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Abstract.
Background: Modern prodromal Alzheimer’s disease (AD) clinical trials might extend outreach to a general population,
causing high screen-out rates and thereby increasing study time and costs. Thus, screening tools that cost-effectively detect
mild cognitive impairment (MCI) at scale are needed.
Objective: Develop a screening algorithm that can differentiate between healthy and MCI participants in different clinically
relevant populations.
Methods: Two screening algorithms based on the remote ki:e speech biomarker for cognition (ki:e SB-C) were designed on
a Dutch memory clinic cohort (N = 121) and a Swedish birth cohort (N = 404). MCI classification was each evaluated on the
training cohort as well as on the unrelated validation cohort.
Results: The algorithms achieved a performance of AUC ∼0.73 and AUC ∼0.77 in the respective training cohorts and AUC
∼0.81 in the unseen validation cohorts.
Conclusion: The results indicate that a ki:e SB-C based algorithm robustly detects MCI across different cohorts and languages,
which has the potential to make current trials more efficient and improve future primary health care.
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INTRODUCTION

Recently, the focus of clinical trials in Alzheimer’s
disease (AD) has shifted to the earlier phases of
the disease [1]. To investigate early disease stages
and avoid biased recruiting through memory-clinic
recruitment funnels, some modern AD trials reach out
to a general population. However, recruiting from a
general population leads to a high number of screened
out individuals who do not show AD pathology and
are therefore no suitable subjects for drug devel-
opment trials. The high number of screen-outs is
accompanied by high costs [2] and timely expansion
of AD clinical trials [3], which is considered to be a
key barrier in modern AD trials [2].

An additional light-weight and scalable pre-
screening step incorporated directly into the outreach
funnel before the more costly onsite screening could
help make those trials more efficient by improving
patient selection and thus speeding up clinical devel-
opment [3]. Traditional wet biomarkers (e.g., based
on cerebrospinal fluid) reliably detect the pathologic
hallmarks associated with AD but are not suitable
for scaled frontline screening or remote scenarios as
they are invasive and costly. Moreover, ethical issues
might arise when applying traditional invasive wet
biomarker procedures in patients who do not fulfill
clinical indication yet. Therefore, AD clinical trials
pose a clear opportunity for minimally invasive and
especially digital biomarkers [4, 5].

Beyond biomarkers measuring biological pro-
cesses, behavioral signs such as impaired cognition is
an easy-to-observe hallmark of AD which is present
throughout all phases of the disease trajectory includ-
ing the early stage of mild cognitive impairment
(MCI) [6]. Since the inclusion of an incipient demen-
tia population is targeted in secondary prevention
trials, the detection of the MCI state is of particular
interest, as it is characterized by the onset of subtle
cognitive impairments and is accompanied by a high
conversion rate to dementia [7].

Speech biomarkers that detect cognition are espe-
cially promising because they allow for an automatic,
non-invasive assessment, making them a low-burden
digital tool, which offers an objective and scalable
solution [2], optimal for screening scenarios in a
broad population. Significant associations between
speech and AD pathology, as assessed by cere-
brospinal fluid and imaging biomarkers, were found
even at a pre-symptomatic stage [8, 9], validating
its usability for early disease detection. Moreover,
speech can be captured remotely, which lowers the

burden especially for the older adults target group
[10] and allows application as a pre-screening tool
before the on-site screening visits. Due to the auto-
matic analysis, speech biomarkers allow for an
extended outreach, making them attractive when tri-
als recruit from a general population.

To address the needs of modern AD clinical tri-
als, we set out to develop a screening algorithm that
differentiates between MCI and healthy control par-
ticipants. The algorithm is developed based on the
validated ki:e SB-C (ki:e speech biomarker for cog-
nition) [11], which measures cognition, composed of
subscores for episodic memory, processing speed,
and executive function. In this paper, we present
results about the diagnostic accuracy of the MCI
screening algorithm from two different cohorts, a rep-
resentative birth cohort born 1944–1945 as well as a
conventional memory clinic population.

MATERIALS AND METHODS

Training and validation of the screening algorithm
is based on two clinical studies: the Dutch Deep
Speech Analysis for cognitive assessment in clinical
trials (DeepSpA) study [12, 13] and the Swedish H70
data set (subset of the Gothenburg H70 cohort; [14]).
Both studies collected the ki:e SB-C over a mobile
application.

Subjects

DeepSpA
Participants (N = 140) were recruited at the mem-

ory clinic in Maastricht as part of the Maastricht
University Medical Center+(MUMC+) study (sub-
jective cognitive impairment (SCI), MCI, and
dementia). We excluded 6 subjects due to poor
audio quality and operational issues and the demen-
tia participants (N = 13) from the analysis, so that
121 participants remained for the analysis. Partic-
ipants underwent an in-person assessment at the
clinic at baseline. A diagnosis of MCI was based on
DSM-5 criteria (minor neurocognitive disorder [15]).
Participants without cognitive disorders were clas-
sified as SCI. The ki:e SB-C was collected using a
mobile application. Mini-Mental State Examination
(MMSE) and Clinical Dementia Rating (CDR) data
were available.

H70 baseline
75-year-old participants (N = 404) were recruited

2019–2021 at the University of Gothenburg as part
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of the ongoing epidemiological H70 Birth Cohort
Study. Eligible participants were initially obtained
from the Swedish Tax Agency Population Registry.
Participants were classified as either MCI or cogni-
tively intact controls (CI). MCI was classified based
on the criteria of Petersen (1999) [16]: Subjects’ per-
formances were transformed into z-scores; subjects
whose z-score was smaller or equal to –1.5 in the
Rey Auditory Verbal Learning Test delayed recall
(RAVLT) [17] OR smaller or equal to –1 on both
the Phonemic Verbal Fluency (PVF) AND the Stroop
task [18]. See pseudocode underneath for clarifica-
tion:

MCI = if (z RAVLT recall <= −1.5OR

(z score PVF <= −1ANDz score Stroop <= −1))

The RAVLT delayed recall score acted as our
amnestic criterion to define MCI, however we chose
–1.5 as threshold for the z-score and not just –1 like
one would typically do when applying the Petersen
criteria. This is due to the fact that all subjects go
through an extensive psychometric protocol when
they do their cohort annual visits and this protocol
features a lot of different word list learning tests. It
can be assumed that the interference that is created by
all those word lists systematically underestimates the
memory performance of those participants. Hence we
applied a more liberal criteria to categorize them as
MCI.

The ki:e SB-C was collected using a mobile appli-
cation.

Ethics
Both studies that provided data to this research

have been conducted in compliance with the Ethical
Principles for Medical Research Involving Human
Subjects, as defined in the Declaration of Helsinki
and the European General Data Protection Reg-
ulation. For the Dutch DeepSpA study, the local
Medical Ethical Committee (METC MUMC/UM)
approved the study (MEC 15-4-100). For the Swedish
H70 Study, the National Ethical Review Board
(Etikprövningsmyndigheten) approved the study
(Dnr 2019-0158). All participants provided informed
consent before completing any study-related proce-
dures.

Measures

The ki:e SB-C takes speech recordings from two
standard neuropsychological assessments as input:

Table 1
Overview of model training and validation

DeepSpA-model H70-model

Training DeepSpA H70
Validation DeepSpA, H70 H70, DeepSpA

RAVLT and the Semantic Verbal Fluency (SVF)
paradigm (the SVF version of the CERAD [20] is
used). Speech from both tests is automatically pro-
cessed using the proprietary speech analysis pipeline
from ki:elements that involves automatic speech
recognition to transcribe speech and extract features,
which capture processing of task stimuli by analyz-
ing subjective, serial or semantic groupings as well
as semantic and temporal aspects of the verbal out-
put of participants. The ki:e SB-C is built of more
than 50 automatically extracted speech features from
which 27 were selected. No features derived from
the RAVLT delayed recall trial were selected, since
this was used for MCI diagnosis in the H70 cohort.
The features compose three distinct neurocognitive
subdomain scores (learning and memory, executive
function and processing speed), which cover the most
frequently impaired cognitive domains in MCI [19].
From the three subdomain scores, one aggregated
global score for cognition is derived.

Data analysis

A machine learning model was built and evaluated
on each datasets. The best performing model for each
of the two dataset was then evaluated on the respective
other dataset (see Table 1). A support vector machine
model, extra trees, and a random forest model were
trained on the four features derived from the ki:e SB-
C: the three neurocognitive subscores and the global
composite score. Models were trained using leave-
one-out cross validation and grid search for hyper
parameter tuning. We used class weights to account
for imbalanced diagnostic groups in some scenarios
(i.e., model built on H70). For each dataset, the best
performing model was selected based on the balanced
accuracy.

RESULTS

The two models that were built on the H70 and the
DeepSpA sample based on the four ki:e SB-C scores
(general cognition & subscores: processing speed,
semantic and episodic memory) were evaluated on
each sample.
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Table 2
Descriptive statistics of the DeepSpA sample

DeepSpA baseline
SCI MCI

N 69 (24 F) 52 (19 F)
Age 62.20 ± 10.71 70.29 ± 9.83
ki:e SB-C 0.49 ± 0.12 0.32 ± 0.12
CDR 0.37 ± 0.28 0.48 ± 0.20
MMSE 28.71 ± 1.23 26.85 ± 2.04

Table 3
Descriptive statistics of the H70 sample

H70 baseline
CI MCI

N 356 48
Age 75 75
ki:e SB-C 0.44 ± 0.12 0.29 ± 0.11
RAVLT delayed recall 6.90 ± 3.00 3.02 ± 3.27
PVF 45.03 ± 13.05 32.60 ± 16.97
Stroop 36.42 ± 10.88 24.98 ± 12.64

Demographic and clinical information

Demographic and clinical information of the
subjects of the two samples are presented in
Tables 2 and 3.

In both samples, the groups differed significantly
in their ki:e SB-C value (DeepSpA: Kruskal-Wallis
Test, χ2(2) = 60.2, p < 0.001, d = 1.79, SCI > MCI;
H70: Kruskal-Wallis Test, χ2(1) = 36.99, p < 0.001,
d = 0.78, CI > MCI; see Tables 2 and 3).

Screening performance

The model that best differentiated among MCI
and cognitively intact control participants in the H70
dataset and between SCI and MCI participants in the
DeepSpA dataset based on the four ki:e SB-C scores
was a support vector machine model. Performance
metrics and confusion matrices for both models on
both datasets are depicted in Tables 4 and 5.

The “F1”-score is a way of combining the preci-
sion and recall of a model, which is defined as the
harmonic mean of the model’s precision and recall,
and measures a model’s accuracy on a dataset. “Accu-
racy” is the number of correctly predicted data points
out of all the data points and is defined as the num-
ber of true positives and true negatives divided by the
number of true positives, true negatives, false posi-
tives, and false negatives. “Balanced accuracy” score
is a further development on the standard accuracy
metric where it’s adjusted to perform better on imbal-
anced datasets. The way it does this is by calculating
the average accuracy for each class, instead of com-
bining them as is the case with standard accuracy.
The “ROC-AUC” score is the measure of the ability
of a classifier to distinguish between classes. “Sen-
sitivity” is the ability of a test to correctly classify
an individual as positive. Specificity is the ability of
a test to correctly classify an individual as negative.
The “positive predictive value” (PPV) is the probabil-
ity that following a positive test result, that individual
will truly be positive. The “negative predictive value”
(NPV) is the probability that following a negative test
result, that individual will truly be negative.

DISCUSSION

This paper presents results of a screening algorithm
that differentiates between MCI and subjectively
impaired or cognitively intact control participants.
We present results of the MCI screening algorithm
from two different cohorts, a representative birth
cohort recruited from a general population based on
specific birth dates as well as a conventional memory
clinic population.

Overall models trained based on the ki:e SB-C
features, demonstrate good performance results (Bal-
anced accuracy 0.74–0.77; AUC 0.73–0.81) in the
discrimination of cognitively intact controls and SCI

Table 4
Performance metrics for both models

DeepSpA model H70 model
Performance Validation Validation Validation Validation
metric on DeepSpA on H70 on H70 on DeepSpA

F1 0.68 0.43 0.43 0.73
Accuracy 0.75 0.75 0.71 0.78
Balanced accuracy 0.74 0.77 0.76 0.77
ROC AUC 0.77 0.81 0.73 0.81
Sensitivity 0.62 0.79 0.79 0.71
Specificity 0.86 0.75 0.72 0.83
PPV 0.76 0.30 0.28 0.76
1-NPV 0.25 0.04 0.04 0.21
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Table 5
Confusion matrices for both models on each dataset

DeepSpA model

Validation on DeepSpA Validation on H70

Predicted SCI Predicted MCI Predicted CI Predicted MCI
True SCI 59 10 True CI 267 89
True MCI 20 35 True MCI 10 38

H70 model

Validation on DeepSpA Validation on H70

Predicted SCI Predicted MCI Predicted CI Predicted MCI
True SCI 57 12 True CI 256 100
True MCI 15 37 True MCI 10 38

Fig. 1. Receiver operating characteristic curve for both models
evaluated on each dataset.

against MCI participants in both datasets. In the pre-
screening setting described above, high specificity is
particularly relevant, since the number of healthy sub-
jects (True SCI/CI) is to be minimized to save study
costs. That high specificity values (0.72–0.86) were
achieved indicates that the two models are suitable for
the given context. The results of specificity and sen-
sitivity are comparable with other screening tools for
MCI [21]. Moreover, we show that the performance
of the algorithm reaches similar performances even
when applied to a completely new, unknown data
set (i.e., when trained on one data set the algorithm
reaches good comparable performance when evalu-
ated on the other data set and vice versa). Slightly
different values were obtained for sensitivity and
specificity depending on the evaluated dataset: the
sensitivity is comparatively lower for each algorithm
when the validation was performed on the DeepSpA
dataset. This difference might be explained by differ-
ent grouping criteria. Since the sample in the H70
dataset was divided into cognitively impaired and

healthy participants based on test results, it is likely
that the performance of an algorithm that uses similar
tests as speech input is high. In contrast, the overlap
between predicted and true groupings is expected to
be lower when the grouping criteria differ. In total, the
results demonstrate that a screening algorithm based
on the ki:e SB-C is able to robustly detect MCI in
a broad population and could be used to speed up
recruitment for clinical trial enrichment.

One main strength of the study is that the algo-
rithm was evaluated on two different populations that
are typically used for recruitment in AD clinical tri-
als: The DeepSpA sample including approximately
49% MCI participants represents a memory clinic
population and the H70 sample, including 13% MCI
participants, represents a general outreach popula-
tion, since the prevalence of MCI in the general
population is approximately 18.4 % in the 60-year-
old and 29.9 % in the 70-year-old group [22]. Since
the prevalence of MCI differs in the DeepSpA and
the H70 population, the prevalence-dependent perfor-
mance metrics (PPV and 1-NPV) differ between the
validations on the two datasets (see Table 2). Hence,
when specifically considering the case of general out-
reach, the results obtained when evaluating the H70
dataset must be considered. The PPV an 0.3, which
means that approximately 30% of all included partic-
ipants are actual MCI patients, implies a successful
enrichment of the sample and thus demonstrates the
suitability as a pre-screening tool when recruiting
from a general population as conducted in early
AD trials. Thus, the algorithm potentially supports
recruitment in AD trials, helping to make them more
efficient by saving time and money.

Moreover, the evaluation of two different popu-
lations is accompanied by two different languages
(DeepSpA: Dutch, H70: Swedish), also evaluating
a cross-over design (i.e., screening algorithm that
has been built on Dutch cohort gets evaluated on the
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Swedish cohort). Since the algorithm shows good per-
formance even when the model was evaluated on the
other dataset, we conclude that the screening algo-
rithm is robust and rather language-agnostic.

Finally, screening tools such as the evaluated algo-
rithm have potential in future primary care scenarios.
Since three new disease-modifying anti-amyloid
drugs are at the border of receiving approval in 2022
[23], scalable and non-invasive screening tools that
detect the disease in an early phase of the AD tra-
jectory will be in demand more than ever. Based on
the successful discrimination of a cognitively intact
and a mildly impaired status based on an automatic
and remote assessment, the presented screening algo-
rithm is a particular convenient option for the early
identification of individuals at risk and in rural areas.
This closes an upcoming health care gap, which arises
since contemporarily dementia diagnoses are usually
not given by a primary care physician but instead
with delay at a memory clinic. This will subsequently
lead to a delayed provision of the right care and
treatment for the patient. Thus, convenient screen-
ing tools play a relevant role in future care scenarios,
as they enable identification of people at increased
risk, a faster referral to specialized clinics for fur-
ther multidisciplinary diagnostics, and in the end
might enable earlier provision of relevant care and
therapies, such as medications when these become
available.

However, one limitation of the study is the def-
inition of MCI. Although defining criteria, such
as Petersen’s criteria, and standardized assessment
procedures for MCI have been proposed [24], no
established consensus on the definition of MCI cri-
teria has prevailed [25]. Thus, a broad range of
definitions and criteria are used in contemporary
research and clinical practice. This is reflected in
this study since MCI diagnosis was assigned differ-
ently in the two cohorts. The diverging diagnostic
criteria introduced some heterogeneity in the data,
which potentially impeded machine learning perfor-
mance. Therefore, it is likely that the performance
metrics reported here are an underestimation of the
model performance that could be achieved for two
cohorts with the same diagnostic criteria. However,
since there is no consensus for diagnostic criteria
in clinical practice either, it can be understood as a
strength of this study that the model performance is
still high when the model is applied to new data in
which the clinical groups were defined differently.
Another limitation concerning the MCI diagnosis in
this study is that no biomarker information was taken

into account, so no conclusion can be drawn about
the etiology of cognitive impairment.

Conclusion

In summary, this work demonstrates that a screen-
ing algorithm based on the ki:e SB-C, measuring
general cognition, processing speed, episodic mem-
ory, and executive functions can differentiate between
healthy and MCI participants. Importantly, no matter
on which of the two cohorts the screening algorithm
was trained, it still performed well both on the train-
ing cohort during cross-validation as well as on the
other cohort from a different language. This result
is specifically notable, as the two data sets are in
two different languages (Dutch and Swedish) and
represent truly unrelated cohorts (one general popu-
lation birth-cohort the other a memory clinic cohort).
These results have two main implications: A screen-
ing algorithm like the one developed here can be used
in clinical trials to screen out unsuitable candidates
at low cost and over the phone reducing the costs
and time lost in a general outreach recruitment funnel
from a broad population. Moreover, the algorithm can
improve primary healthcare by offering general prac-
titioners a low-burden phone-based screening tool, to
refer patients to memory clinics and experts.
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