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Abstract.
Background: Dementia, mainly Alzheimer’s disease (AD) and vascular dementia (VaD), remains a global health challenge.
Previous studies have demonstrated the benefits of acupuncture therapy (AT) in improving dementia. Nevertheless, the
therapeutic targets and integrated biological mechanisms involved remain ambiguous.
Objective: To identify therapeutic targets and biological mechanisms of AT in treating dementia by integrated analysis
strategy.
Methods: By the identification of differentially expressed genes (DEGs) of AD, VaD, and molecular targets of AT active
components, the acupuncture therapeutic targets associated with the biological response to AD and VaD were extracted.
Therapeutic targets-based functional enrichment analysis was conducted, and multiple networks were constructed. AT-
therapeutic crucial targets were captured by weighted gene co-expression network analysis (WGCNA). The interactions
between crucial targets with AT active components were verified by molecular docking.
Results: Our results demonstrated that 132 and 76 acupuncture therapeutic targets were associated with AD and VaD. AT-
therapeutic crucial targets including 58 for AD and 24 for VaD were captured by WGCNA, with 11 in shared, including
NMU, GRP, TAC1, ADRA1D, and SST. In addition, 35 and 14 signaling pathways were significantly enriched by functional
enrichment analysis, with 6 mutual pathways including neuroactive ligand-receptor interaction, GABAergic synapse, calcium
signaling pathway, cAMP signaling pathway, chemokine signaling pathway, and inflammatory mediator regulation of TRP
channels.
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Conclusion: The improvement of AD and VaD by AT was associated with modulation of synaptic function, immunity,
inflammation, and apoptosis. Our study clarified the therapeutic targets of AT on dementia, providing valuable clues for
complementing and combining pharmacotherapy.

Keywords: Acupuncture, Alzheimer’s disease, dementia, vascular dementia

INTRODUCTION

Dementia is a neurocognitive disorder with diffi-
culties in memory, language, and behavior resulting
in impairment of daily activities [1]. As the popu-
lation growth and aging trend, the global dementia
population is estimated to surge from 57.4 mil-
lion cases in 2019 to 152.8 million by 2050,
posing a staggering public health challenge [2].
Alzheimer’s disease (AD) and vascular dementia
(VaD) are the predominant subtypes of dementia,
which can co-occur as mixed dementia with overlap-
ping risk factors and pathological basis [1]. Despite
the indistinction between AD and VaD over clin-
ical symptoms, the pathological characteristics of
AD are commonly accompanied by neuritic plaques
containing amyloid-� (A�) and neurofibrillary tan-
gles containing phosphorylated tau, while VaD is
marked by chronic infarcts, multiple microinfarcts,
or large infarcts [1, 3]. Extracellular deposition
of A� and intracellular accumulation of hyper-
phosphorylated tau protein are common triggers
of subsequent neurodegeneration in AD including
synaptic dysfunction, increased neuronal vulnera-
bility, and progressive neuronal loss that accelerate
neuroinflammation leading to the production and
release of immune mediators, resulting in disruption
of synaptic plasticity [1, 4]. The vascular alter-
ations induced by hypoperfusion, oxidative stress,
and inflammation are precursors to the onset of VaD,
and synaptic plasticity would be diminished in VaD
patients by underlying vascular adverse events arising
from a pathological basis that includes endothe-
lial damage, blood-brain barrier breakdown, innate
immune activation, and disruption of the trophic
coupling between blood vessels and brain cells [1,
4, 5]. Additionally, vascular dysfunction, which is
intimately associated with VaD, is also potentially
involved in the onset of early AD and exacerbates
neurodegeneration [5]. Thus, the complex and per-
sistent pathological process of dementia generates a
vicious cycle that gradually exacerbates tissue dam-
age and consequently triggers a series of cognitive
dysfunctions.

Although mainstream pharmacological interven-
tions including acetylcholinesterase inhibitors and
N-Methyl-D-Aspartic acid (NMDA) receptor antag-
onist have been administered for the management
of dementia symptoms, and anti-inflammatory treat-
ments for neuroinflammation have shown potential
benefit [4, 6, 7], considering the moderate efficacy,
the range of potentially long-term adverse effects,
and specific therapeutic medications that remain
to be investigated, non-pharmaceutical interventions
(NPIs) are also introduced into the palliative and pre-
ventive management of dementia, not only to assist
pharmacotherapy, but also to reduce the underlying
side effects of pharmacological strategy, thus promot-
ing the health of dementia patients in a comprehensive
manner [3, 8].

Acupuncture therapy (AT) is one of the widely
used traditional medicine therapies in East Asia for
more than 2,000 years [9], and the 2019 World
Health Organization Global Report indicated that
AT is currently the most common form of prac-
tice among diverse traditional and complementary
medicines, as reported by 113 Member States [10,
11]. Manual acupuncture (MA) and electroacupunc-
ture (EA) are the main types of AT. In MA, with
needles inserted directly into acupoints through the
skin, intense mechanical stimulation is triggered by
manipulation; in EA, needles are electrified to gen-
erate dual mechanical and electrical stimulation to
acupoints, and the therapeutic effects of acupuncture
are exerted with adjustments of parameters including
acupoint selection, stimulation method, and stimu-
lation intensity [12, 13]. From 2010 to 2020, 133
guidelines worldwide included 433 AT recommen-
dations, and statistics demonstrated that neurological
disorders were among the most frequently recom-
mended areas for AT application [14, 15]. Evidence
maps and overview of systematic reviews indicated
that the therapeutic scope of AT covers 77 diseases
and conditions under 12 areas, and in particular, AT
has moderate efficacy and certainty evidence for the
improvement on the severity of dementia symptoms
by VaD [11, 16]. Three retrospective cohort stud-
ies suggested that integrated measures coupled with
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AT were beneficial in reducing long-term dementia
risk in patients, whether after traumatic brain injury
or stroke, in comparison to conventional treatment
[17–19]. Assessment of randomized controlled tri-
als (RCTs) concerning efficacy and safety indicated
that AT positively improves the cognitive function
of dementia patients and demonstrated considerable
therapeutic effects in combination with conventional
medications compared to pharmacological interven-
tions alone, which not only possessed substantial
safety but also contributed additionally to overall
health [20–22].

Current research evidence demonstrated that AT
has diverse functions in modulation of synaptic plas-
ticity, immunomodulation, anti-inflammation, and
anti-apoptosis in response to a series of associated
active components including acetylcholine (ACh),
noradrenaline (NA), dopamine (DA), serotonin
(5-hydroxytryptamine, 5-HT), gamma-aminobutyric
acid (GABA), brain-derived neurotrophic factor
(BDNF), and glial cell-derived neurotrophic factor
(GDNF), thus exerting neuroprotective and cogni-
tive regulatory effects [23–33]. However, the shared
and mutually independent therapeutic molecular tar-
gets and the integrated biological mechanisms of AT
on AD and VaD remain ambiguous. Therefore, by
conducting an integrated analysis, we aimed to 1)
systematically identify the shared and mutually inde-
pendent therapeutic targets and crucial targets of AT
in treating AD and VaD, 2) investigate the shared and
mutually independent integrated biological mecha-
nisms of AT on AD and VaD, and 3) explore target
interactions and construct networks of AT on AD and
VaD, in an effort to contribute to subsequent ongo-
ing studies and to provide informative support for the
future inclusion of AT into NPI management strate-
gies for dementia (Fig. 1).

MATERIALS AND METHODS

Datasets search strategy

Datasets relevant to AD and VaD were retrieved
from Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/). The inclusion
criteria were defined as 1) the dataset needed to con-
tain both AD, VaD, and matched controls to prevent
batch differences, 2) the total sample size of controls
combined with either AD or VaD was not less than 15,
and 3) the organism of the dataset was Homo sapiens.
The exclusion criteria were defined as 1) the dataset
contained only matched controls with either AD or

VaD, 2) the total sample size of controls combined
with AD or VaD was less than 15, 3) the data were
derived from non-Homo sapiens, 4) the information
was incomplete, and 5) the subject had underlying
health conditions or was intervened by any measures.

Data preprocessing

Background correction and normalization of the
raw data files from the dataset were conducted
with methods of normal–exponential convolution and
quantile by “limma” R-package. Data quality evalu-
ation was implemented using “arrayQualityMetrics”
package, and probe sequence re-annotation was fur-
ther conducted. After constructing matching index
according to the obtained transcripts file Gencode
v34, probe sequence file of the dataset was matched
to the transcripts for binary alignment (BAM) file
with “Rsubread” package, thus extracting informa-
tion from the BAM file and obtaining matching data
with “Rsamtools” package. Finally, normalized and
re-annotated gene expression matrix was generated
from the included dataset.

Identification of acupuncture therapeutic targets
associated with AD and VaD

Dataset GSE122063 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc = GSE122063) contained
gene expression profiles by microarray of frontal
cortex obtained from individuals who died with
AD (n = 12), VaD (n = 8), and age-matched controls
(n = 11) with intact cognitive function was included.
No infarcts in the AD samples and no or very min-
imal evidence of any typical pathology of AD in
VaD cases, thus excluding mixed dementia among
the included samples [34]. Analysis of differentially
expressed genes (DEGs) was performed on the pre-
processed gene expression matrix with empirical
Bayes moderated t-tests by “limma” package. The
DEGs of AD and VaD were filtered by p-value < 0.05
and | log2 (fold change) |> 1. The “ggplot2” package
was applied to reveal either upregulated or downreg-
ulated DEGs of AD and VaD by volcano plots.

Previous evidence supported the significance
of the active components, mainly ACh, NA, DA,
5-HT, GABA, BDNF, and GDNF, in the pathology
of dementia, being able to effectively respond to
AT stimulation that could generate underlying
biological effects through their downstream net-
works of molecular targets [23–33]. Therefore, the
molecular targets of AT active components were

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?accprotect kern +.1667emelax =protect kern +.1667emelax GSE122063
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?accprotect kern +.1667emelax =protect kern +.1667emelax GSE122063


S144
D

.L
ietal./A

cupuncture
T

herapy
on

D
em

entia

Fig. 1. Workflow of this study. This figure demonstrates the process of identification of acupuncture therapeutic targets and multiple molecular mechanisms in treating dementia.
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extracted with Canonical SMILES (Simplified
Molecular Input Line Entry System) from Pub-
Chem database (https://pubchem.ncbi.nlm.nih.gov/)
through Similarity Ensemble Approach (SEA)
[35] (https://sea.bkslab.org), STITCH5.0 [36]
(http://stitch.embl.de), and SwissTargetPredic-
tion [37] (http://www.swisstargetprediction.ch)
databases. Finally, acupuncture therapeutic targets
associated with the biological response to AD and
VaD, referred to as ACAgenes and ACVgenes, were
identified by extracting the overlap of molecular
targets of AT active components and the DEGs of
AD or VaD.

Functional enrichment analysis

Functional enrichment analysis of the ACAgenes
or ACVgenes was conducted by “clusterProfiler”
[38] and “org.Hs.eg.db” packages. The biological
process (BP), cellular component (CC), and molec-
ular function (MF) terms of Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes
(KEGG) were obtained and ranked under a p-adjust
(Benjamini-Hochberg) value < 0.05. The visualiza-
tion of the functional enrichment analysis results was
performed with “clusterProfiler”, “enrichplot”, and
“GOplot” [39] packages. Top 30 BP and KEGG terms
of AT on AD and VaD were systematically exhibited
as cluster tree plots, and the p-adjust values of the
corresponding terms and the quantity of contained
genes were marked with color gradient and size scale
of nodes. The interaction among KEGG terms was
presented as enrichment map plots. The interaction
between the more concerning top 10 enriched terms
of BP and KEGG with the corresponding targets were
revealed by chord plots.

Construction of visual networks

The Metascape [40] (https://metascape.org/)
database was applied to evaluate the interaction and
clustering of the ACAgenes or ACVgenes. After
the classification and integration of the results,
the protein-protein interaction (PPI) network was
constructed with “ggraph” and “igraph” packages
in accordance with the degree value, which defines
the number of connections between a single node
to other nodes, representing the interactive intensity
among the nodes in the PPI network. The MCODE
module of Cytoscape 3.8.2 (https://cytoscape.org)
was utilized to perform the analysis and construct
clustering sub-networks. Further, the global net-

work and acupuncture-component-target-pathway
integrative network were constructed by the catego-
rization and integration of associated information.
Finally, the mutual targets from ACAgenes and
ACVgenes were displayed in Sankey diagram with
“networkD3” package, and the mutual KEGG terms
were presented in Venn diagram.

Weighted gene co-expression network analysis

Weighted gene co-expression network analysis of
microarray data of AD, VaD, and non-demented sub-
jects was performed with “WGCNA” [41] package.
The genes with a top 10,000 median absolute devia-
tion were preliminarily filtered, and outlier samples
were removed.

The co-expression similarity sij was defined by cal-
culating the Pearson’s correlation coefficient between
the expression vector xi and xj from gene i and gene
j:

Sij = ∣
∣cor

(
xi, xj

)∣∣ (1)

Further, the adjacency matrix aij was calculated in
the following method:

aij = sij
β (2)

The value of the adjacency matrix aij represent-
ing the strength of network connectivity of gene i
and gene j was derived by selecting a reasonable
soft-thresholding power (�) to ensure a scale-free
topology.

Subsequently, the modules were identified by hier-
archical clustering of the weighting coefficient matrix
to convert the adjacency matrix into a topological
overlap matrix (TOM), which represents the overlap
in shared adjacent genes:

TOMi,j =
∑N

K=1 Ai,kAk,j + Ai,j

min
(
Ki, Kj

) + 1 − Ai,j

(3)

The average linkage hierarchical clustering was
conducted according to the TOM-based dissimilar-
ity measure with a minimum gene dendrogram size
of 30, and genes with similar expression profiles
were grouped into identical gene modules using
DynamicTreeCut algorithm. To further diminish the
complexity of the network, modules with similarity
above 0.75 were merged.

Finally, based on the association of each mod-
ule with traits (AD or VaD), modules of significant
correlations (p < 0.05) were extracted, genes in the
modules were filtered (q-weighted < 0.05). The over-

https://pubchem.ncbi.nlm.nih.gov/
https://sea.bkslab.org
http://stitch.embl.de
http://www.swisstargetprediction.ch
https://metascape.org/
https://cytoscape.org
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lap of targets from the PPI network (degree value
more or equal to the first quartile) and filtered genes
from weighted gene co-expression network analysis
(WGCNA) were captured, defined as crucial targets
of AT on AD or VaD. Spearman’s correlation analy-
ses with 95% confidence interval of gene expression
among crucial targets of AT on AD or VaD with the
top 15 values of degree were conducted.

Validation of crucial targets

External datasets from the GEO database were
applied as validation datasets, thus checking the
robustness of the screened crucial targets. Limited by
the current lack of external VaD-related datasets in the
GEO database, we evaluated only the crucial targets
of AT on AD. In the validation dataset GSE150696
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?ac
c = GSE150696), the genes involved in AD were
identified from gene expression profiles by microar-
ray obtained from individuals who died with AD
(n = 9) and elderly controls (n = 9) without neuro-
logical or psychiatric diseases [42]. The validation
dataset was processed by the “limma” package,
the significant DEGs of AD compared to controls
at a p-value < 0.05 was identified. The DEGs that
were either upregulated or downregulated in the
validation dataset were revealed as volcano plot by
the “ggplot2” package. The crucial targets that were
also notably regulated in the validation dataset were
examined by controlling for | log2 (fold change) | > 1.

Molecular docking

Molecular docking was conducted to exam-
ine the interaction between AT active components
and the corresponding mutual crucial targets
of AT on AD and VaD. The crucial tar-
gets were screened with UniProt [43] database
(https://www.uniprot.org) to enroll targets that
have original ligand with Homo sapiens for the
organism and with resolution ≤ 2.80Å by X-ray
method, excluding ineligible targets. Molecular
docking was conducted by AutoDockTools 1.5.6
(https://ccsb.scripps.edu/mgltools/), the support tool
for AutoDock Vina (https://vina.scripps.edu/) [44].
The active cavity box parameter was identified by
redocking the eligible crucial targets with their
original ligands, followed by calculating the root
mean square deviation (RMSD) of the original
ligands before and after redocking with PyMOL
2.4.0 (https://github.com/schrodinger/pymol-open-

source). Targets with RMSD ≤ 2.000 were included
to evaluate the reliability of the docking sites.
Then targets with RMSD > 2.000 or affinity ≥ 0 after
redocking were further excluded. Subsequently, the
3D structures of AT active components accessed from
PubChem database were converted into mol2 format
files for molecular docking with the corresponding
mutual crucial targets of AT on AD and VaD. Fol-
lowing hydrogenation and gasteiger charge process,
the identified active cavity box parameter was config-
ured, modes were assigned to 10 and exhaustiveness
was set to 8 to obtain the molecular docking results.
Finally, PyMOL 2.4.0 was applied to calculate the
RMSD of the active components before and after
docking with the crucial targets, RMSD ≤ 2.000 was
the standard to evaluate the reliability of the docking
results, and the visualization was performed.

Least absolute shrinkage and selection operator
(LASSO) regression

LASSO regression was performed with “glmnet”
[45] package to generate a series of penalty param-
eters lambda for the logistic model fitted by the
crucial targets based on the binomial distribution
traits. By conducting ten-fold cross-validation, the
optimal lambda corresponding to the minimum mean
of binomial deviance values was detected, thus iden-
tifying the core targets among the crucial targets that
were more strongly associated with AD or VaD and
of greater interest, whose regression coefficients that
were not penalized to zero under the assurance of the
optimal lambda.

RESULTS

Identification of acupuncture therapeutic targets
associated with AD and VaD

By differential gene expression analysis, we iden-
tified 1,906 and 1,692 DEGs for AD and VaD,
respectively. In comparison to controls, 805 of the
DEGs for AD were upregulated and 1,101 were
downregulated (Fig. 2A, Supplementary Table 1),
while 844 of the DEGs for VaD were upregulated and
848 were downregulated (Fig. 2B, Supplementary
Table 1).

Further, a total of 1,048 molecular targets of AT
active components were collected from databases of
SEA, STITCH5.0, and SwissTargetPrediction (Sup-
plementary Table 2).

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?accprotect kern +.1667emelax =protect kern +.1667emelax GSE150696
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?accprotect kern +.1667emelax =protect kern +.1667emelax GSE150696
https://www.uniprot.org
https://ccsb.scripps.edu/mgltools/
https://vina.scripps.edu/
https://github.com/schrodinger/pymol-open-source
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Fig. 2. Identification of acupuncture therapeutic targets of Alzheimer’s disease (AD) and vascular dementia (VaD). A) Volcano plot that
shows the differentially expressed genes (DEGs) between non-demented control group and AD group. B) Volcano plot that shows the DEGs
between non-demented control group and VaD group. C) Venn diagram depicts the 132 overlapped acupuncture therapeutic targets on AD
(ACAgenes) between the 1,906 DEGs and the 1,048 molecular targets of acupuncture therapy (AT) active components. D) Venn diagram
depicts the 76 overlapped acupuncture therapeutic targets on VaD (ACVgenes) between the 1,692 DEGs and the 1,048 molecular targets of
AT active components. E) Heatmap of the 76 ACVgenes in 19 samples. “VaD” group stands for vascular dementia, “Control” group stands
for non-demented controls. F) Heatmap of the 132 ACAgenes in 23 samples. “AD” group stands for Alzheimer’s disease, “Control” group
stands for non-demented controls.

When the DEGs of AD and VaD were compared
against the molecular targets of AT active com-
ponents, 132 ACAgenes and 76 ACVgenes were
retained respectively, which were acupuncture thera-
peutic targets associated with the biological response
to AD and VaD (Fig. 2C-F, Supplementary Table 3).

Functional enrichment analysis of acupuncture
therapeutic targets associated with AD and VaD

A total of 905 GO terms (Supplementary Table 4)
including 749 BPs, 79 CCs, and 77 MFs were
enriched and 35 KEGG terms (Supplementary
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Table 4) were identified from the 132 ACAgenes,
and a total of 585 GO terms (Supplementary Table 4)
including 530 BPs, 8 CCs, and 47 MFs were enriched
and 14 KEGG terms (Supplementary Table 4) were
identified from the 76 ACVgenes. The cluster tree
plots systematically demonstrated the top 30 BP and
KEGG terms (total 14 KEGG terms for VaD) of AT on
AD and VaD (Fig. 3A, B, F, G). The complex interac-
tions among KEGG terms were shown as enrichment
map plots (Fig. 3C, H).

Then, we focused on the more concerning top 10
terms of BP and KEGG with their corresponding
targets, as revealed in chord plots (Fig. 3D, E, I,
J). For AT treating AD, ACAgenes including NMU,
TAC1, CRH, ADCYAP1, and EGFR were involved
in many crucial biological processes simultaneously,
such as cognition, learning or memory, adenylate
cyclase-modulating G protein-coupled receptor sig-
naling pathway, modulation of chemical synaptic
transmission, and regulation of trans-synaptic signal-
ing (Fig. 3D); for AT treating VaD, cellular calcium
ion homeostasis, calcium ion homeostasis, cellu-
lar divalent inorganic cation homeostasis, positive
regulation of cytosolic calcium ion concentration,
and regulation of cytosolic calcium ion concentra-
tion covered most targets, such as ACVgenes of
TBXA2R, OXTR, F2R, ADRA1D, and ADCYAP1
(Fig. 3I).

Among the top 10 terms in the results of KEGG
analysis, we found that ACAgenes such as GABRB3,
ADCY2, GNG2, GABRD, and KCNJ6 participated
in multiple pathways including retrograde endo-
cannabinoid signaling, cholinergic synapse, and
glutamatergic synapse (Fig. 3E), while ACVgenes
such as ADCY7, PLCB1, ENDRA, PTGER2, and
EDN2 were involved in diverse pathways including
renin secretion, vascular smooth muscle contraction,
and chemokine signaling pathway (Fig. 3J). A total
of 4 significant terms, neuroactive ligand-receptor
interaction, GABAergic synapse, calcium signaling
pathway, and cAMP signaling pathway, are shared
mainly.

Construction of visual networks based on
acupuncture therapeutic targets associated with
AD and VaD

The interactions among the differentially
expressed 132 ACAgenes and 76 ACVgenes were
revealed in the PPI network (Fig. 4A, B). With the
successive increment of degree values, both the size
of nodes enlarges and the density of edges enhances
correspondingly, which leads to gradual enhance-
ment of the interaction intensity on targets. As shown
by the degree value ranking of 118 out of 132 ACA-
genes, GNG2 (57.00) possessed the maximal degree
value, followed by GNG3 (54.00), NMU (46.00),
MCHR2 (44.00), and MCHR1 (44.00), respectively
(Supplementary Table 5). Moreover, clustering was
examined and 5 clustering sub-networks dominated
by hub genes in the PPI network were identified
(Fig. 4A), including APLNR, CRH, GABRA1, GAD1,
and PAK1. Among the 66 out of 76 ACVgenes,
GNG4 (38.00) possessed the maximal degree value,
followed by MCHR2 (30.00), NMU (30.00), NMUR1
(30.00), and ADCY7 (24.00), respectively (Supple-
mentary Table 5), and 5 hub genes were also further
identified (Fig. 4B), including ADRA1D, GLP1R,
IGF1, CRP, and GAD1. Subsequently, the global
networks of AT on AD and VaD were constructed
to systematically display the associations of the AT
active components, ACAgenes or ACVgenes, and
KEGG pathways related to each target (Fig. 4C,
D). And the acupuncture-component-target-pathway
integrative networks were constructed to integrate
and summarize the information from the global
networks (Supplementary Figure 1A, B). Finally, the
32 mutual targets from ACAgenes and ACVgenes
were displayed in the Sankey diagram (Fig. 4E), such
as TBXA2R, TACR3, PLCB1, GRP, and ADRA1D,
and the 6 KEGG terms sharing of AT on AD and
VaD were presented in Venn diagram (Fig. 4F),
including neuroactive ligand-receptor interaction,
GABAergic synapse, calcium signaling pathway,
cAMP signaling pathway, chemokine signaling

Fig. 3. Functional enrichment analysis of acupuncture therapeutic targets associated with Alzheimer’s disease (AD) and vascular dementia
(VaD). A) Tree plot of top 30 biological process (BP) terms of acupuncture therapy (AT) on AD (p-adjust< 0.05). B) Tree plot of top 30
Kyoto Encyclopedia of Genes and Genomes (KEGG) terms of AT on AD (p-adjust< 0.05). C) Enrichment map plot of top 30 KEGG terms
of AT on AD (p-adjust< 0.05). D) Chord plot of top 10 BP terms of AT on AD (p-adjust< 0.05). E) Chord plot of top 10 KEGG terms of
AT on AD (p-adjust < 0.05). F) Tree plot of top 30 BP terms of AT on VaD (p-adjust < 0.05). G) Tree plot of all KEGG terms of AT on VaD
(p-adjust < 0.05). H) Enrichment map plot of all KEGG terms of AT on VaD (p-adjust < 0.05). I) Chord plot of top 10 BP terms of AT on
VaD (p-adjust < 0.05). J) Chord plot of top 10 KEGG terms of AT on VaD (p-adjust < 0.05).
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Fig. 3. (Continued)
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pathway, and inflammatory mediator regulation of
TRP channels.

Screening of crucial targets by performance of
weighted gene co-expression network analysis

WGCNA was conducted to further screen out cru-
cial targets for AT on AD and VaD. The genes with the
top 10,000 median absolute deviations were filtered,
followed by the removal of 0 and 2 outlier samples for
the analysis of AD or VaD with controls respectively.
Finally, 23 and 17 clustered samples were extracted
to construct the respective matrices of AD or VaD
with controls (Fig. 5A, B).

Subsequently, each adjacency matrix aij was calcu-
lated from the soft-thresholding power (�) (for AD, �
= 4, scale free R2 = 0.925, slope = –1.610; for VaD, �
= 5, scale free R2 = 0.914, slope = -2.500) followed
by the scale-free topology (Fig. 5C, D). And the
co-expression similarity sij was derived from Pear-
son’s correlation coefficient of the expression vector
between each gene.

Hierarchical clustering of average linkage was
performed according to the dissimilarity that was
measured based on the TOM with a minimum size of
30 for the gene dendrogram, and unclustered genes
were grouped into grey modules (MEgrey). A total
of 6 and 34 modules of AD and VaD were identi-
fied by DynamicTreeCut algorithm, and the modules
required no merging due to the similarity less than
0.75 (Fig. 5E, F, Supplementary Figure 2A, B). The
TOM network heatmaps were displayed by randomly
selected genes (Supplementary Figure 2C, D).

Finally, modules of significant correlations
(p < 0.05) with AD and VaD were extracted (Fig. 5G,
H), genes in the modules were filtered (q-weighted
< 0.05). A total of 58 and 24 targets that overlap with
the PPI network of degree value more or equal to
the first quartile (5.000 and 2.000) were extracted as
crucial targets of AT on AD and VaD (Fig. 5K, L,

Supplementary Table 3). The Spearman’s correlation
analyses indicated that the expression of most crucial
targets were significantly correlated with one another
(∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001) (Fig. 5I, J).

Validation of screened crucial targets

The analysis of differential gene expression for the
validation dataset indicated a total of 13,536 signif-
icant DEGs in AD compared to controls (p < 0.05)
(Supplementary Figure 3, Supplementary Table 6). A
total of 41 (70.69%) of the 58 crucial targets of AT on
AD that we screened retained differential expression
in the validation dataset, when controlling for | log2
(fold change) |> 1, a total of 31 (75.61%) out of these
41 crucial targets remained notably regulated, indi-
cating the relative robustness of the screened crucial
targets of AT on AD.

Molecular docking of AT active components with
crucial targets

A total of 11 mutual crucial targets of AT on AD
and VaD were extracted (Fig. 6A). including NMU,
GRP, TAC1, ADRA1D, SST, PNOC, C5AR1, CRH,
ADCYAP1, TAAR5, and GAD2. Molecular docking
was conducted for the eligible mutual crucial tar-
gets TAC1 and GAD2 of AD and VaD. By redocking
TAC1 and GAD2 with their original ligands, the active
cavity box parameter setting centers were identified,
RMSD and affinity values indicated the reliability
of the docking sites. Furthermore, in accordance
with the matching of TAC1 and GAD2 with the
AT active components, molecular docking was con-
ducted with ACh, DA, 5-HT, and GABA. PyMOL
2.4.0 (https://github.com/schrodinger/pymol-open-
source) visualization revealed that ACh formed 2
hydrogen bonds with amino acid residue ASN-569
of TAC1 (Fig. 6B); DA formed 4 hydrogen bonds
with ASN-569, SER-568, and GLU-567 of TAC1
(Fig. 6C), 4 hydrogen bonds with ARG-558, GLN-

Fig. 4. Construction of visual networks based on acupuncture therapeutic targets associated with Alzheimer’s disease (AD) and vascular
dementia (VaD). A) PPI network and clustering sub-networks of acupuncture therapy (AT) on AD. In this network, the interaction of 118
targets in PPI network out of 132 acupuncture therapeutic targets on AD (ACAgenes) is displayed. According to the increasing degree value
from 1.00 to 57.00, the size of nodes and the density of edges correspondingly increase, leading to gradual enhancement of the interaction
intensity on targets, and 5 clustering networks driven by 5 hub genes are further identified. B) PPI network and clustering sub-networks of
AT on VaD. In this network, the interaction of 66 targets in PPI network out of 76 acupuncture therapeutic targets on VaD (ACVgenes) is
displayed. The degree values of targets increase from 1.00 to 38.00, and 5 clustering networks driven by 5 hub genes are further identified.
C) Global network of AT on AD. In this network, the associations of the 7 acupuncture active components, 132 ACAgenes, and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways related to each target are systematically displayed. D) Global network of AT on
VaD. In this network, the associations of the 7 acupuncture active components, 76 ACVgenes, and the KEGG pathways related to each target
are systematically displayed. E) Sankey diagram of the 32 mutual targets from ACAgenes and ACVgenes. F) Venn diagram depicts KEGG
terms sharing of AT on AD and VaD.

https://github.com/schrodinger/pymol-open-source
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Fig. 5. Screening of crucial targets by performance of weighted gene co-expression network analysis (WGCNA). A) Cluster analysis of
samples from Alzheimer’s disease (AD) and controls to detect outliers. B) Cluster analysis of samples from vascular dementia (VaD) and
controls to detect outliers. C) Determination of soft-thresholding power �. D) Evaluation of mean connectivity according to soft-thresholding
power �. E) Identification of modules of AD by DynamicTreeCut algorithm. F) Identification of modules of VaD by DynamicTreeCut
algorithm. G) Heatmaps of the correlation between modules and clinical traits of VaD. Each row corresponds to a module, and column
to a trait. Each cell contains the corresponding correlation and p-value. Modules notably associated with VaD are marked with red boxes.
H) Heatmaps of the correlation between modules and clinical traits of AD. Each cell contains the corresponding correlation and p-value.
Modules notably associated with AD are marked with red boxes. I) Spearman’s correlation analysis with 95% confidence interval for the
crucial targets of acupuncture therapy (AT) on AD with the top 15 values of degree. Significant correlations are designated with asterisk
(∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001). J) Spearman’s correlation analysis with 95% confidence interval for the crucial targets of AT on VaD
with the top 15 values of degree. Significant correlations are designated with asterisk (∗p < 0.05; ∗∗p < 0.01;∗∗∗p < 0.001). K) Venn diagram
depicts 58 overlapped crucial targets of AT on AD. L) Venn diagram depicts 24 overlapped crucial targets of AT on VaD.

181, and SER-546 of GAD2 (Fig. 6F); 5-HT formed 4
hydrogen bonds with GLU-567, SER-566, SER-568,
and ASN-569 of TAC1 (Fig. 6D); GABA formed 4

hydrogen bonds with ASN-569, GLU-567, SER-568,
and ASP-565 of TAC1 (Fig. 6E), 5 hydrogen bonds
with GLN-548, ARG-558, GLN-181, and SER-546
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Fig. 6. Molecular docking of acupuncture therapy (AT) active components with crucial targets. A) Venn diagram depicts the 11 mutual
crucial targets of AT on Alzheimer’s disease (AD) and vascular dementia (VaD). B) Acetylcholine (ACh) formed 2 hydrogen bonds with
amino acid residue ASN-569 of TAC1. C) Dopamine (DA) formed 4 hydrogen bonds with amino acid residues ASN-569, SER-568, and
GLU-567 of TAC1. D) Serotonin (5-hydroxytryptamine, 5-HT) formed 4 hydrogen bonds with amino acid residues GLU-567, SER-566,
SER-568, and ASN-569 of TAC1. E) Gamma-aminobutyric acid (GABA) formed 4 hydrogen bonds with amino acid residues ASN-569,
GLU-567, SER-568, and ASP-565 of TAC1. F) DA formed 4 hydrogen bonds with amino acid residues ARG-558, GLN-181, and SER-546
of GAD2. G) GABA formed 5 hydrogen bonds with amino acid residues GLN-548, ARG-558, GLN-181, and SER-546 of GAD2.

of GAD2 (Fig. 6G). The RMSDs of ACh, DA, 5-
HT, and GABA before and after docking with TAC1
were 1.065, 0.876, 1.233, and 1.261, respectively.
The RMSDs of DA and GABA before and after
docking with GAD2 were 1.297 and 0.919. All
RMSDs ≤ 2.000, indicating that the AT-associated
active components with TAC1 and GAD2 are stable
in binding.

Identification of core targets by LASSO

Machine learning algorithm of LASSO regres-
sion was used to identify the core targets for AT on
AD and VaD from the series of crucial targets. The
optimal penalty parameter lambda corresponding to
the minimum mean of binomial deviance values by
LASSO regression in AD or VaD was detected to
retain groups of core targets, as 6 core targets includ-



S154 D. Li et al. / Acupuncture Therapy on Dementia

ing GNG2, CHRM4, HTR2C, TAAR5, VIPR1, and
GABRG2 under the lambda of 0.094 for AD (Supple-
mentary Figure 4A), and 9 including NMU, GPR132,
TBXA2R, HTR2B, SST, C5AR1, RET, CARNS1, and
BCL2L11 under 0.048 for VaD (Supplementary Fig-
ure 4B).

DISCUSSION

Previous studies on AT for dementia have tended
to be either based on the evaluation of efficacy in
clinical patients or in-depth exploration of a single
mechanism based on animal models, but systematic
multi-target and multi-mechanism studies of AT on
dementia patients remain limited. Here, for the trans-
lation significance of our findings, we started from
the microarray of dementia patients via data mining,
combined with the AT-associated active components
identified in animal models, to reveal the therapeutic
targets and biological integrated mechanisms of AT
by bioinformatics and network topology approaches.
Our results indicated that multiple genes and sig-
naling pathways associated with the regulation of
synaptic function, immunity, and inflammation are
simultaneously and potentially involved in the shared
or mutually independent biological processes of AT
on AD and VaD, which depend on the initial partici-
pation of a series of active components.

In previous RCTs, AT has demonstrated benefits
in enhancing cognition of patients with cognitive
impairment, potentially contributing to preventing or
delaying the onset of AD and VaD [46, 47], and
assisting pharmacotherapy to jointly improve demen-
tia symptoms and overall clinical status, serving as a
safe and effective NPI [20–22]. The active compo-
nents underlying the therapeutic mechanism of AT
were revealed in a series of animal models, mainly
involving neurotransmitters including ACh, NA, DA,
5-HT, GABA, and neurotrophic factors including
BDNF and GDNF [23–33]. In our analysis, we first
collected and integrated the downstream molecular
targets of these AT active components through mul-
tiple databases and compared them with the DEGs
of AD and VaD to screen for therapeutic targets on
which AT has potential impact, the 132 ACAgenes
and 76 ACVgenes.

Then a range of therapeutic mechanisms of AT
were revealed via functional enrichment analysis on
ACAgenes and ACVgenes, in which the KEGG terms
shared including neuroactive ligand-receptor inter-
action, calcium (Ca2+) signaling pathway, cAMP

signaling pathway, chemokine signaling pathway,
GABAergic synapse, and inflammatory mediator
regulation of transient receptor potential (TRP) chan-
nels. Ca2+ signaling pathway is intimately involved
in neurotransmitter release, synaptic plasticity, and
other crucial neuronal functions through binding
to calmodulin (CaM), triggering the activation and
conformational changes of Ca2 + /calmodulin depen-
dent protein kinase II (CaMKII) and CaMKIV, thus
serving in synaptic strengthening and regulating
the transcription of cAMP response element-binding
protein, participating in memory formation [48]. In
previous studies, physical stimulation generated by
MA can be perceived by TRP vanilloid receptors 1
(TRPV1) to modulate Ca2+ permeability and trans-
mit signals to nerve terminals via calcium wave
propagation [49], while EA stimulation can be ben-
eficial to considerably upregulating CaM1, CaMKII,
and CaMKIV in the hippocampus and modulate
cognitive functions [50]. In AD with excessive A�
production and the hyperphosphorylated tau or VaD
triggered by adverse vascular events, inflammation
locally recruits activated microglia and astrocytes
to over-secrete multiple pro-inflammatory cytokines
and chemokines, while chemokine signaling fur-
ther enables the recruitment of more microglia,
thereby repetitively exacerbating neuroinflammation
and mediating the emergence and deterioration of
cognitive dysfunction [51, 52]. The levels of pro-
inflammatory cytokines and chemokines can be
effectively suppressed by MA intervention, which
has a positive influence on the regulation of periph-
eral immune function and inflammatory response
and contributes to the improvement of cognition
[52]. Substantial evidence also suggested that AT-
induced neuroprotective responses were associated
with GABAergic inhibitory neurotransmission, and
that AT could raise serum GABA levels while reduc-
ing serum glutamate levels and the glutamate/GABA
ratio [53]. In addition, we identified the therapeu-
tic mechanisms of AT for AD and VaD that were
mutually independent of each other, of which, the
KEGG terms associated with AD included retrograde
endocannabinoid signaling, cholinergic, glutamater-
gic, and serotonergic synapse, and the KEGG terms
associated with VaD included renin secretion and vas-
cular smooth muscle contraction. Cannabinoid (CB)
receptors are crucial components of the endocannabi-
noid system [53], with AT intervention, the two major
types of receptors, CB1 and CB2 receptors, could
be activated to reduce the expression levels of glu-
tamate and its receptors and elevate GABA and its
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receptors, restoring the excitatory/inhibitory balances
through glutamatergic and GABAergic signaling to
exert excitotoxic preventive, neuroinflammatory sup-
pressive, and neuroprotective effects on damaged
neurons, thus benefiting the symptomatic relief of
AD [25, 32, 53, 54]. In VaD, Renin and angiotensin-
converting enzyme (ACE) initiate an enzymatic
cascade that promotes the production of angiotensin
(Ang) II, which in turn mediates the activation of
Ang II type 1 receptor (AT1R), leading to disruption
of neuronal homeostasis, vascular remodeling and
smooth muscle contraction, endothelial dysfunction
from increased inflammation and oxidative stress,
and impaired cognitive function in VaD patient [55].
EA can effectively downregulate the hippocampal
ACE/Ang II/AT1R axis and upregulate the antagonis-
tic ACE2/Ang-(1–7)/Mas receptor axis, improving
the aforementioned adverse vascular events and
exerting neuroprotective benefits [55, 56]. Overall,
with therapeutic targets, AT can improve the cogni-
tive function of AD and VaD independently or jointly
via a range of mechanisms.

By further constructing PPI networks of ACA-
genes and ACVgenes and performing WGCNA,
the crucial targets of AT on AD or VaD in the
global targets were captured. In particular, 11 shared
crucial targets were identified, including NMU (neu-
romedin U), GRP (gastrin releasing peptide), TAC1
(tachykinin precursor 1), ADRA1D (adrenoceptor
alpha 1D), SST (somatostatin), PNOC (preprono-
ciceptin), C5AR1 (complement C5a receptor 1),
CRH (corticotropin releasing hormone), ADCYAP1
(adenylate cyclase activating polypeptide 1), TAAR5
(trace amine associated receptor 5), and GAD2 (glu-
tamate decarboxylase 2). By molecular docking, we
found that the AT active components can effectively
bind to the specific sites of TAC1 and GAB2 stably.
In addition, we used LASSO regression to iden-
tify core targets of AT that were closely associated
with disease traits from 58 and 24 crucial targets
of AT on AD and VaD, including GNG2 (G pro-
tein subunit gamma 2), CHRM4 (cholinergic receptor
muscarinic 4), HTR2C (5-hydroxytryptamine recep-
tor 2C), TAAR5 (trace amine associated receptor
5), VIPR1 (vasoactive intestinal peptide receptor 1),
and GABRG2 (gamma-aminobutyric acid type A
receptor subunit gamma 2) associated with AD, and
NMU, GPR132 (G protein-coupled receptor 132),
TBXA2R (thromboxane A2 receptor), HTR2B (5-
hydroxytryptamine receptor 2B), SST, C5AR1, RET
(Ret proto-oncogene), CARNS1 (carnosine synthase
1), and BCL2L11 (BCL2 like 11) associated with

VaD. NMU is a member of the neuromedin superfam-
ily and functions as an immunomodulator by binding
to its two G protein-coupled receptors (GPCR),
including NMU receptor 1 expressed mainly in
peripheral tissues and NMUR2 in central nervous sys-
tem [57]. It was shown that NMU does not interfere
with mRNA levels of anti-inflammatory cytokines in
lipopolysaccharide-induced memory impairment and
neuronal death mice but protects memory function
and neuronal cell survival by upregulating BDNF
in hippocampus-derived microglia and astrocytes
[57, 58]. TAC1 encodes substance P (SP) and neu-
rokinin A that bind to the corresponding GPCRs
NK1 receptor and NK2 receptor, respectively, where
SP mediates memory facilitation and reinforcement
and induces increased blood-brain barrier permeabil-
ity and activation of microglia and astrocytes, while
hippocampal cholinergic neurotransmission modu-
lates amygdala function through NK2 receptors in
the medial septum [59]. The tachykinin receptors
as mentioned above can be activated by excess A�
and glutamate to counteract neuronal transmission
and interact with the cholinergic system to induce
ACh release in the neostriatum [60, 61]. GAD2, also
referred to as the 65 kDa isoform (GAD65), is one of
the isoforms of glutamic acid decarboxylase (GAD)
that, together with GAD67, mediates the metabolism
of glutamate and facilitates the synthesis of GABA
from glutamate, and this GABAergic and glutamater-
gic synapses balance is principally moderated by
astrocytes through the glutamate/GABA-glutamine
cycle, thus avoiding the excitotoxicity of glutamate
involved in the pathological process of dementia [25].
Collectively, AT can mediate potential therapeutic
effects for AD and VaD jointly or independently via
a complex network of molecular targets.

This study has several strengths. We conducted an
integrated analysis of AT in treating AD and VaD
to identify shared and mutually independent thera-
peutic targets and biological mechanisms to provide
a comprehensive perspective on the potential ther-
apeutic effects of AT. Moreover, we conducted a
robust screening of therapeutic targets by construct-
ing PPI networks in combination with WGCNA and
LASSO regression, thus identifying a series of cru-
cial and core targets of AT in treating AD and VaD,
and performing targets validation to provide infor-
mative support for further studies. Nevertheless, this
study has some limitations. First, we only investi-
gated several crucial active components associated
with the therapeutic effects of acupuncture, but other
active components involved in acupuncture treatment



S156 D. Li et al. / Acupuncture Therapy on Dementia

remain to be explored by more high-quality evi-
dence. Then, the databases that were used in this
study are subject to continuous updates, so more
functional or expression-related hits or targets remain
to be supported by further studies. Moreover, rele-
vant datasets with larger sample sizes are limited,
and due to the majority of studies focusing on AD
and the remaining limited datasets of VaD, we val-
idated only the crucial targets of AT in treating
AD. Additionally, the therapeutic effects of acupunc-
ture are complicated by multidimensional parameters
including acupoint selection, manipulation method,
stimulation intensity, and session, and the hetero-
geneity in acupuncture prescriptions also induces
variation. Thus a detailed classified analysis accord-
ing to the characteristics of concrete acupuncture
prescriptions is desirable.

In conclusion, AT, in response of diverse cru-
cial active components (ACh, NA, DA, 5-HT,
GABA, BDNF, GDNF) with multiple pathways,
effectively modulates the downstream molecular
targets network, exerts synaptic plasticity regu-
latory, immunomodulatory, anti-inflammatory, and
anti-apoptotic functions, and alleviates the symp-
toms of dementia. As an effective and safe NPI, AT
holds additional and considerable benefits in avoid-
ing or mitigating the possible long-term side effects of
pharmacological therapy, assisting the current man-
agement strategy, as well as improving the patients’
quality of life and relieving the pressure on the health
systems.
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