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Abstract. The Lipid Invasion Model (LIM) is a new hypothesis for Alzheimer’s disease (AD) which argues that AD is a result
of external lipid invasion to the brain, following damage to the blood-brain barrier (BBB). The LIM provides a comprehensive
explanation of the observed neuropathologies associated with the disease, including the lipid irregularities first described
by Alois Alzheimer himself, and accounts for the wide range of risk factors now identified with AD, all of which are also
associated with damage to the BBB. This article summarizes the main arguments of the LIM, and new evidence and arguments
in support of it. The LIM incorporates and extends the amyloid hypothesis, the current main explanation of the disease, but
argues that the greatest cause of late-onset AD is not amyloid-f3 (A) but bad cholesterol and free fatty acids, let into the brain
by a damaged BBB. It suggests that the focus on A is the reason why we have made so little progress in treating the disease
in the last 30 years. As well as offering new perspectives for further research into the diagnosis, prevention, and treatment
of AD, based on protecting and repairing the BBB, the LIM provides potential new insights into other neurodegenerative
diseases such as Parkinson’s disease and amyotrophic lateral sclerosis/motor neuron disease.
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Alzheimer’s disease is one of the greatest chal-
lenges facing humanity today. It is the most common
cause of dementia, accounting for around two-thirds
of cases [1], with a global prevalence of around
24,000,000 people [2], mostly in Western countries,
a figure that is growing as life expectancy continues
to rise around the world [3].

There are currently no treatments that will prevent
people getting the disease [4, 5], and current treat-
ments can only delay disease progression by several
months at best [6]. 99% of drug trials have failed
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[7], and many large pharmaceutical companies have
abandoned research into AD therapies [8].

Why have we made so little progress in treating
AD? Anincreasing number of researchers are arguing
thatitis because the current predominant explanation,
the amyloid hypothesis, does not fully account for the
disease [6, 9-11].

This paper argues that there is increasing evidence
that the Lipid Invasion Model is a viable alternative
hypothesis for AD.

THE AMYLOID HYPOTHESIS

The amyloid hypothesis says that AD is caused by
excessive levels of a protein fragment (or peptide)
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amyloid-3 in the brain [12]. These excessive levels
of AP cause the amyloid plaques and tau tangles,
synaptic damage, inflammatory response, and brain
shrinkage that characterize AD.

Certainly, in around 5% of cases of AD, genetic
mutations cause increased production of A3, leading
to the early-onset inherited form of the disease, FAD
[11-13]. However, in 95% of cases, so-called late-
onset AD (LOAD), the cause of excess AP levels is
not so clear [11].

Unlike in FAD, in many LOAD cases the brain does
not show increased production of A3 [14, 15]. This
has led some researchers to propose that the cause of
any excessive A3 levels, plaques, and other A3 aggre-
gates may be the result of abnormally low removal of
AP from the brain, rather than of A3 overproduction
[16-21]. At the same time, other researchers argue
that there would seem to be more than an adequate
number of alternative mechanisms for eradicating
excess cerebral AP from the brain [22-25].

As well as difficulties explaining the cause of
excess A3 in LOAD, there are also doubts about how
critical A is to LOAD progression.

AR is the key component of plaques, and according
to the amyloid hypothesis, plaques are a key indicator
of AD. However, some recent research has shown that
in many cases of LOAD, the brains have low levels
of plaques [26], and that often plaques are located
mainly in parts of the brain that are not associated with
the memory and other cognitive problems seen in AD
[15, 27]. Other research has shown that substantial
numbers of plaques can be found in healthy brains,
without displaying any signs of LOAD [15, 28]. So,
plaques do not lead to AD in all cases.

In summary, in LOAD, which accounts for 95% of
AD cases, it is not at all clear that A is the key to dis-
ease development or progression. Such doubts have
been reinforced by the re-evaluation in 2022 of some
of the original evidence for the amyloid hypothesis
[29].

The failure of the amyloid hypothesis to fully
account for LOAD, many researchers argue, is the
reason why, 30 years after the hypothesis first
emerged, there are no truly effective treatments, and
why the four most commonly used drugs for treating
AD have no link to the amyloid hypothesis [30-32],
three of them being derived from a previous theory,
the cholinergic hypothesis [33].

A number of alternative hypotheses have since
emerged, which attempt to provide a better expla-
nation for AD. One of these is the A3 oligomer
hypothesis, which argues that smaller, more soluble

AP aggregates, rather than amyloid plaques, are the
main source of AD neuropathology. However, this
only overcomes some of the shortcomings of the
original amyloid hypothesis [34]. Another is the tau
hypothesis [34, 35], which argues for a central role
for tau protein rather than A in the pathogenesis of
AD. Others have proposed that it is a form of lysoso-
mal storage disorder [36] or a novel form of diabetes
[37], or that AD is caused by autophagic dysregula-
tion [38], neuroimmunomodulation [39], or by excess
exposure to aluminum [40]. However, in contrast to
the LIM, none of these hypotheses provides a com-
prehensive account of the disease pathology and risk
factors.

A NEW HYPOTHESIS: THE LIPID
INVASION MODEL

The rest of this article summarizes the LIM, and
how it better accounts for all aspects of AD pathology
and all risk factors associated with it.

The LIM argues that AD is driven by external
lipids entering the brain, as a result of damage to
the blood-brain barrier. The BBB is a thick protec-
tive layer (Fig. 1) around the millions of tiny blood
capillaries throughout the human brain, which pre-
vents many substances from getting into the brain
tissue (or out of it) [16, 41-45]. There are occa-
sions when it temporarily becomes more permeable
to some previously-excluded substances, including
solutes, cytokines and lymphocytes, due to systemic
inflammation, but it restores to normal within hours
or days of inflammation terminating [46, 47].

Lipids are fatty substances found throughout the
body [49], and there is a different system for trans-
porting them in the brain to elsewhere in the body.
Lipids in the brain are exclusively transported by
lipoproteins [50, 51], whereas lipids in the rest of
the body can be transported either inside of lipopro-
teins or independently of them. An important role of
the BBB is that it separates these two different lipid
transport systems [52-55].

LIPOPROTEINS

Lipoproteins could be described as lipid transport
containers. As can be seen in Fig. 2, lipoproteins come
in different sizes, reflecting the volume of lipids they
contain [51].

Lipoproteins play a key role in heart disease [57].
The smallest lipoprotein, high-density lipoprotein
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Fig. 1. The Blood-brain barrier. The image on the left shows that brain capillaries have a protective layer and other structural arrangements
that form the blood-brain barrier, whereas the image on the right shows that peripheral capillaries lack this. Used with permission of Future
Science Ltd., from Mittapalli RK, Manda VK, Adkins CE, Geldenhuys WJ, Lockman PR (2010) Exploiting nutrient transporters at the
blood-brain barrier to improve brain distribution of small molecules. Ther Deliv 1, 775-784 [48]; permission conveyed through Copyright

Clearance Center, Inc.
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Fig. 2. Lipoprotein classes in the bloodstream. The classification
of the major types of lipoproteins is based on their densities. The
density range for each class is shown, in addition to the lipid (red)
and protein (blue) content. The diagram is not to scale. Image
source: [56]; licensed under CC BY 3.0, with modifications by
Jonathan Rudge.

(HDL), is commonly referred to as ‘good choles-
terol’, whereas the larger ones to the right of
the red line in this figure, are commonly referred
to as ‘bad cholesterol’. The cholesterol is neither
good nor bad in itself; it is the excess quantity
of cholesterol they contain that leads low-density
lipoprotein, intermediate-density lipoprotein, and
very-low-density lipoprotein to being termed ‘bad’
[58-60]. (Chylomicrons are not considered ‘bad
cholesterol’ because they do not contain much choles-
terol, despite their large size [61].)

Extensive studies have revealed that the brain only
generates HDL-sized lipoproteins (or ‘good choles-
terol’) [50, 62]. These studies include measurements
of lipoprotein distributions within the brain, including
in astrocytes and other glial cells, and in cerebrospinal
fluid, found mostly within the fluid-filled brain ven-
tricles, which receive brain waste) [63].

By contrast, the rest of the body also generates the
much larger lipoproteins (or ‘bad cholesterol’) [51].
Normally, these are prevented from entering the brain
tissue by the BBB [53, 64].

The LIM argues that when the BBB gets damaged,
itallows the larger lipoproteins (the ‘bad cholesterol’)
into the brain, with the result that brain cells get over-
loaded with the excess cholesterol within them.

This is critical because it is generally accepted
that excess cholesterol uptake by neurons is associ-
ated with AP formation, even if the exact mechanism
involved is still a matter of debate [65-74]. Choles-
terol in the brain is created by astrocytes and provided
to neighboring neurons, via small HDL-like lipopro-
teins. If these lipoproteins are artificially loaded with
excess cholesterol, neuronal AR levels rise [65]. A
2021 study [65] showed that cholesterol levels in neu-
rons are normally kept very low, and that this inhibits
AP accumulation (unless AP is being abnormally
overproduced because of genetic mutations, as seen
in FAD).

Collectively, the evidence strongly suggests that, if
the tight astrocyte control of neuronal cholesterol is
bypassed by entry of external lipoproteins (especially
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larger Apolipoprotein B-containing lipoproteins,
i.e.,” bad cholesterol") through damaged portions of
the BBB, it will result in overproduction and accu-
mulation of Af.

The AR created by the excess cholesterol will typ-
ically lead to the creation of plaques. The excess
cholesterol will also lead to tau hyperphosphoryla-
tion and tangle formation, either as a direct result of
excess cholesterol or as an indirect result of excess
AP [65, 75-79]. In addition, other evidence suggests
that cholesterol of astrocyte origin may contribute to
activation of microglia, probably tau-induced [79].

In other words, exposure of nerve cells to the higher
levels of cholesterol found within larger lipoproteins
that have entered the brain through a damaged BBB
can explain the presence of amyloid plaques and tau
tangles in LOAD, and may also explain the excess
stimulation of microglia and neuroinflammation in
LOAD [80].

FREE FATTY ACIDS

However, the LIM argues that cholesterol is not
the only external lipid driving AD—there is another
type of lipid, free fatty acids (FFAs), a form of fatty
acids (FAs), that may be a more important cause of
the memory and other cognitive effects seen in the
disease.

FAs can serve a number of functions in the body,
including as a source of energy, as ligands that acti-
vate certain cell receptors, and as components of
larger lipids (e.g., phospholipids) [81, 82]. FAs are
also transported differently inside and outside the
brain.

Inside the brain tissue, FAs are transported deep
within lipoproteins, and similar lipid-transport par-
ticles, mostly esterified (meaning, in this case,
cross-linked via a glycerol molecule) as triglycerides
and diglycerides (Fig. 3a) [51]. By contrast, outside
the brain tissue (primarily in the bloodstream), many
FAs are transported individually, outside of lipopro-
teins in non-esterified form, as FFAs. These are often
bound to the transporter protein serum albumin, as
shown in Fig. 3b [83-85].

This difference is critical. The LIM argues that,
when the BBB gets damaged, it lets in individual
FFAs, which proceed to over-activate certain recep-
tors in the brain. Most importantly these include the
Toll-like receptor 4 (TLR4), involved in inflamma-
tion [87], and the extrasynaptic GABA, receptor, a
primary receptor for y-aminobutyric acid, the major

inhibitory neurotransmitter in the brain and wider
central nervous system [88]. Respectively, these
cause much of the neuroinflammation and antero-
grade amnesia (AA) seen in AD.

The effect is, in fact, similar to what happens
when the brain is exposed to chronic alcohol. This
is because ethanol over-activates many of the same
brain receptors as FFAs, which is why it can be very
difficult to distinguish AD from dementia caused by
long-term alcoholism [89]. (The molecule ethanol is
known to decrease neuronal excitability when admin-
istered acutely, whilst causing hyperexcitability in
chronic intermittent form [90-93].) And, as in the
case of ethanol-induced dementia, AD driven primar-
ily by FFAs, rather than by cholesterol-rich external
lipoproteins, will be characterized by low levels of
amyloid plaques and tau tangles.

By extension, the LIM also argues that FFAs get-
ting into the brain may be what disrupts our body
clock in AD, as alcohol does [94-97], and that entry
of external FFAs into the brain will drive a local keto-
genic shift in brain energy production away from the
normal glucose/lactate bioenergetic dominance [98,
99], as well as causing mitochondrial toxicity and
oxidative stress within neurons. These are all charac-
teristics of AD [100-104].

That is not to say that brain exposure to peripheral
FFAs will be harmful in all respects. For instance, it
is unclear if an FFA-driven ketogenic shift in bioen-
ergetics would be wholly detrimental to the brain, as
there is some evidence that ketone bodies may have
neuroprotective properties in patients with mild to
moderate AD [105-107]. And, bioenergetics aside,
there is some evidence that unsaturated fatty acids,
including long-chain omega-3 FFAs, may have mild
neuroprotective properties in mild cognitive impair-
ment cases and in healthy older populations [108].

However, on balance, the evidence suggests that
direct large-scale exposure of brain cells to FFAs
(especially saturated FFAs) will be harmful to brain
cells and may help explain many AD-associated
symptoms. For instance, direct exposure of the
mitochondrial electron transport chain to FFAs is
associated with various forms of disruption, as
explained in page 139 of [109], with neuronal mito-
chondria likely to be at particular risk.

Exposure to high levels of certain saturated FFAs
has also been shown to activate microglia, the pri-
mary immune cell of the brain, whose overactivation
is known to account for much AD-associated neu-
roinflammation [80]. This is explained in page 139
of [109].
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Fig. 3. Fatty acid transport (a) inside the brain — inside HDL-sized lipoproteins, and (b) in the bloodstream outside of the brain. Image

source: (a) [86], licensed under CC BY-NC-ND 4.0.

Finally, FFAs have been shown to induce general
anesthesia in a range of animals [114-117], albeit
weakly. This is explained in page 141 of [109], and
suggests that exposure of the brain to FFAs will lead
to AA [88], providing an alternative explanation for
its early occurrence in AD. Collectively, it can be
seen how external FFAs, if able to pass continually
through a disrupted BBB, will cause growing damage
to the brain, adding to the damage caused by excess
cholesterol from larger external lipoproteins.

In conclusion, the LIM says that AD is primarily
driven by the invasion of external lipids into the brain,
following damage to the BBB. Entry of ‘bad choles-
terol’ causes increased A3 production, which, in turn,
results in the formation of plaques and (perhaps)
tangles, triggering subsequent neuroinflammation.
Additionally, the increased A3 may contribute some
further BBB damage (as explained below). Entry of
FFAs results also in neuroinflammation, as well as
anesthesia-related inhibition of neurogenesis, antero-
grade amnesia and body clock disruption, neuronal
mitochondrial toxicity, and changes in bioenerget-
ics. This explains the progressive loss of neurons and
other brain cells, and overall brain shrinkage.

As such, the LIM incorporates and greatly extends
the amyloid hypothesis, proposing ‘bad cholesterol’
as the primary cause of the A3, plaques and tau tan-
gles found in cases of LOAD, and identifying FFAs
as an additional, and perhaps even more important,
driver of the damage seen in the disease. Both these
external lipids enter the brain tissue due to damage to
the BBB. In assigning a lesser role to amyloid plaques
in disease progression, the LIM explains why some

cases of LOAD do not have many plaques, and why
plaques do not lead to AD in all cases.

EVIDENCE FOR THE LIM

There are three main lines of evidence that sup-
port the Lipid Invasion Model: first, the presence of
lipid anomalies in AD brains; second, evidence of
BBB damage in AD brains; and third the correlation
between the risk factors for AD and BBB damage.

First, there is abundant evidence of the presence
of lipid anomalies in the brains of AD patients [77,
118-120]. This goes back to the earliest descrip-
tions by Dr. Alois Alzheimer himself, which contain
almost as many references to lipid anomalies as to
plaques and tangles [119, 121]. Other early accounts
reported similar anomalies [119]. An illustration of
what he and his contemporaries were referring to can
be seen in the two images in Fig. 4. The brain cells
in the top row are normal; the brain cells with AD
in the bottom row contain excessive numbers of lipid
deposits, which show up in red.

Other evidence of lipid involvement in AD
includes the presence of high levels of cholesterol and
other lipids within amyloid plaques and in tau tangle-
containing neurons in AD brains [66, 123-125].
Research in the last three years has shown that hav-
ing the APOE4 variant of APOE (one of the most
important AD risk factors [21]) leads to faulty lipid
(especially cholesterol) handling and storage in brain
cells [126-128].

The second line of evidence for the LIM comes
from physical evidence of BBB damage inside



462 J.D. Rudge / The Lipid Invasion Model: Growing Evidence

CTRL-1 cTRL2|[ & CTRL-4| TN
+ % - (3 :‘-
AL oy
] 2
s+ %,
i b~
—— = -‘L_
N
L AD-3 AD-8
4

Fig. 4. Evidence of lipid anomalies in the AD brain: (Top row)
Only a few lipid droplets in ependymal cells lining the lateral ven-
tricles of healthy patient brains; (Lower row) Many more lipid
droplets in ependymal cells of AD patient brains. Panels at the
right show representative higher-magnification images. Reprinted
from Cell Stem Cell, 17(4), Hamilton LK, Dufresne M, Joppé SE,
Petryszyn S, Aumont A, Calon F, Barnabé-Heider F, Furtos A, Par-
ent M, Chaurand P, Fernandes KJL, Aberrant lipid metabolism in
the forebrain niche suppresses adult neural stem cell proliferation
in an animal model of Alzheimer’s disease, 397-411, Copyright
(2015), with permission from Elsevier.

the brains of AD patients. This evidence is taken
from postmortem brains, MRI and PET scans [16,
129-135]. Figure 5 shows an MRI scan of leak-
age through the BBB of biomarker gadobutrol in
the brain of a patient with a mild form of cogni-
tive impairment—early AD—compared with leakage
in a normal brain. The BBB leakage in the early
AD brain on the left is clearly substantially higher
than the leakage in the normal brain on the right
[136].

Interestingly, MRI scans of more advanced AD
brains often show that the BBB has been dam-
aged close to the location of plaques and tangles
[137-139].

Other studies of AD patients [16, 130-132,
140-145] have detected the presence of proteins in
the bloodstream that are normally found only in the
brain tissue, and vice versa. These include the blood
transport proteins Apolipoprotein B and serum albu-
min. Apolipoprotein B is normally found only in
the larger lipoproteins (the ‘bad cholesterol’) in the
external blood stream. Serum albumin is the primary
transporter of FFAs, again a form of transport only
found in the external bloodstream [83, 84]. Both these
proteins should be stopped from entering the brain
tissue by the BBB.

The third line of evidence supporting the LIM,
shown in Table 1, is that all of the risk factors for

a) Early AD brain

b) Normal brain

Fig. 5. Evidence of BBB damage in the AD brain: (a) extensive
leakage of gadobutrol (an MRI contrasting agent) through a dam-
aged BBB in brains of patients with early signs of AD; (b) less
extensive leakage of the agent in brains of normal patients. Used
with permission of The Radiological Society of North America,
from van de Haar HJ, Burgmans S, Jansen JFA, van Osch MJP,
van Buchem MA, Muller M, Hofman PAM, Verhey FRJ, Backes
WH, Blood-brain barrier leakage in patients with early Alzheimer
disease, Radiology (2016) 281, 527-535.

Table 1
Risk factors for Alzheimer’s disease are also risk factors for blood-
brain barrier (BBB) damage

Risk Factor Alzheimer’s disease BBB Damage
Aging v v
Brain trauma v v
Hypertension v v
Stress v v
Sleep deprivation v v
Smoking v v
Excess alcohol v v
Obesity v v
Diabetes v N
APOE4 v v
Amyloid-33 v v

AD are also risk factors for damage to the BBB. The
risk factors include aging, brain trauma, high blood
pressure, stress, sleep deprivation, smoking, excess
alcohol, obesity, diabetes, having the APOE4 geno-
type, and AP [146-157].

In LOAD (95% of AD cases), BBB damage can
be caused by all the factors listed, but the primary
cause is the wear and tear of aging, which is how the
LIM explains why AD so disproportionately affects
older people, and why the number of people affected
by the disease is growing as life expectancy increases
globally.

Brain trauma is also a key risk factor for BBB
damage, which, the LIM argues, is why increasing
numbers of contact sports players are showing signs
of AD and similar dementias such as chronic trau-
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matic encephalopathy, often at an even earlier age
than FAD [158-160].

As can be seen, A3 is also one of the risk fac-
tors for BBB damage. AR can damage the BBB in
many ways, including: redistributing and reducing
tight junction protein expression; causing the loss
of pericytes, a key BBB component cell; increasing
matrix metalloproteinase expression, leading to ero-
sion of the BBB basement membrane; and promoting
uncontrolled angiogenesis [41, 161-165].

In FAD AD is caused primarily by the overproduc-
tion of AR due to genetic mutations, as established by
the amyloid hypothesis. However, the overproduction
of AP also damages the BBB.

The fact that in FAD excess AP is presumably
being produced from birth, and yet disease onset
is typically seen only in people over 50, suggests
that AB is only slowly damaging to the BBB, per-
haps because most AP is locked up in plaques or
other aggregates, or cleared from the brain. This may
explain why attacking A3 does not have a big impact
on halting disease progression.

In summary, the LIM argues that BBB damage is
the primary cause of AD overall, as shown in Table 2.

The fact that most new drug trials have been tar-
geted at AP, which, according to the LIM, is not a
key driver of AD progression in 95% of cases (i.e.
LOAD), could be the reason why 99% of such trials
have failed, and why the most successful amyloid-
related drug, lecanemab (approved for medical use
in January 2023), shows only modest benefits, even
when administered at the earliest stages of AD [166].

IMPLICATIONS OF THE LIM FOR AD
RESEARCH

The Lipid Invasion Model has been developed
from piecing together the results of hundreds of
research reports on AD published over the last 40
years. There are elements that need to be tested
with empirical evidence. For example, further stud-
ies are needed to confirm reports of the presence
of Apolipoprotein B and excess cholesterol in close
proximity to amyloid plaques and to sites of BBB dis-
ruption, and to establish the underlying mechanism
linking them [65, 123, 124, 143, 145, 167]. Also, to
rule out the possibility that proximity of BBB damage
to elevated AR and plaque levels may be the result
of reduced AP drainage, rather than of excess AP
production. The University of Reading in the UK is
researching this.

However, if the model is correct, it means that if
we want to make progress in treating AD, we should
reduce our research focus on A3 and pay more atten-
tion to the BBB.

The first step is enabling identification of BBB
damage using scanning and leakage markers, such
as gadobutrol. This can be a good predictor of having
AD, when memory problems are only just beginning
to emerge, as was shown in Fig. 5.

Thereafter, research is needed to find measures to
protect the BBB, and treatments to repair any dam-
age that has already occurred. This will not be easy,
given the complexity of the BBB and our limited
understanding of it.

Increasing evidence suggests that encouraging
lifestyle changes can help prevent BBB damage, since
many of the risk factors for BBB damage and AD
are also lifestyle factors (as shown in Table 1) [149,
168-171].

This is reinforced by the findings from one of
the largest longitudinal studies ever within the field
of dementia (29,072 adults studied over 10 years),
published in January 2023 [172]. This shows that
adoption of certain lifestyle factors (a healthy diet,
taking regular physical exercise, not drinking alcohol
and not smoking, as well as active cognitive activity
and social contact) can significantly slow cognitive
decline with age, both in the presence and absence of
APOEA4.

Other recent studies have suggested that certain
foods and dietary supplements can protect the BBB,
and even repair it [173-184]. And there has been
growing interest in how a healthy, more varied diet
can promote a healthy gut microbiome, which has
been shown to protect and maintain the BBB [180,
185-187]. This may help to explain why the longitu-
dinal study into cognitive decline mentioned above
[172] identified diet as the most important of the
lifestyle factors under study for slowing memory
decline with age.

POSSIBLE WIDER IMPLICATIONS OF
THE LIM

The current version of the LIM is focused on AD.
However, the model may have wider implications.
The LIM suggests that external lipid invasion through
a damaged BBB may well explain many cases of
Parkinson’s disease and ALS/motor neuron disease.
As in AD, affected brains in both diseases show lipid
anomalies [188—191], and, as is reported so often in
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Table 2

Causes of AD according to the LIM

Type of AD AD driver Immediate Subsequent Final biological
biological biological impact
impact impact

FAD LOAD
— 5% of cases —95% of cases
v Genes (ABPP - Increased AR - Endosomal- - Synaptic and
-associated) lysosomal neuronal death
v v Invasion of ‘Bad disorder - Long-term
cholesterol’ - - Amyloid memory loss
LDL, IDL, plaques - Brain
VLDL, - Tau tangles shrinkage and
following BBB - Neuroinflam- enlarged
damage mation ventricles
- Some modest - Death
AB-mediated
BBB disruption
v v Invasion of - Stimulation of - Neuroinflam-
FFAs, following brain receptors mation -
BBB damage (e.g., TLR4, Inhibition of
extrasynaptic neurogenesis -
GABA,) - Anterograde

Ketogenic shift
in brain
bioenergetics

- Neuronal
mitochondrial
toxicity

amnesia - Body
clock disruption
- Oxidative
stress

AD, Alzheimer’s disease; FAD, familial AD; LOAD, late-onset AD; LDL, low-density lipoprotein; IDL, intermediate-density lipoprotein;

VLDL, very-low-density lipoprotein; BBB, blood-brain barrier.

the press, participants in sports in which head trauma
is a frequent event, such as boxing, football and
rugby, have a higher risk of getting both these neu-
rodegenerative diseases [158, 192-194], as well as
AD and similar dementias such as chronic traumatic
encephalopathy [158, 159].

CONCLUSION

The LIM provides a new and comprehensive
explanation of the neuropathologies and risk factors
associated with AD, and offers new insights for future
research into the disease, focusing on protecting and
repairing the BBB rather than attacking A(.
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