic and enrollment information. A subset of the
HRS population has been genotyped (∼2.5 M sin-
gle nucleotide polymorphisms (SNPs) genotyped on
Illumina HumanOmni2.5 chipset).

Zip-code level data on the daily and annual esti-
mates of the concentration of fine particulate matter
(PM2.5), ozone (O3), and nitrogen dioxide (NO2)
over the 2000–2016 period from Socioeconomic Data
and Applications Center (SEDAC) [14, 15] were used
to create indicators of adverse environmental condi-
tions, specifically exposure to air pollutants.

Sample

At the time of this study, the HRS contained data on
37,319 respondents age 50+. Of these, 15,620 were
genotyped and 12,872 had polygenic risk scores offi-
cially produced by the HRS. Within this latter group
8,603 were enrolled in the Medicare program. For
inclusion in this study, we required respondents to be
genotyped and have Medicare fee-for-service Parts
A and B coverage during the 2000–2015 period.
Using Medicare enrollment files, we identified the
first and last month/year during which an individual
was enrolled in a traditional Medicare fee-for-service



I. Akushevich et al. / Multidomain Model of Alzheimer’s Disease 537

plan with both Parts A and B coverage. These two
points in time served as the bounds over which an
individual was followed. Individuals with significant
gaps (≥50% of total follow-up time for an indi-
vidual) in fee-for-service coverage (such as due to
non-payment of Part B premiums or membership in
a non-fee-for-service Medicare plan, e.g., Medicare
Advantage) were dropped. Finally, we required that
the age at the start of the follow-up period be between
65–80 and that there be no history of AD or ADRD
diagnoses prior to this baseline age. After restrictions,
the final sample included 8,094 individuals for the AD
sample and 8,084 for ADRD.

Outcomes

The onset of AD (International Classification of
Disease 9th Edition [ICD-9]: 331.0) and ADRD [16]
(see also Supplementary Table 1) based on individual
diagnoses from health insurance claims records were
the primary outcomes of this study. Disease ascer-
tainment algorithms described in other publications
[17] were used to identify the presence of AD and
ADRD as well all other co-morbidities. Briefly, we
required the presence of two distinct claims with a
diagnosis of AD/ADRD within 90 days of each other
with the earliest date in the pair designated as the
date of onset. Once the date of onset was identified,
the individual was considered diagnosed during the
entire follow-up period. Sensitivity analysis was con-
ducted with algorithms utilizing confirmation periods
>90 days and treating death within the confirmation
period as a confirmatory record.

Medicare diagnosis records-based predictors

We included the following AD/ADRD risk-related
morbidities/morbidity groups based on existing
literature: 1) cardiovascular diseases including
myocardial infarction, angina pectoris, congestive
heart failure, valvular heart disease, rheumatic heart
disease, arterial hypertension, systemic hypotension,
and cardiac arrhythmias [18–20]; 2) cerebrovascu-
lar diseases including ischemic stroke, hemorrhagic
stroke, and other cerebrovascular diseases [19, 21];
3) chronic kidney disease [20, 22]; 4) chronic
obstructive pulmonary disease (COPD) [23]; 5) dia-
betes mellitus [6]; 6) thyroid dysfunction [24]; 7)
metabolic syndrome (obesity, dyslipidemia, hyper-
tension, impaired insulin tolerance [6, 25, 26]); 8)
obstructive sleep apnea [27, 28]; 9) depression [29];
and 10) TBI or head trauma [30]. To account for a

possible link between liver function and metabolism
of common medications (e.g., medications for car-
diovascular diseases), which may contribute to the
drug efficacy and adverse effects, we also eval-
uated liver diseases with hepatic failure. Finally,
we included cancers because of evidence [31–34]
that there may be a trade-off between cancer and
AD risk. The dates of diagnoses of these diseases
were identified from Medicare administrative claims
records selected based on ICD-9 codes shown in
Supplementary Table 1. Disease onset was identi-
fied using the same ascertainment algorithm as for
AD/ADRD. Cardiovascular and cerebrovascular dis-
ease events such as myocardial infarction and stroke
reflect pathological processes in circulatory system
and likely contribute to the future risks of AD/ADRD
through this mechanism, therefore these conditions
were treated similarly to chronic diseases.

HRS survey-based predictors

The HRS survey was used to generate (See Sup-
plementary Table 1 for complete list and variable
definitions) indicators of: self-reported disease status;
activities of daily living (ADL) and instrumen-
tal ADL (IADL) limitations; scores on Center for
Epidemiologic Studies Depression Scale (CESD);
hearing and vision problems; health behaviors (cur-
rent smoking status, hard drinking, no physical
activity, and body mass index (BMI)), socioeco-
nomics (social isolation index, education level, and
low income), and demographics. All survey-based
predictors were time dependent with values being
drawn from the most recent wave prior to any age
during an individual’s follow-up.

Genetic predictors

Genetic predictors were treated as time-invariant
and included through several alternative specifi-
cations. First, we included candidate SNPs that
were shown to be associated with AD/ADRD risk
(Table 1 of [35]). Second, we used polygenic risk
scores (PRS) provided by the HRS (version 4).
These were constructed using effect sizes from the
IGAP study [36] and SNPs measured for HRS
individuals. Four different PRS specifications were
assessed: with/without inclusion of APOE-related
genes/SNPs and with/without the deselection of
SNPs not associated with AD in GWAS at the
p = 0.01 threshold. Third, we replicated the method-
ology used to generate the official HRS PRS, to
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Table 1
AD/ADRD hazard ratios evaluated in univariable analyses for the total sample of older adults; male, female and Black strata; and with the

predictors entering at a 1-, 3-, and 5- years of lag

Predictors Hazard Ratios
AD, Total (CI) Male Female Black Lag1 Lag3 Lag5 ADRD, Total (CI)

Myocardial infarction 1.52 (1.19,1.94) 1.57 1.51 0.95 1.46 1.51 1.31 1.74 (1.50,2.03)
Angina pectoris 1.53 (1.17,1.99) 1.63 1.47 1.02 1.42 1.40 1.41 1.64 (1.38,1.94)
Heart failure 1.86 (1.47,2.35) 1.94 1.80 1.36 1.67 1.68 1.47 2.48 (2.15,2.87)
Valvular heart disease 1.57 (0.81,3.05) 1.75 1.34 n/a 1.72 1.83 1.98 1.81 (1.21,2.72)
Rheumatic heart disease 2.36 (1.65,3.38) 1.60 2.96 3.30 2.29 2.59 2.82 2.24 (1.76,2.85)
Arterial hypertension 2.72 (1.99,3.72) 2.45 2.94 2.93 1.82 1.54 1.48 2.87 (2.35,3.51)
Cardiac arrhythmias 1.61 (1.30,1.99) 1.68 1.59 1.32 1.40 1.44 1.45 2.00 (1.75,2.29)
Ischemic stroke 2.13 (1.71,2.65) 1.98 2.27 1.74 1.75 1.77 1.48 2.87 (2.50,3.29)
Hemorrhagic stroke 2.86 (1.67,4.89) 1.16 4.76 8.04 2.20 2.59 2.87 4.06 (2.95,5.59)
Other cerebrovascular disease 2.48 (1.93,3.18) 2.30 2.66 2.70 1.92 1.94 1.87 3.79 (3.27,4.40)
Systemic hypotension 2.03 (1.46,2.83) 2.14 1.97 3.63 2.06 2.33 1.86 2.65 (2.17,3.24)
Chronic kidney disease 1.53 (1.15,2.03) 1.20 1.84 1.30 1.09 1.07 0.97 2.43 (2.07,2.86)
COPD 1.54 (1.24,1.91) 1.50 1.57 0.99 1.50 1.59 1.38 1.88 (1.65,2.16)
Diabetes mellitus 1.67 (1.35,2.07) 1.34 1.95 1.57 1.56 1.51 1.39 1.83 (1.60,2.09)
Thyroid dysfunction 1.20 (0.96,1.50) 1.35 1.14 0.90 1.14 1.02 1.07 1.45 (1.26,1.67)
Metabolic syndrome 1.68 (0.54,5.22) 1.23 2.09 n/a 1.87 2.52 1.19 0.89 (0.33,2.38)
Obstructive sleep apnea 1.59 (1.02,2.47) 1.49 1.78 0.60 1.43 1.26 1.73 2.11 (1.63,2.74)
Depression 3.82 (3.09,4.71) 3.70 3.94 2.93 2.67 2.67 2.28 3.55 (3.09,4.07)
Traumatic brain injury 2.90 (1.92,4.36) 3.78 2.55 n/a 2.34 2.07 1.64 3.26 (2.51,4.24)
Chronic liver disease 1.92 (1.27,2.90) 1.65 2.09 2.16 1.85 1.71 1.73 2.11 (1.62,2.74)
Solid malignant tumors 1.12 (0.90,1.38) 1.39 0.97 1.21 1.04 1.03 1.11 1.16 (1.01,1.33)
Nonsolid cancer 1.10 (0.52,2.32) 1.78 0.57 n/a 1.10 1.23 0.99 1.42 (0.92,2.19)
Cancer, unspecified 1.08 (0.84,1.39) 1.28 0.94 1.06 1.01 1.01 1.04 1.14 (0.97,1.34)
Heart diseases (SR) 1.19 (0.96,1.46) 1.13 1.26 1.39 1.16 1.15 1.15 1.22 (1.07,1.39)
Stroke (SR) 1.52 (1.14,2.02) 1.33 1.70 1.29 1.47 1.33 1.47 2.42 (2.06,2.84)
Lung diseases (SR) 1.14 (0.84,1.55) 0.69 1.50 1.43 1.20 1.31 1.55 1.24 (1.02,1.49)
Cancer (SR) 0.85 (0.66,1.10) 0.87 0.84 0.88 0.77 0.80 0.95 0.86 (0.73,1.01)
Diabetes (SR) 1.15 (0.91,1.47) 1.00 1.30 1.13 1.21 1.30 1.33 1.38 (1.19,1.60)
Arthritis (SR) 0.85 (0.68,1.06) 0.80 0.88 1.26 0.90 1.00 1.18 0.91 (0.79,1.05)
Depression (SR) 1.64 (1.27,2.12) 1.66 1.62 1.16 1.62 1.88 1.72 1.85 (1.58,2.17)
High Blood Pressure (SR) 1.06 (0.85,1.31) 1.02 1.07 0.89 0.97 1.02 1.15 1.08 (0.94,1.24)
Disability (ADL) 1.51 (1.41,1.62) 1.55 1.48 1.35 1.39 1.25 1.32 1.45 (1.38,1.53)
Instrumental ADL 1.77 (1.66,1.88) 1.79 1.75 1.54 1.61 1.42 1.44 1.63 (1.56,1.70)
CESD scale 1.14 (1.09,1.20) 1.17 1.12 1.10 1.10 1.14 1.15 1.17 (1.13,1.20)
Current smoking 1.08 (0.69,1.68) 1.16 1.00 1.74 1.08 0.98 0.75 1.39 (1.08,1.79)
Hard drinking 1.63 (0.52,5.07) 1.46 2.21 n/a 1.63 1.63 1.63 1.31 (0.59,2.92)
Body mass index 0.96 (0.94,0.98) 0.97 0.95 0.99 0.96 0.98 0.99 0.97 (0.95,0.98)
No physical activities 1.92 (1.47,2.51) 1.98 1.88 1.55 1.99 1.70 1.57 1.74 (1.48,2.06)
Hearing problems 1.22 (0.98,1.51) 1.04 1.42 1.03 1.14 1.37 1.33 1.25 (1.09,1.44)
Vision problems 1.43 (1.15,1.79) 1.26 1.56 1.03 1.35 1.18 1.43 1.62 (1.41,1.87)
Social isolation 1.29 (1.01,1.64) 1.09 1.42 1.10 1.23 0.88 1.40 1.44 (1.24,1.67)
Low income 1.59 (1.29,1.96) 1.43 1.72 1.39 1.36 1.47 1.31 1.84 (1.61,2.10)
Low education 1.36 (1.08,1.73) 1.14 1.53 1.04 1.36 1.36 1.36 1.35 (1.16,1.57)
Female 1.06 (0.86,1.30) . . 1.08 1.06 1.06 1.06 0.99 (0.87,1.13)
Black 1.63 (1.23,2.16) 1.62 1.63 . 1.63 1.63 1.63 1.65 (1.38,1.97)
PM 2.5 1.06 (1.01,1.11) 1.12 1.02 1.14 1.06 1.06 1.06 1.06 (1.03,1.09)
Ozone 1.01 (0.99,1.04) 1.02 1.01 1.00 1.01 1.01 1.01 1.01 (0.99,1.02)
NO2 0.99 (0.98,1.01) 1.01 0.99 1.00 0.99 0.99 0.99 1.00 (1.00,1.01)

AD, Alzheimer’s disease; ADRD, Alzheimer’s disease and related dementia; HR, hazard ratio; CI, confidence interval; COPD, chronic
obstructive pulmonary disease; SR, self-reported indicator; ADL, activities of daily living; CESD, Center for Epidemiologic Studies
Depression Scale.

generate 12 alternative PRS hypothesized to bet-
ter reflect the specific mechanisms of AD/ADRD
development. These were based on gene/SNP sets
associated with a pathway potentially contributing
to a specific mechanism of AD/ADRD development

and known as AD hallmarks. Specifically, markers
of neuro-inflammation, mitochondrial dysfunction,
synapse loss, de-myelination, and neuronal death, in
addition to the extracellular amyloid-� plaques, and
intracellular neurofibrillary tangles of hyperphospho-
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rylated tau protein—the two primary hallmarks of
AD—were included. SNP sets for these hallmarks
were specified using: 1) results of GWAS of AD using
the HRS and other AD/ADRD-related datasets [2];
2) SNPs located in ∼280 AD-related genes avail-
able from NHGRI-EBI Catalog of published GWAS
(https://www.ebi.ac.uk/gwas/); 3) AD-related genes
selected from other recent publications [37–52]; and
4) gene sets representing pathways and processes that
are thought to play role in AD and available from
established online collections of the gene sets and
pathways, such as MsigDB/GSEA, KEGG, REAC-
TOME, BioCarta, GO, and others. We used available
software for automated high-resolution computations
of the polygenic risk scores for binary and quantita-
tive traits (PRSice [53]). The list of specific genes
to each PRS is shown in Supplementary Table 2.
SNPs associated with APOE in dbSNP database were
additionally unselected.

Measures of ambient air pollution

Adverse environmental exposures to PM2.5
(�g/m3), O3 (ppb), and NO2 (ppb) were derived
from ensemble predictions of three machine-learning
models that estimate daily concentrations at the cen-
troids of 1 km × 1 km grid cells across the U.S. over
the 2000–2016 period. Model predictors included
air monitoring data, satellite data, weather data, and
chemical transport model simulations [14, 54, 55].
Zip code-level pollution concentrations were esti-
mated by averaging the predictions of grid cells
falling within zip code polygons or—for single-
point zip codes—the value of the nearest grid cell.
This data was then aggregated at the annual level
and linked to the zip-code associated with each
HRS individual for that year. The dataset includes
approximately 31,000 zip codes with polygon rep-
resentations and about 10,000 zip codes as single
points.

Statistical analysis

The analysis included three steps. First, we inves-
tigated the associations of specific predictors with
AD and ADRD risks in a series of univariable Cox
models. Indicators at age a of a disease diagnosed
at adiag was defined as p(a) = I(a > adiag), and the
latest measurement before a current age was used for
HRS survey variables. Since the effect of a specific
time-dependent predictor can be delayed, models
with lagged indicators p(a) = I(a > adiag + alag) of

alag = 1, 3, and 5 years were also estimated. All
genetic indicators were used in these univariable anal-
yses as time-independent predictors.

Second, we used multivariable models to identify
the optimal combination of predictors with AD and
ADRD risks. Predictors for the final multivariable
models for AD and ADRD were selected applying
the stepwise-AIC-best-subset blanket algorithm [56,
57]. Specifically, we first use stepwise selection to
create a sequence of models from the null model
(with no predictors) through the full model (with
all predictors). Next, we identified the numbers of
predictors, n, that correspond to the models with min-
imal Akaike and Bayesian information criteria (AIC
and BIC) and identify the best models for each n.
The best model is characterized by the set of n pre-
dictors with the best χ2-score test. Since BIC has a
larger penalty term for additional parameters than the
AIC, resulting in the BIC favoring more parsimonious
models than the AIC [57], we started with the best
model with the minimal BIC and considered models
with sequentially higher n for as long as each added
predictor remained significant. The resulting model
was then tested to ensure stability across subpop-
ulations, analyses with lag-periods, and alternative
definitions for outcomes. In addition, mutual corre-
lation between predictors was accounted for when
selecting the initial set of predictors. This is espe-
cially important for selecting between claims-based
and survey-based measures representing the same
health condition as well as for genetic markers. In
such cases, we used information criteria for separate
models utilizing each of the alternative specifications
in turn; this is equivalent to choosing an indicator with
the better p-value from a model with both predictors
included.

Third, the predictive powers of the multivari-
able models were evaluated using the concordance
statistic and ROC curves. This statistic is a well-
known c-index defined as the area under the ROC
curve which is widely used in logistic regression
models. The validation datasets were created at inte-
ger baseline ages, and all predictors were evaluated
at the baseline and considered time independent.
For survival models, ROC curves are time-sensitive,
therefore we estimated statistics for different follow-
up times time from one to 10 years. Two approaches
for evaluation of the c-index introduced by Harrell
et al. [58, 59] and Uno et al. [60] were used and
compared. Standard error for the c-index was evalu-
ated using bootstrapping with 100 resampling of the
original sample.

https://www.ebi.ac.uk/gwas/
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Table 2
AD/ADRD hazard ratios evaluated in univariable analysis for genetic indicators of risk

Genetic Risk Factors Hazard Ratios
(PRS for pathways*, PRS for all AD total (HR with CI) Male Female Black ADRD, total (CI)
genotyped SNPs, and Individual SNPs*)

PRS Amyl React Pathway 0.98 (0.89,1.08) 0.97 0.99 1.09 0.96 (0.90,1.03)
PRS Apopt PosReg GO Pathway 1.03 (0.93,1.14) 0.99 1.05 1.19 0.98 (0.91,1.04)
PRS Apopt NegReg GO 0.96 (0.87,1.06) 0.78 1.09 0.94 1.00 (0.93,1.06)
PRS NDea NegReg GO Pathway 0.95 (0.86,1.06) 0.81 1.06 0.96 1.00 (0.94,1.07)
PRS Tau Liter Pathway 1.06 (0.96,1.17) 1.01 1.10 1.12 1.06 (0.99,1.13)
PRS Reactome Dopa Pathway 1.04 (0.94,1.15) 1.07 1.03 0.87 1.01 (0.95,1.08)
PRS Nsig KEGG Pathway 1.01 (0.91,1.12) 0.96 1.05 1.03 0.99 (0.92,1.05)
PRS Reactome Neuro Receptor 1.04 (0.94,1.15) 1.09 1.01 0.95 0.98 (0.92,1.05)
PRS Mitoch Pathway 1.00 (0.91,1.11) 1.01 1.00 0.90 1.02 (0.95,1.08)
PRS BioMitoch Pathway 1.03 (0.93,1.14) 0.92 1.11 1.20 1.07 (1.00,1.14)
PRS Infl Hallm Pathway 1.12 (1.01,1.24) 1.12 1.12 0.94 1.10 (1.03,1.17)
PRS Ninfl+ Pathway 0.97 (0.88,1.07) 0.92 1.00 1.00 0.98 (0.92,1.04)
PRS (HRS, v.4, no APOE) 1.12 (1.01,1.23) 1.04 1.18 0.83 1.05 (0.98,1.12)
PRS (HRS, 0.01 v.4, no APOE) 1.22 (1.10,1.35) 1.15 1.27 0.87 1.10 (1.03,1.17)
PRS (HRS, v.4, with APOE) 1.14 (1.04,1.26) 1.06 1.20 0.83 1.06 (1.00,1.13)
PRS (HRS, 0.01 v.4, with APOE) 1.35 (1.22,1.50) 1.29 1.40 0.90 1.17 (1.10,1.25)
rs12539172 0.85 (0.73,1.00) 0.92 0.81 0.90 0.88 (0.80,0.98)
rs3851179 0.85 (0.73,1.00) 0.84 0.87 0.69 0.97 (0.88,1.07)
rs405509 (APOE) 1.22 (1.06,1.40) 1.13 1.28 1.85 1.12 (1.03,1.23)
rs769449 (APOE) 2.31 (1.92,2.77) 2.49 2.21 3.21 1.73 (1.52,1.96)
rs2075650 (TOMM40) 1.83 (1.53,2.18) 2.11 1.67 1.02 1.57 (1.39,1.76)
rs8106922 (TOMM40) 0.76 (0.65,0.89) 0.73 0.79 1.01 0.84 (0.77,0.93)
rs6859 (NECTIN2) 1.28 (1.11,1.48) 1.11 1.40 1.14 1.20 (1.10,1.32)
rs157580 (TOMM40) 0.73 (0.63,0.85) 0.75 0.72 0.90 0.81 (0.73,0.89)
rs4311 0.88 (0.77,1.02) 0.89 0.88 0.75 0.92 (0.84,1.01)
∗Sets of genes included in these pathways are provided in Supplementary Table 2. ∗∗SNPs with insignificant effects were not shown. AD,
Alzheimer’s disease; ADRD, Alzheimer’s disease and related dementia; HR, hazard ratio; CI, confidence interval; PRS, Polygenic risk score.

RESULTS

The AD and ADRD analysis subsamples differed
primarily by the size of the outcome group (375/8,094
for AD; 919/8,084 for ADRD). follow-up time (10.7
years for AD and 10.5 years for ADRD), and percent
of individuals lost to mortality during follow-up. In all
other aspects the samples were approximately identi-
cal (Supplementary Table 3). The age at baseline was
67.5 (4.0) for both samples. The sex makeup of the
sample is consistent with that of the general popula-
tion (57.4% female; 42.6% male for both samples).
The race/ethnicity composition provides good statis-
tical power for the White (84.1% for AD and 84.2%
for ADRD) and Black (13.8% for AD and ADRD)
American subgroups. Detailed summary statistics are
presented in Supplementary Table 3.

Parameter estimates for non-genetic predictors
used in the univariable Cox proportional hazard
model are presented in Table 1 for AD and Supple-
mentary Table 4 for ADRD. The results for ADRD
for the entire sample are also shown in Table 1.
Estimates are marked “n/a” for analyses with an
insufficient number of cases in a specific subgroup.

The patterns of the results are similar between AD
and ADRD, though the magnitudes are significantly
stronger for ADRD in several diagnosis-based dis-
ease indicators (heart failure, cardiac arrhythmias,
ischemic stroke, other cerebrovascular diseases, and
chronic kidney disease) and one self-reported dis-
ease indicator (stroke). The strongest associations
with AD risk were detected for depression (Hazard
Ratio [HR] = 3.9), hypertension (HR = 2.7), trau-
matic brain injury (HR = 2.9), and hemorrhagic stroke
(HR = 2.9). These diseases were also among the
strongest predictors for ADRD with HRs >2.8. Four
additional strong predictors of ADRD were ischemic
stroke (HR = 2.9), other cerebrovascular diseases
(HR = 3.8), systemic hypotension (HR = 2.7), and
heart failure (HR = 2.5).

For the majority of the predictors the associa-
tions with AD/ADRD were similar for both sexes,
though for several predictors the magnitude was
much stronger for females, e.g., hemorrhagic stroke
(AD HR = 4.4 for females versus 1.2 for males)
and arterial hypertension (HR = 2.9 versus 2.5). In
contrast the association of traumatic brain injury
was stronger for males (HR = 3.8 versus 2.6). The
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Table 3
AD and ADRD hazard ratios evaluated in multivariable analyses for i) the overall population of older adults (All) with 95% confidence
intervals (Lo.CI, Up.CI), sex-specific subpopulations (Male, Female), Black population, and for models with 1, 3, and 5 years of lag (Lag1,

Lag3, and Lag5)

Hazard Ratios
Predictors AD or ADRD HR (CI) Male Female Black Lag1 Lag3 Lag5

AD
Rheumatic heart disease 1.55 (1.07,2.24) 1.27 1.76 2.17 1.79 2.08 2.40
Arterial hypertension 2.09 (1.51,2.89) 2.21 2.08 2.43 1.56 1.30 1.29
Stroke 1.50 (1.20,1.87) 1.13 1.75 1.27 1.25 1.47 1.30
Depression 2.50 (2.01,3.13) 2.37 2.63 1.98 2.05 2.31 2.01
Traumatic brain injury 1.63 (1.07,2.48) 2.40 1.35 n/a 1.56 1.56 1.35
Black 1.72 (1.28,2.31) 1.81 1.71 . 1.83 1.97 1.95
Disability (IADL) 1.56 (1.46,1.66) 1.64 1.52 1.46 1.45 1.27 1.31
Body mass index 0.96 (0.94,0.98) 0.97 0.95 0.98 0.96 0.98 0.99
PRS (HRS, 0.01 v.4, with APOE) 1.17 (1.06,1.29) 1.13 1.22 0.85 1.18 1.19 1.19
rs769449 (proxy for APOE4) 2.34 (1.94,2.83) 2.63 2.19 2.43 2.39 2.47 2.49
ADRD
Rheumatic heart disease 1.30 (1.01,1.67) 0.95 1.47 1.22 1.33 1.70 1.84
Heart failure 1.25 (1.06,1.47) 1.36 1.12 1.42 1.37 1.38 1.40
Arterial hypertension 1.80 (1.45,2.23) 1.74 1.90 3.92 1.40 1.27 1.23
Ischemic stroke 1.64 (1.39,1.92) 1.39 1.79 1.76 1.43 1.35 1.23
Hemorrhagic stroke 1.47 (1.00,2.16) 0.69 2.15 7.83 1.20 1.74 2.37
Other cerebrovascular diseases 1.66 (1.39,1.98) 1.56 1.78 1.78 1.52 1.52 1.71
Systemic hypotension 1.25 (1.01,1.54) 1.47 1.03 1.43 1.12 1.11 1.03
Chronic kidney disease 1.26 (1.06,1.51) 1.13 1.34 0.95 0.96 0.94 0.72
Diabetes mellitus 1.26 (1.09,1.46) 1.24 1.28 0.92 1.34 1.33 1.36
Depression 2.44 (2.11,2.83) 3.24 2.13 2.30 1.77 1.82 1.83
Traumatic brain injury 1.77 (1.29,2.41) 3.24 1.37 0.89 1.76 1.49 1.19
Chronic liver disease 1.43 (1.10,1.87) 1.22 1.67 1.33 1.53 1.53 1.76
Female 0.80 (0.70,0.92) . . 0.97 0.86 0.90 0.93
Black 1.40 (1.15,1.70) 1.15 1.56 . 1.45 1.54 1.60
Disability 1.35(1.28,1.42) 1.47 1.31 1.20 1.36 1.22 1.16
Body mass index 0.95(0.94,0.97) 0.96 0.94 0.98 0.96 0.97 0.98
Low income 1.43(1.24,1.65) 1.31 1.56 1.39 1.28 1.26 1.20
rs769449 (proxy for APOE4) 1.86(1.63,2.12) 1.70 1.92 1.66 1.81 1.84 1.86
PM 2.5 1.04(1.01,1.07) 1.10 1.00 1.06 1.04 1.05 1.05

AD, Alzheimer’s disease; ADRD, Alzheimer’s disease and related dementia; HR, hazard ratio; CI, confidence interval; IADL, instrumental
activities of daily living.

variability in estimates for the Black population
was higher because of lower statistical power for
this group; however, their patterns, represented by
the rank of the associations, were similar to those
observed in the entire sample, though several dis-
eases demonstrated higher magnitude in the Black
population: hemorrhagic stroke (HR = 8.0), systemic
hypotension (HR = 3.6), and rheumatic heart disease
(HR = 3.3). For almost all time-dependent predictors,
magnitude declined as the lag period increased; how-
ever, this decline was small for most predictors. The
HRs for models with a lag period of 1, 3, and 5 years
were within the range of the confidence intervals of
the estimates for the entire sample. A stable increase
in the magnitude of the association with the length of
the lag period was detected for valvular and rheumatic
heart diseases.

The following associations were detected for
non-disease-related predictors of AD/ADRD: 1) the

number of instrumental ADLs, lack of physical activ-
ities, and Black race were the strongest predictors,
2) higher BMI was associated with reduced risk, 3)
low income was a better predictor of AD/ADRD
than low education or social isolation; 4) female sex
was not significant, 5) vision and hearing problems
demonstrated low predictive power, and 6) PM2.5 was
the only significant predictor among the three mea-
sures of exposure to air pollutants. The results for
non-disease predictors were very similar for AD and
ADRD risk.

Table 2 and Supplementary Table 5 provide esti-
mates for genetic predictors. These predictors are
time-independent, so the estimates for lag-time mod-
els are identical to the main model and are not shown.
The results show that associative effects of the HRS
PRS are significant, with the strongest associations
observed for the standard PRS calculated by HRS
with the threshold p = 0.01. We also found the PRS
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constructed by us using the entire set of SNPs avail-
able in HRS data reproduces the estimate obtained
for the respective HRS PRS. No significant associa-
tions were found among pathway-specific PRS from
which 15 SNPs from the APOE region relevant to
AD/ADRD were excluded. One minor exception was
the pathway associated with inflammation for which
the association at the level of significance was found.
The SNPs rs769449 and rs2075650, in APOE and
TOMM40 genes respectively, had the largest associa-
tions with AD/ADRD. Genetic associations with AD
risk were much stronger than for ADRD.

Sets of predictors for multivariable models of
the risks of AD and ADRD were identified using
the procedure described in Methods Section. The
final models contained 10 predictors for AD and
19 for ADRD (Table 3). In the final models, time-
dependent diagnosis-based measures of co-morbidity
was the most powerful group of predictors. Comor-
bidity self-reports performed poorly and were not
selected for the model due to the higher predic-
tive power of diagnosis-based comorbidities. Genetic
factors that were incorporated in the final model
included rs769449 SNP in intron of APOE gene
(this SNP is also a proxy for APOE4 in Whites
[61]) and the standard HRS PRS that was con-
structed with the threshold p < 0.01 and for which
APOE-related SNPs were not selected for the final
set for multivariable modeling. This was expected
because of the results of univariable analyses. Five
diseases were identified as the primary predictors
of AD: depression (HR = 2.5), arterial hyperten-
sion (HR = 2.1), TBI (HR = 1.6), rheumatic heart
disease (HR = 1.6), and stroke (HR = 1.5). Three self-
reported predictors (Black race, number of IADLs,
BMI) were also retained. These chosen variables have
similar HR as in univariable analyses. The model
for ADRD contains additional 5 risk-related dis-
eases (heart failure, systemic hypotension, chronic
kidney disease, diabetes mellitus, and chronic liver
disease). Three variables representing stoke (i.e.,
ischemic stroke, hemorrhagic stroke, and other cere-
brovascular diseases) were identified by the variable
selection algorithm in contrast to the case of AD
when only one variable for stroke (i.e., any type)
was identified as a predictor for multivariable model-
ing. The association with female sex was protective
and significant for ADRD. Genetic variants were
stronger predictors of AD than ADRD but rs769449
in the APOE region is still significant for ADRD.
PM2.5 was selected as a significant predictor for
ADRD model. Depression was the main AD predictor

for females, traumatic brain injury––for males, and
arterial hypertension––for Black population. These
predictors and hemorrhagic stroke were strongest
predictors of ADRD among these strata.

The predictive power of the multivariable mod-
els was evaluated using the concordance statistic
(c-index). For a survival model, ROC curves are time-
sensitive, i.e., we can have different ROC curves at
different time points of survival, we compared follow-
up times of one-, three-, five-, and ten-years. The
estimates of the concordance (c-index) statistics for
one- and ten-year follow-up are shown in Fig. 1.
The results of sensitivity analysis using alternative
algorithms for ascertainment of AD/ADRD onset are
shown in Supplementary Figures 1 and 2. The qual-
ity for one-year predictions is high. For one year of
follow-up the c-index can reach 0.85; this number
falls to about 0.70 for ten-year forecasts. A minor
decline in the c-index with higher ages at the start of
the follow-up period was detected. The concordance
statistics are similar for AD and ADRD.

DISCUSSION

The main objective of this study was to iden-
tify a minimal subset of AD/ADRD-related risk and
protective factors (out of larger set of possibly corre-
lated factors) that collectively influence these health
outcomes. Four sources of information were linked
together to produce a single study sample: 1) the
presence of diseases based on diagnosis records from
the Medicare program; 2) self-reported diseases and
non-disease health measures, health-related behav-
iors, functional status, and socioeconomic status; 3)
genetic markers including polygenic risk scores and
known-to-date genetic risk factors for AD/ADRD,
and 4) zip-code based measures of environmen-
tal exposure. The associations of predictors with
AD/ADRD risks were evaluated in univariable anal-
yses, and then the optimal set of predictors for
multivariable models of AD/ADRD risk was selected
using formal statistical criteria, ensuring the replica-
bility of the process in future applications.

The constructed multivariable models of
AD/ADRD risk improve our knowledge of how
the risk factors present at ages 65+ predict the
risks of AD/ADRD. The current status quo for
the role of preventable risk factors of AD/ADRD
was described by the 2020 Lancet Commission on
dementia prevention [11] and summarized in the
2023 Alzheimer’s disease facts and figures [62].
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Fig. 1. C-index for AD and ADRD risk for one year (red) and ten years of follow-up (black).

In a life-course model, it has been estimated that
modifying these factors can prevent or delay up to
40% of dementias by delaying the onset of cognitive
impairment and dementia and improving the quality
of life of patients with dementia and their caregivers
[11]. Available information comes from different
studies for varying subpopulations; therefore, we
considered the extended list of disease-related
predictors together with other factors in the same
study. Such design allowed us to evaluate the rank
of multiple risk factors in their ability to predict
the risk of AD/ADRD and compare power of
alternative data sources, e.g., health records and
self-reports.

Methodologically, the paper is focused on the
analyses of the effects of risk/protective factors that
impact AD/ADRD risk focusing on identification of
the multivariable model of the risk in AD/ADRD
in which the most powerful factors from available
sources of information are selected. We found that
the effects of diagnosis record-based morbidity indi-
cators were stronger than those based on self-reports,
though they shared general effect patterns. A possible
reason could be the ability to tailor a claims ascertain-
ment algorithm (e.g., sets of ICD-9/10 codes utilized;
type of medical encounter(s) assessed; diagnosis ver-
ification method etc.) to the exact disease being
studied not present in self-reported data; shorter times
between updates in an electronic health database vs. a
survey cohort; and lack of recall-related errors. Both
self-report and administrative data have well known
methodological limitations [63, 64], and the accuracy
of the resulting epidemiological estimates involve

uncertainties which can further vary from disease to
disease.

Three high-prevalent factors (hypertension,
depression, and rs769449, proxy SNP for APOE4)
had the highest effect on the risk of AD, this
suggests central role of these factors in AD eti-
ology. They may represent different pathways
contributing to heterogeneity of AD or be connected
through a common AD mechanism. For instance,
all three factors may compromise blood–brain
barrier integrity and increase chances of damaging
factors (such as infection and air pollution) to reach
the brain and trigger neuroinflammation in turn
contributing to neurodegeneration. Current evidence
supports the role of disruption of the blood–brain
barrier as a common mediator of hypertension
and depression-induced cognitive impairment, and
APOE4 detrimental effects on the brain [65–70].
This study also replicated protective effects on
AD of rs157580 (G) and rs8106922 (G), SNPs in
TOMM40 gene, that were previously reported by
us in LOADFS and CHS data [61]. This suggests
a possibility that simultaneous presence of these
protective variants with APOE4, or its proxies, in an
individual, might offset some or all negative effect of
APOE4 on AD, which deserves further investigation.

Our results confirm the overall consensus that
circulatory diseases are the main comorbidities con-
tributing to AD/ADRD risk [71]: more than half of the
diseases selected for the final model of AD/ADRD
risk (3 of 5 for AD and 7 of 12 for ADRD) were
cardio- or cerebrovascular diseases. Positive associ-
ations between the presence of disease and higher



544 I. Akushevich et al. / Multidomain Model of Alzheimer’s Disease

risk of AD/ADRD observed in our study also have
been reported in other studies for heart [18–20]
and cerebrovascular diseases [19]. In our study, the
effects of hemorrhagic stroke is much higher than
the effect of ischemic stroke that is in agreement
with earlier studies [21]. Cerebral microhemorrhage
has been shown to be associated with A� deposi-
tion [72], with shared genetic mechanisms for both
hemorrhagic stroke and dementia [73]. Neuropatho-
logical studies have suggested specific mechanisms
(e.g., cerebrovascular lesions, atherosclerosis, and
neurodegenerative changes) that often coexist with
a clinical manifestation of dementia [74, 75]. These
mechanisms generate a link between cardiovascular
health and AD [76] through onset of diseases such
as heart failure, coronary artery disease, atrial fib-
rillation, and vasculopathy. A cardiovascular health
score based on clustering of behavior- and biological-
related measures associated with the increased risk of
cardiovascular diseases was constructed using data
from Whitehall II cohort study. This score was asso-
ciated with a risk of dementia [77], though individual
risk factors in this sample can give insignificant asso-
ciations when controlling for other individual risk
factors [78].

Depression and TBI were selected for both AD
and ADRD. Observed associations with higher risk
of AD among patients with depression have been
also reported in other studies [11, 29] with potential
contribution of anti-depressant therapy to increased
AD risk, shared genetic characteristics, and recog-
nizing depression as one of the early symptoms of
AD/ADRD. TBI also appeared in the list of 12 risk
factors [11]. In that study TBI explained 3% of vari-
ance in AD risk and was set in the group of midlife
predictors. TBI is usually caused by car, motorcy-
cle, and bicycle injuries; military exposures; boxing,
horse riding, and other recreational sports; firearms;
and falls, [79], i.e., events with reasonable prevalence
in midlife period. In our study TBI is measured by
the presence of the condition in individuals indepen-
dently when it occurred, however, the event should be
sufficiently serious to make an individual have doc-
tor visits with the respective ICD-9 code. There were
no essential differences in the effects calculated with
other lag periods, that emphasize the chronic nature
of the measure of TBI we use. In our study the effect
of TBI was much higher for males, potentially due
to more severe or more frequent injuries in the male
populations.

Other diseases selected for the model of ADRD
risk were type 2 diabetes, chronic kidney and

chronic liver diseases. Hazard ratios of diabetes on
AD/ADRD type 2 diabetes mellitus [6, 18, 26] in
other studies were similar to that observed in our
study. Diabetes is one of 12 risk factors identified in
recent study with only 1% of population attributable
fraction [11]. The effects of any particular medica-
tion on the risk of AD/ADRD remains unclear, and
intensive diabetic control does not seem to decrease
the risk of dementia [11]. A possible mechanism of
the effect of chronic liver disease could be related
with hepatic failure resulting in insufficient detox-
ication of toxic metabolites including medications.
Although cancer-related predictors were not selected
for the final model (protective effect of non-specified
cancer with p-value ≈ 0.06 was the most significant
not included in the model for ADRD risk), there is
some evidence on protective effects of cancer diagno-
sis on the risk of AD/ADRD. In literature evidence on
the risk of dementia and AD among cancer patients
varies, e.g., recent study demonstrated higher risk
[80], though less recent studies resulted in lowed
risks of AD/ADRD [81] or in insignificant estimates
[32, 82]. Also, studies demonstrated the role of can-
cer treatment in the subsequent risk of AD/ADRD
[83–85].

Polygenic risk scores associated with specific path-
ways did not demonstrate strong effects in univariable
analyses and were not selected into the final model.
Most significant effect came from pathway associ-
ated with inflammation, represented by the Hallmark
Inflammatory Response set composed of 200 genes
and available from MSigDB [86] (Table 2, Supple-
mentary Table 1). Effect size of PRS for this pathway
was similar to that for the PRS made of all geno-
typed SNPs (minus APOE) in HRS data. We note
that AD-related SNPs in APOE region on chr 19 were
excluded from the definition of PRS. The final model
included the standard HRS PRS that was created with
the p-value threshold 0.01 and without any exclusion
of specific SNPs. Specific SNPs that demonstrated
effects in different studies were significant in uni-
variable analyses in our study; however, only SNP
rs769449 (proxy for APOE4) remained in the final
model. This means that APOE-related genetic effects
are detectable in our analyses in the multivariable
models for AD/ADRD risks. Other SNPs, detected
in different studies [35, 87], may work indirectly,
through their effects on different risk factors pre-
sented in the final multivariable model.

The effect of IADL was strongest among non-
disease predictors. The effect largely comes from
two components that are partly symptoms of ADRD:
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inability to manage money and use the telephone.
The effect of higher BMI as a continuous predictor
is protective in all models. Its effect is more signif-
icant than binarized effects of obesity (BMI≥ 30)
or underweight (BMI≤ 18). Physical activity had a
strong protective effect in univariable analysis but
was not selected in the final multivariable model
likely because of its correlation with other more spe-
cific factors representing the current health status
of an individual. Generally our results confirm the
effects identified by the 2020 Lancet Commission on
dementia prevention [11], though other strong predic-
tors were also identified. Thus, the effects of higher
income and higher number of education years are
protective; low income retained in the final model for
ADRD. The social isolation index and hearing/vision
issues were significant in univariable analyses but
not selected in the final model. With the exception
of rheumatic heart disease, the incorporation of lag
effects into the model generally decreases the effects.
Comparison for the effects in sex-specific subpopu-
lations show, that although women have higher AD
prevalence and suffer greater symptoms, there is
no consensus on whether this difference extends to
incidence and/or mortality once the effects of other
predictors have been controlled for [88–92]. The sig-
nificant effects of PM2.5 on AD/ADRD risk is in
agreement with findings of prior studies [93–95];
however, the fact that the effect remains significant
in multivariable setting is among new results of our
study.

Identification of predictors responsible for the
increase or decrease the risks of AD/ADRD allows
us to better understand the underlying mechanisms
of AD/ADRD development, and also help further
improve forecasting models of AD/ADRD-related
outcomes. Modern health forecasting of AD/ADRD
has been approached from a number of directions
ranging from simple prevalence projections based
on current prevalence trends and U.S. Census pop-
ulation forecasts [16, 96–100]; to projections based
on assumptions on future population dynamics of
AD/ADRD outcomes [101] and multistate model-
ing of healthy and unhealthy states [102, 103]. These
forecasts, however, do not involve broad information
on risk factor effects. The forecasted prevalence of
dementia attributable to risk factors were recently
assessed using methods involving methods of pop-
ulation attributable fractions [11, 104]. Models with
limited incorporation of morbidity patterns appeared
recently [105, 106] but further incorporation of highly
predictive factors into the model can essentially

decrease the overall uncertainty of the resulting pro-
jections and a reduction of the practical applicability
of the results.

We acknowledge several study limitations. The
HRS provides a sample representative of older U.S.
adults; however, its statistical power is still not suf-
ficient for the analysis of some ethnic subgroups
in a model involving rare outcomes/measures. Self-
reported data is relatively easy to collect, however
there are concerns about their accuracy [107, 108].
Administrative claims data does not share the above
limitations and has been validated for the study
of many diseases [109–112]. However, an insur-
ance claim is at best a proxy for the presence
of a disease though in most cases this is a valid
proxy a number of serious limitations exist. Dif-
ferences in the utilization of healthcare services as
well as race/ethnicity-specific coding patterns can
lead to variation in the frequency of ICD diagno-
sis between race/ethnicity-specific groups. However,
such data allows for more granular identification
of disease onset while surveys are limited by the
time periods inherent to their design (2 years in
the HRS).

Our study confirmed that AD/ADRD risk is
multifactorial in nature and that its variation is
tied to multiple demographic, socioeconomic, and
health-related risk factors. The size and detail of
data available for research grows yearly. In many
cases, this can lead to multiple measures of the
same underlying construct to be available. Conse-
quently, the identification of measures with relatively
higher predictive power, and minimization of errors
due to mutual correlation becomes an increasingly
important question. We identified and ranked the
association strengths of multiple possibly correlated
risk/protective factors from multiple domains. We
found that diagnosis-based disease indicators were
superior in terms of predictive power of AD/ADRD
risk than their self-reported counterparts. Depression
and arterial hypertension were the largest contrib-
utors to AD risk; comparable to the additional
risk associated with adverse APOE4 profiles. The
effect of PRS on AD was significant for genes
involved in the inflammatory pathway, which is in
line with current views on potentially major roles
of inflammation and infections in AD. Significant
SNPs in the APOE region included both risk and
protective factors, which warrants further inves-
tigation of the interactions between these SNPs,
which might offset the negative role of APOE4
in AD risk.
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Kivimäki M, Singh-Manoux A (2017) Physical activity,
cognitive decline, and risk of dementia: 28 year follow-up
of Whitehall II cohort study. BMJ 357, j2709.

[79] Bruns J Jr, Hauser WA (2003) The epidemiology of trau-
matic brain injury: A review. Epilepsia 44, 2-10.

[80] Roderburg C, Loosen SH, Kunstein A, Mohr R, Jördens
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