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Abstract. An estimated 6.5 million Americans aged 65 years or older have Alzheimer’s disease (AD), which will grow to 13.8
million Americans by 2060. Despite the growing burden of dementia, no fundamental change in drug development for AD
has been seen in > 20 years. Currently approved drugs for AD produce only modest symptomatic improvements in cognition
with small effect sizes. A growing mismatch exists between the urgent need to develop effective drugs for symptomatic AD
and the largely failed search for disease modification. The failure rate of clinical trials in AD is high overall, and in particular
for disease-modifying therapies. Research efforts in AD have focused predominantly on amyloid-� and tau pathologies, but
limiting clinical research to these “classical hallmarks” of the disease does not address the most urgent patient, caregiver,
or societal needs. Rather, clinical research should consider the complex pathophysiology of AD. Innovative approaches are
needed that provide outside-the-box thinking, and re-imagine trial design, interventions, and outcomes as well as progress
in proteomics and fluid biomarker analytics for both diagnostics and disease monitoring. A new approach offering a highly
specific, yet multi-pronged intervention that exerts positive modulation on the HGF/MET neurotrophic system is currently
being tested in mid-to-late-stage clinical trials in mild to moderate AD. Findings from such trials may provide data to support
novel approaches for development of innovative drugs for treating AD at various disease stages, including among patients
already symptomatic, and may offer benefits for other neurodegenerative diseases.
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INTRODUCTION

Currently an estimated 6.5 million Americans aged
65 years or older have Alzheimer’s disease (AD), and
as the population in the United States (U.S.) continues
to age, it is estimated that 13.8 million Americans
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will have AD by 2060 [1]. Globally, it is estimated
that the number of people with dementia will increase
from 57 million in 2019 to 153 million by 2050 [2].
Despite the enormous personal and economic burden
of AD [3, 4], and the extensive investment in drug
development for AD, promising early results were
recently reported with lecanemab in early AD [5], but
only one product, aducanumab, has been approved in
the last 19 years.

Thus, despite extensive clinical development
efforts, a critical need exists for effective drugs for
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the treatment of AD, and it may be greatest for those
with mild to moderate AD. Disease acceleration is
most pronounced at this stage [6, 7] and the finan-
cial burden to payors and society is higher than in the
pre-dementia stage [8]. Also, molecular approaches
to clinical intervention are needed that consider the
heterogeneity of causative factors in AD, along with
past failed efforts while focusing on novel drugs
that address biology other than amyloid-� (A�) and
tau. This review highlights this critical need in the
current landscape of clinical development, consid-
ers failed clinical trials to date, and provides insights
into the need for identifying novel pharmacological
approaches and study designs to enhance progress in
drug development in AD.

IMPACT OF ALZHEIMER’S DISEASE

Currently, total healthcare costs for AD in the US
are estimated at $300 billion, which is expected to rise
to >$1 trillion by 2050 [1]. Key factors contributing
to the economic burden of AD include disease sever-
ity, dependence level, rate of institutionalization, and
comorbidity [4]. Furthermore, analyses of the costs
of AD and dementia to society usually are underes-
timated because they fail to include costs for home
safety modifications, adult day care, and the impact
on caregiver health and productivity [9]. Considering
the burgeoning prevalence of AD globally, we need
to understand better both direct and indirect costs of
AD to avoid an impending health care crisis [10].
Data from a claims database of outpatients at a mem-
ory clinic were used to evaluate medical costs and
caregiver burden and demonstrated that direct med-
ical costs increased as cognitive deficits increased,
and importantly, caregiver burden increased with the
severity of the patients’ cognitive deficits [11]. Oth-
ers have reported the importance of indirect costs,
which are associated with considerable societal and
personal burden, including quality of life and care-
giving, and are usually not factored into overall costs
[12]. Costs for those with AD in the community
healthcare setting were significantly lower in com-
parison to costs in a long-term care setting [13], and
the transition into the long-term care setting increased
total costs of dementia care also from a societal
perspective.

Thus, any treatment that delays nursing home
placement for people with AD has the potential to
result in substantial economic benefits by reducing
indirect costs [4, 14, 15]. Nursing home placement

contributes to loss of independence and a decrease
in physical and mental health with an associated
increase in morbidity and mortality, and often is
the most expensive option for family and caregivers.
Thus, a truly effective treatment that delays progres-
sion in symptomatic AD has the potential for dramatic
cost savings [4]. A number of studies have shown
a delay or reduction in nursing home placement
from treatment with currently approved AD therapies
with cholinesterase inhibitors and memantine [16–
19]. Further, a program designed to improve caregiver
well-being reduced nursing home placement of per-
sons with AD [20]. A model of the effect of reduced
nursing home use with effective treatments for AD
projected billions of dollars saved for reduced nurs-
ing home placement [21]. Another study of societal
benefits from a treatment that slowed disease pro-
gression by 30% projected a reduction in costs of $5
trillion over 20 years in the US [22].

Over time, patients with AD often develop symp-
toms that are beyond the capabilities of caregivers
to manage with the result that patients end up in a
long-term care facility and incur an enormous eco-
nomic burden [9, 11]. Thus, any delay in symptom
onset or progression may result in a substantial impact
on caregiver and economic burden. In particular,
behavioral and psychological symptoms of dementia
(BPSD) occur in 90% or more of all dementia patients
and include symptoms of agitation, aggression, apa-
thy, anxiety, depression, aberrant motor behavior,
elation, irritability, disinhibition, delusions, halluci-
nations, and sleep or appetite changes [8, 23–25].
The BPSD spectrum is associated with poor out-
comes, including increased burden among patients
and caregivers, more frequent hospitalization, and
increased health care costs [26]. Thus, a high medical
need exists for novel drugs and non-drug therapies to
improve outcomes in patients developing BPSD [8,
27]. New therapeutic approaches with the ability to
address any impact of BPSD may also improve the
burden of caregivers [28].

LANDSCAPE OF ALZHEIMER’S DISEASE
DRUG DEVELOPMENT

Despite the growing burden of dementia world-
wide, no fundamental change in the approaches to
drug development for AD has occurred in > 20 years
[29–32]. Current fully approved drugs for AD are
neurotransmitter targeted and produce consistent but
modest improvements in cognition, especially for
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those with advanced disease, with small effect sizes
and a waning effect over time [33–36]. Some statis-
tically significant effects on select BPSD also have
been observed, e.g., with memantine [37].

A mismatch exists between the urgent need to
develop effective drugs for secondary prevention and
treatment of symptomatic AD and the yet largely
failed track record of clinical development programs.
Currently, the failure rate for clinical trials in AD
is very high overall, and in particular for disease-
modifying therapies [27, 29, 32, 38]. Research efforts
in AD focus almost exclusively on A� and tau
pathologies, including recent efforts with monoclonal
antibodies for active or passive vaccination [30, 39–
41]. Although the search for the “holy grail” of AD
drug development producing tangible disease mod-
ification has been disappointing, prevention of the
symptomatic stages of AD remains an important goal.
For prevention trials in AD, clinically defined nearly
asymptomatic subjects with pre-dementia based on
experimental diagnostic criteria, rather than symp-
tomatic patients, must be studied, which requires
trials of long duration (>12 months) in large popu-
lations (>1000 patients) [27, 38, 42]. This, in turn,
poses challenges for how representative these trial
populations are of the majority of patients need-
ing treatment, and the time point of diagnosis in
the general population. Further, the related debate
about the definition of a minimum clinically mean-
ingful effect and relevant surrogate biomarkers is
ongoing.

Despite the high failure rate in clinical trials,
the majority of clinical development programs are
using randomized, parallel-arm trial designs. How-
ever, alternative trial designs, such as staggered
start/randomized withdrawal designs may improve
the success rate of clinical trials for demonstrat-
ing efficacy by slowing progression in AD [32,
42–45]. Several challenges need to be addressed
when designing clinical studies including appropri-
ate identification of the patient population, selection
of relevant clinical endpoints, and adequate duration
of follow-up [38, 42, 46]. Studies in pre-dementia
stage AD need to incorporate imaging and biomarkers
to confirm the presence of disease prior to clini-
cal symptoms [47] and target engagement by the
investigational treatment, to select specific patient
populations more likely to demonstrate clinically
meaningful improvement with treatment [40, 42, 43].
Thus, disease-modifying treatments require study
design features that are markedly different from
symptomatic treatments [27].

Another critical limitation of pre-dementia trials
is the inevitable reliance on experimental diagnostic
criteria, as established by the A/T/N system, which
includes the classical “hallmarks” of amyloid and tau
accumulation [47]. The A/T/N system characterizes
individuals using biomarkers of AD pathophysiology
using the A� pathway (A), tau-mediated pathophys-
iology (T), and neurodegeneration (N) [47] and is
independent of clinical assessment of cognitive sta-
tus [48]. The A/T/N system is supposed to provide a
more precise division of the continuum of AD based
on pathology but may be limiting since different
biomarkers for defining A/T/N are not interchange-
able. Each component of biomarkers included in the
A/T/N classification system contributes differently
to the staging of AD, and the optimal combina-
tions for predicting cognition may differ by cognitive
status [49]. An updated A/T/X/N system has been
proposed to accommodate a broader spectrum of
pathophysiology, where X represents novel candi-
date biomarkers for additional pathophysiological
mechanisms such as neuroimmune dysregulation,
synaptic dysfunction, and blood-brain barrier alter-
ations [50].

Accumulating evidence is consistent with a com-
plex, decades-long, cellular phase of AD that
produces dysfunctional neuronal, glial, and endothe-
lial mechanisms that contribute to irreversible brain
damage [43, 51–53]. AD is described as a brain dis-
order that results from a complex interplay of loss of
synaptic homeostasis and dysfunction in the highly
interrelated endosomal/lysosomal clearance path-
ways in which the precursors, aggregated species,
and post-translationally modified products of A� and
tau play important roles [53]. Based on this descrip-
tion, the search continues for targets that substantially
change the clinical course in persons with AD;
more promising trial results were recently reported
for lecanemab [5], an investigational humanized
monoclonal antibody recognizing protofibrils and
aimed to prevent deposition of A�. Recent advances
in proteomics provide increased evidence that the
pathophysiology of AD extends beyond the classi-
cal “hallmarks”, i.e., amyloid and tau accumulation,
to other mechanisms resulting in neurodegeneration
[39, 54–57]. For instance, persons with no cognitive
impairment can demonstrate biomarker evidence of
A� pathology and may develop no clinical manifes-
tations of AD in their lifetime [58]. In addition, a
pattern of biomarkers consistent with AD may be
found in other brain diseases in which AD pathol-
ogy presents as a comorbidity. Recently, the incidence
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of co-morbidity of AD and cerebrovascular disease
and its relevance for cognitive outcome was examined
in those with autopsy-confirmed AD [59]. Increased
functional and cognitive decline was found in those
with AD and co-morbid cerebrovascular disease, and
the presence of cerebrovascular disease enhanced the
effects on AD neuropathology. These repeat findings,
in a substantial proportion of subjects diagnosed clin-
ically as AD, suggest an additive and even synergistic
effect of co-morbid cerebrovascular disease on the
neuropathology associated with AD.

Meanwhile, it has been demonstrated that amyloid
and tau accumulation poorly reflect the intricate cell-
mediated pathophysiology of AD [39, 54–57, 60, 61].
Animal models have failed to adequately replicate the
pathology of the condition [48, 54, 57, 62]. Such a
neuron-centric, linear cascade initiated by A� and
leading to dementia suggests a direct causality that
is not compatible with clinical observations [44, 51,
54–57, 62, 63]. Focusing almost exclusively on A�
and tau mechanisms also ignores results from post-
mortem studies indicating a substantial contribution
from vascular processes in the pathogenesis of AD
[64, 65]; more than 30% of subjects with clinically
diagnosed AD are classified postmortem as mixed
dementia, a fact largely ignored by clinical develop-
ment, other than only their exclusion from clinical
trials is sought. Instead, the long cellular phase of
dysregulation of the interplay between neurons, astro-
cytes, microglia, inflammatory, and vascular changes
suggests the need for a broader therapeutic approach
[53, 67, 68]. Varied research findings support such
observations, for instance elevated concentrations of
TNF-� in AD brains; TNF-� was shown to medi-
ate multiple pertinent aspects of neurodegeneration,
including synaptic dysfunction and neuronal decay
[69]. Despite such findings, amyloid and tau accumu-
lation continue to be the main focus for the diagnosis
and subsequent selection of patients for clinical tri-
als [70]; and thus, amyloid and tau accumulation
continue to be the most prominent targets for inter-
ventional trials in AD [29, 41, 51, 56, 57]. This
traditional focus may lead to a circular logic of
patient selection, therapeutic intervention, and out-
comes, e.g., reduced plaque load. Instead, subject
inclusion criteria for clinical trials in AD might also
consider more recent insights based on proteomics,
which suggest more inter-individual heterogeneity
in glial subtypes than in neurons [39, 55, 71]. A
combined biomarker panel could potentially better
distinguish between healthy subjects, asymptomatic
and symptomatic AD patient subtypes when com-

pared to a system based on A� and tau alone [52,
55]. Selection of such trial populations may provide a
departure from a circular logic of diagnosis and treat-
ment based only on the amyloid hypothesis [39, 44,
55]. Thus, adoption of a broader, more holistic view of
the emerging pathophysiology of AD could result in
substantial changes in the research and development
field and open up new avenues to success.

NOVEL APPROACHES TO CLINICAL
TRIAL DESIGN FOR ALZHEIMER’S
DISEASE

The lack of progress in developing effective thera-
pies for AD may be attributed to a lack of appreciation
of the complex pathophysiology of the condition,
but also to clinical trial design features that are not
conducive to establishing drug effectiveness [72].
Blood-based biomarkers (e.g., neurofilament light
chain, glial fibrillary acidic protein) may become
essential in clinical trials to identify appropriate
patients, determine the status of disease, confirm
target engagement, establish the optimal dose, and
monitor treatment response [72]. Most novel trials
use an adaptive Bayesian design to predict efficacy
or failure of individual interventions; interim analyses
allow early termination of a study when a predefined
futility signal is detected, with an aim to accelerate the
development process. Such adaptive approaches can
help reduce development times but also have proven
treacherous in the past.

For novel interventions to actually demonstrate
clinical efficacy at later stages, a more holistic
approach also to clinical trial design is warranted.
This in turn necessitates a re-focus on the symp-
tomatic stage of AD, which only represents a minority
of trials conducted in the past 20 years. At the
present time, and in the absence of further develop-
ment of diagnostics for AD [40], using a syndromal
diagnosis at the dementia stage to identify patients
to enroll in clinical trials provides a means of
identifying real-life populations rather than highly
experimental sub-populations of patients. Clinical tri-
als should incorporate proven trial design features
of patients in the dementia stage utilizing validated
endpoints to minimize the need for 12- to 24-month
double-blind follow-up periods, requiring years for
completion. Such designs also could include specific
improvements, e.g., innovative composite endpoints
like the Integrated Alzheimer’s Disease Rating Scale
(iADRS) [73], the AD Composite Score (ADCOMS)
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[74] to improve sensitivity to change over time, and
the Global Statistical Test (GST) [75], which may
provide an unbiased, integrated readout of therapeu-
tic effects; incorporating such composite endpoints
may help increase credibility of the real-life utility of
a novel intervention. Other examples for trial inno-
vations are passive monitoring of motor speed using
mobile phones [76] for screening purposes, or the
utilization of prognostic information from subjects
into randomized controlled trials to enable smaller
control groups while maintaining statistical power
[77].

Re-focusing on the somewhat neglected group of
patients with mild to moderate AD with suitable
interventions for the symptomatic stage could prove
helpful, as it may provide advantages for clinical tri-
als of investigational drugs. The mild to moderate
population experiences the most accelerated progres-
sion of cognitive impairment and develops also other
important, non-cognitive changes, e.g., BPSD. It is
arguably the population with presently the largest
unmet medical need [6, 7]. Ultimately, a development
program that targets mild to moderate AD should
have a greater likelihood of success because a clinical
diagnosis is possible rather than reliance on indirect
criteria [42] to predict cognitive decline; a drug-
placebo difference is also more likely; and there is an
undisputed regulatory pathway for approval, based
on precedent [78].

HGF/MET: PRECLINICAL FINDINGS
RELEVANT TO ALZHEIMER’S DISEASE

The complex multifaceted processes that con-
tribute to neurodegeneration in AD warrant novel
treatment approaches that seek to improve the health
and function of neurons and supporting glia. Pro-
moting the activity of neurotrophic factors, including
the hepatocyte growth factor (HGF), is an example
for a therapeutic approach that is neuroprotective
and stimulates regenerative mechanisms [79]. HGF
is a ubiquitous signaling protein that activates the
receptor tyrosine kinase MET [80, 81]. As a potent
neurotrophic growth factor, HGF is involved in
numerous processes including embryonic and organ
development, regeneration, and inflammation [82],
and is upstream of other important trophic factors in
the central nervous system, e.g., brain-derived neu-
rotrophic factor (BDNF). HGF enhances neuronal
survival and regeneration including hippocampal,

midbrain dopaminergic, cerebral cortical, motor,
sensory, and cerebellar granular neurons [79, 80].
HGF signaling exhibits pro-neural and pro-cognitive
effects, which offer the potential for treating the
neurodegenerative cascade observed in AD while
promoting neuronal survival [79, 83–86]. HGF sig-
naling is also active in glial cells [87] where it
modulates the expression of glial-specific glutamate
transporters in astrocytes, which may reduce gluta-
mate cytotoxicity [88].

The effects of increasing HGF signaling have been
evaluated in vitro and in vivo. In vitro, HGF enhanced
synaptic long-term potentiation in the CA1 region of
the hippocampus [89], and overexpression of HGF
in vivo improved memory and learning after cere-
bral infarction in rats [90]. Augmentation of the
HGF/MET system slowed disease progression and
restored function in rodent models of AD [91] and
other neurodegenerative disorders in non-human pri-
mate models [92–96]. Elevated concentrations of
HGF in the CSF of AD subjects have been reported
and may be a result of blood-brain barrier dysfunc-
tion or a response to neurological damage due to
AD pathology [97–99]. Conversely, MET expres-
sion is markedly decreased in AD brains, particularly
in hippocampal pyramidal neurons, suggesting that
this reduced MET activity may negatively affect hip-
pocampal neuron survival and function in AD [100].
In AD, the underlying brain pathology is character-
ized by loss of synaptic connections [101–104]. HGF,
as a key neurotrophic factor, enhances synaptogene-
sis and neuroplasticity, which may have widespread
functional relevance in the symptomatology of AD
[79, 80].

Multiple studies were conducted to identify
brain-penetrant small molecules that activate the
HGF/MET system, and to evaluate the neuroactivity
of a highly potent target compound, fosgonimeton
(previously ATH-1017), in vivo, and to optimize its
pharmacological characteristics [105]. These preclin-
ical studies demonstrated the activity of fosgo-AM,
the active metabolite of the prodrug, fosgonimeton.
Upon peripheral administration, fosgo-AM activates
the brain HGF/MET system and restores cognitive
function in experimental animals at clinically relevant
exposures. These results supported further preclinical
study with fosgo-AM in other neurotrophic models
in vitro, and models of neurological disorders in vivo.
After treatment with fosgo-AM, primary hippocam-
pal neurons demonstrated enhanced synaptogenesis
and neurite outgrowth. In an LPS-induced model
of cognitive impairment in mice, cognitive deficits



6 H.J. Moebius and K.J. Church / Small molecule positive modulators of HGF/MET

Fig. 1. Positive Modulation of HGF/MET by Fosgonimeton.
Hypothesized fast-onset effect of fosgonimeton mediated via the
NMDA receptor. This mechanism of action represents a departure
from drugs acting on the neurotransmitter level only, as the spe-
cific HGF/MET interaction could lead to multimodal downstream
effects on processes known to be affected in various neurodegen-
erative conditions.

were reversed after treatment with fosgonimeton
[105]. In a transgenic mouse model of AD, the
effect of fosgonimeton on brain activity was evalu-
ated with quantitative electroencephalogram (qEEG);
following subcutaneous (s.c.) treatment of APP/PS1
mice with fosgonimeton, the high frequency rela-
tive qEEG spectral power was enhanced and low
frequency bands were reduced with statistical sig-
nificance [unpublished data]. Thus, treatment with
fosgo-AM significantly enhanced synaptogenesis,

functional synaptic strength, and neurite outgrowth,
demonstrating that it induces neurotrophic CNS
effects that were similar to those of exogenous HGF
in peripheral disease relevant tissues [106]. These
effects are summarized in Fig. 1, which depicts
the mechanism of action of fosgonimeton, includ-
ing the downstream outcomes based on studies
with fosgonimeton [105, 106] as well as previ-
ously described effects of HGF/MET activity [79,
80].

In summary, and in light of the above considera-
tions on druggable targets in AD, the results of these
preclinical studies support the potential of positively
modulating the HGF/MET neurotrophic system in
AD, and of fosgonimeton, as a novel compound
and intervention with the potential to address several
known aspects contributing to neurodegeneration.

CURRENT CLINICAL DEVELOPMENT
OF COMPOUNDS PROMOTING HGF/MET
FOR ALZHEIMER’S DISEASE

Fosgonimeton, a highly specific, small-molecule
positive modulator of the HGF/MET neurotrophic
system, is currently in late-stage clinical develop-
ment for AD. To accelerate the development process
(Fig. 2), the sponsor, Athira Pharma, Inc. (Athira)
has taken an atypical approach by initiating long
term toxicology studies at risk in parallel to Phase
I, with results coinciding with the read out from
human pharmacology. This Phase Ia/b study had a
standard placebo-controlled single ascending dose

Fig. 2. Clinical Development of Fosgonimeton for Alzheimer’s Disease.
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(SAD)/multiple ascending dose (MAD) design. The
study also protocolled a separate cohort of subjects
with AD to receive a fixed dose of 40 mg once daily by
s.c. injection for 9 days. Quantitative EEG and event-
related potential (ERP) P300 latency were measured
over time to support human blood-brain barrier pen-
etration of fosgonimeton, and increase confidence in
potential pro-cognitive effects, respectively [107].

Upon completion of the Phase Ia/b study, Phase II
(ACT-AD; NCT04491006), and Phase II/III (LIFT-
AD; NCT04488419) studies of fosgonimeton were
launched; both are 26-week double-blind, placebo-
controlled trials in subjects with mild to moderate
AD, with a largely mirrored design but different
objectives. While ACT-AD (N = 77, completed) was
powered to replicate and extend the Phase Ib obser-
vation on ERP P300 latency in AD subjects [107],
LIFT-AD (N revised upon interim analysis, recruit-
ing) is powered as a potentially confirmatory trial.
A unique feature is that both trials were started
in parallel rather than sequentially, to allow results
from ACT-AD analysis to ascertain the presence of
positive biological signals (on cognition, function,
and biomarkers) and be utilized for optimization
of conduct and analysis of LIFT-AD [108, 109].
The primary endpoint for ACT-AD was ERP P300
latency, a functional measure of working memory
processing speed that has recently been reviewed
as a novel non-invasive, objective neuroplasticity
biomarker [110]; secondary endpoints measuring
cognition, function, and behavior were also included
in the study. The primary endpoint for LIFT-AD is
the composite Global Statistical Test [75], which is
a mathematical algorithm that combines the scores
from cognition (AD Assessment Scale-Cognitive
Subscale [ADAS-Cog11]), and either global impres-
sion of change (AD Cooperative Study-Clinical
Global Impression of Change [ADCS-CGIC]), or
function (AD Cooperative Study-Activities of Daily
Living [ADCS-ADL23]). Topline results from ACT-
AD were announced in June and August 2022 [108,
109], and a manuscript is in preparation. Data for
LIFT-AD are currently expected in 2023. An open
label extension following the completion of either
ACT-AD or LIFT-AD is currently ongoing, allowing
eligible and interested participants to receive up to an
additional 18 months of open label treatment.

Two other plasmid-mediated products that inter-
act with HGF, from independent companies, are also
in clinical development. HGF plasmid (AMG0001,
AnGes, Inc. and Mitsubishi Tanabe) is DNA-based
and encodes the human HGF gene. It is administered

intramuscularly into the lower limb and is targeted
to improve peripheral vascularization. AMG001 is
approved in Japan and in late-stage development in
the US for the long-term treatment of chronic arte-
rial occlusive disease and arteriosclerosis obliterans,
resulting in lower limb ulcers.

VM202 (Helixmith Co., Ltd.) is non-viral plasmid
DNA product designed to express recombinant HGF
protein peripherally in nerve and Schwann cells to
promote nerve system regeneration and induce the
formation of microvascular blood vessels. VM202 is
being evaluated for the treatment of diabetic periph-
eral neuropathy, diabetic foot ulcer, amyotrophic
lateral sclerosis, claudication, Charcot Marie Tooth
disease, and coronary artery disease (Helixmith Co.,
Ltd.). At least 10 clinical studies have been completed
with VM202. Both plasmid-based drugs increase vas-
cular perfusion, which confirms the pharmacological
effects of HGF/MET modulation. In common with
AMG0001, VM202 is a large molecule that does not
penetrate the CNS and therefore is not applicable for
the treatment of AD or other CNS neurodegenerative
conditions.

SUMMARY AND CONCLUSIONS

In the AD arena, limiting diagnosis and therapy
to investigate the “classical hallmarks” of the dis-
ease may not sufficiently address the most urgent
patient, caregiver, or societal needs for new, safe,
and effective, and accessible therapies which include
the symptomatic stages; this continued focus on the
pre-dementia stages may lead to a circular logic in
selecting experimental patient populations, therapeu-
tic interventions, and outcomes. It is further proposed
that clinical research should also focus on recent,
novel insights in the pathophysiology of AD, in par-
ticular, based on proteomics, which may provide
a broader characterization of the complex disease
processes in AD, and potentially allow for a better
delineation of study populations in the future [30, 39,
53, 111, 112].

A re-focused and innovative approach to develop-
ing effective drugs for AD is needed that incorporates
novel elements in the study design including
patient selection, type of interventions, and also
key outcomes. For example, a highly specific, yet
multi-pronged intervention that exerts positive mod-
ulation of HGF/MET is currently being tested in
clinical trials. Findings from these trials could pro-
vide support for differentiated approaches for clinical
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development of innovative drugs for treating AD and
may offer a way forward to achieving effective treat-
ment for this devastating disease that has evaded
research for too long.
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López OL, Klunk W, Hyman BT, Gómez-Isla T (2013)
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