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Supplementary Figure 1. Data imputation procedure. A KNN based imputation method is used 

for missing value estimation by iteratively optimizing the ‘K’ parameter in the KNN algorithm. 

First, some randomly chosen observations are deleted in the dataset. Then, these “induced” missing 

values were estimated by iterating K in the KNN imputation method. Variations of KNN 

imputation are also tried by using uniformly weighted (a, b) and distance weighted approaches (c, 

d) to weight the neighbors. Two different performance metrics – Mean Absolute Error (a, c) and 

RMS error (b, d) are also used to evaluate the imputation performance. In all iterations and 

conditions, it is found that using 20 neighbors leads to best observed performance. This holds true 

regardless of the uniformly weighted or distance weighted approaches. Ultimately a uniformly 

weighted KNN imputation approach, with K=20 (neighbors) is selected for missing value 

imputation. 



 

 
 

Supplementary Figure 2. Statistical distributions of protein selection cohort.  

a-c) Distribution of amyloid-β, Tau, and APP across the subjects in the 4-cohort data (Banner, 

BLSA, MSSB, ACT) used to identify protein biomarkers. d, e) Distribution of CERAD and Braak 

scores across the same set of subjects.  
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Supplementary Figure 3. Pearson correlation coefficient between the identified protein 

biomarkers. Pearson correlation coefficients between all pairs of the 29 proteins. The analysis 

illustrates that the proteins are not highly correlated. Thus, the classification model performance 

is not simply being driven by one or even a few proteins. The correlation between most (95%) 

pairs was low (between 0.25 and -0.25) a) Correlation coefficient (Pearson) matrix between all 

pairs of proteins. b) Distribution of correlation coefficients between all pairs of proteins (406 

unique pairs in total) 

 

 

 



 

 

 
 

Supplementary Figure 4. tSNE analysis on the 4-cohort data using only proteins included in 

the biomarker panel (29 proteins). a) tSNE shows some separation between the 3 classes. The 

AD group is denser towards the right on dimension 1, while the control groups is denser towards 

the left. Asymptomatic AD seems to be in between the controls and AD groups. b) Box plot 

showing the distribution of t-SNE dimension-1 scores for each class shows significant differences 

between all pairs of classes. The result implies that increasing t-SNE dimension-1 score increases 

the risk of transition from control to AD.  
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Supplementary Figure 5. Comparing the identified 29 protein biomarkers (RFE29) to another set 

of 29 selected via penalized lasso regularization within logistic regression (L1). The neural 

network NN (highlighted in red dotted line box) illustrates classification performance by a separate 

method not utilized in feature selection. The two sets (RFE29 and L1) had a small overlap of 3 

proteins (C4A|P0C0L4, FABP7|O15540, VGF|O15240). However, the selected 29 proteins (via 

RFE) performed better in correctly identifying control and AsymAD classes in the Mega-LFQ 

dataset. On the held-out datasets (Mayo and UPenn), the difference in performance is smaller, but 

that could be due to these datasets having fewer classes and hence being simpler than Mega-LFQ. 

In summary, RFE performs better and is more robust than penalized lasso regulation within logistic 

regression. a) AUC of LFQ cohort. b) AUC of Mayo cohort. c) AUC on UPenn cohort. d) 

Confusion matrix for Mayo cohort. e) Confusion matrix for UPenn. 

  



 

 
 

Supplementary Figure 6. Comparing the identified 29 protein biomarkers (RFE29) to another set 

of 29 selected via random forest feature importance (RF29). The neural network NN (highlighted 

in red dotted line box) illustrates classification performance by a separate method not utilized in 

feature selection. The two sets (RFE29 and RF29) had a small overlap of 4 proteins (C4A|P0C0L4, 

PBXIP1|Q96AQ6-2, VGF|O15240, APP|E9PG40). However, the selected 29 proteins (via RFE) 

performed better in correctly identifying control and AsymAD classes in the Mega-LFQ dataset. 

The two approaches did similarly well on the Mayo dataset, with RF29 doing slightly better on the 

UPenn dataset. This could be due to these datasets having fewer labels. a) AUC of LFQ cohort. b) 

AUC of Mayo cohort. c) AUC on UPenn cohort. d) Confusion matrix for Mayo cohort. e) 

Confusion matrix for UPenn. 

  



 

 
 

 

Supplementary Figure 7. Comparing the identified 29 protein biomarkers (RFE29) to another set 

of 29 selected via f-statistics. The two sets (RFE29 and f-statistic29) had a small overlap of 4 

proteins (FABP7|O15540, PBXIP1|Q96AQ6-2, VGF|O15240, APP|E9PG40). The neural network 

NN (highlighted in red dotted line box) illustrates classification performance by a separate method 

not utilized in feature selection. However, the RFE-selected 29 proteins (RFE29) performed better 

in correctly identifying control and AsymAD classes in the Mega-LFQ dataset. The performance 

was similar on the Mayo cohort, with f-statistics based selection (f-statistic29) performing slightly 

better on the UPenn cohort. a) AUC of LFQ cohort. b) AUC of Mayo cohort. c) AUC on UPenn 

cohort. d) Confusion matrix for Mayo cohort. e) Confusion matrix for UPenn. 

  



 

 

 
Supplementary Figure 8. Comparing the identified 29 protein biomarkers produced by the 

intersection of two classifiers, i.e., RFE(SVM+LR) which corresponds to RFE29 biomarker set, 

versus biomarkers selected by the intersection of three classifiers, i.e., RFE(SVM+LR+RF). In 

both methods, the 50 top proteins are initially chosen, followed by final selection of the 

overlapping proteins by different classifiers. The RFE(SVM +LR) method utilized the intersecting 

proteins selected by SVM and LR to produce the RFE29 set. The RFE (SVM + LR + RF) utilized 

the intersecting proteins from SVM, LR, and RF (random forest), which reduced the final 

intersecting protein subset to 8 proteins: (RABEP1|Q15276, VGF|O15240, FABP7|O15540, 

PBXIP1|Q96AQ6-2, APP|E9PG40, DNAJA3|Q96EY1, NRXN1|Q9ULB1-2, C4A|P0C0L4). 

However, the RFE29 proteins (29 protein set) performed better in correctly identifying control and 

AsymAD classes in the Mega-LFQ dataset. The performance for the two approaches was similar 

on the Mayo cohort. On the UPenn cohort RFE (SVM+LR+RF) performed slightly better. 

However, the difference in performance on the Mega-LFQ dataset (more difficult with 3 classes) 

and UPenn dataset (binary classes) is stark with the smaller set of 8 proteins. Thus, while a smaller 

subset may be sufficient for a binary classification task, it performs subpar on the more complex 

multi-class classification, namely for classifying AsymAD. a) AUC of LFQ cohort. b) AUC of 

Mayo cohort. c) AUC on UPenn cohort. d) Confusion matrix for Mayo cohort. e) Confusion matrix 

for UPenn. 



 

Supplementary Table 1. Identification and descriptions for best 29-protein subset. These proteins 

were selected by RFE to be most predictive for AD, AsymAD, or Control classification. 
UniqueID Mod. Function and its role in context to AD Ref 

PNP | P00491 

purine nucleoside 

phosphorylase 

M8  

pink 

Role in neurotransmission, neuromodulation, trophic factor release, 

apoptosis, and inflammatory responses; Associated with a faster rate of 

cognitive decline in AD patients, highlighting the important role of purine 

metabolism  

[1] 

SNCB | Q16143 

synuclein beta 

M6  

red 

SNCB genotypes are associated with development of Lewy body diseases 

(Parkinson’s disease, dementia with Lewy bodies and AD). 

[2] 

 

STOM | P27105 

stomatin 

M5 

green 

Lipid metabolism, regulates ion channel activity and transmembrane ion 

transport. Involved in lipid rafts. 

[3] 

PBXIP1 | Q96AQ6-2 

PBX Homeobox Interacting 

Protein 1 

M4 

yellow 

Neuropeptide signaling; PBX transcription factors in midbrain dopaminergic 

neurons plays a role in neurodegenerative diseases. Modulates many cancers, 

particularly leukemia and breast cancer. 

[4] 

FABP7 | O15540 

fatty acid binding protein 7 

M4 

yellow 

Transports unknown hydrophobic ligand for CNS development; required for 

radial glial fiber system in developing brain and migration of immature 

neurons to establish cortical layers; ApoE4 disrupts interaction of sortilin 

with FAB7 essential for lipid signaling. 

[5] 

 

C4A | P0C0L4 

complement 4 amide 

M4 

yellow 

Lipid metabolism; responsible for effective binding to form amide bonds 

with immune aggregates or protein antigens; increased C4A is found in AD 

patients, indicating role of C4A copy number variants in the risk of 

developing AD.  

[6] 

CROCC | Q5TZA2 

Ciliary Rootlet Coiled-Coil, 

Rootletin 

M4 

yellow 

Cillium biogenesis/degradation; required for centrosome cohesion; CROCC 

implicated in metabolic syndrome tied to insulin resistance, obesity, and type 

2 diabetes 

[7] 

BDH2 | Q9BUT1 

3-Hydroxybutyrate 

Dehydrogenase 2 

M4 

yellow 

Regulation of lipid metabolism; plays a role in susceptibility to bacterial 

infection by providing an assimilable source of iron exploited by pathogenic 

bacteria; genes of butanoate metabolism pathway upregulated in AD. 

Downregulated in lupus, upregulated in cancers due to impact on iron. 

[8] 

[9] 

[10] 

APP | E9PG40 

amyloid precursor protein 

 

M4 

yellow 

Functions as a cell surface receptor and performs physiological functions on 

the surface of neurons relevant to neurite growth, neuronal adhesion and 

axon genesis; APP proteolysis is the crucial step in development of AD.  

[11] 

HAPLN2 | Q9GZV7 

hyaluronan and proteoglycan 

link protein 2 

M2  

blue 

HAPLN2 deficiency leads to abnormal expression of extracellular matrix 

proteins and dysfunctional neuronal conductivity. Target for multiple 

neurologic diseases, including Parkinson’s and Alzheimer’s. 

 

[12] 

ENPP6 | Q6UWR7 

ectonucleotide 

pyrophosphatase/ 

phosphodiesterase 6 

M2  

blue 

Expressed in new differentiating oligodendrocytes; component of early 

synaptic phases of motor learning; expressed on the myelin membrane and is 

soluble extracellularly; two loci in ENPP6 are significantly associated with 

AD + psychosis. 

[13] 

VGF | O15240 

vascular endothelial growth 

factor 

M1 

turquoise 

Strongly associated with cognitive trajectory; involved in synaptic functions; 

independent of amyloid-beta plaques and neurofibrillary tangles; protects 

against AD pathogenesis  

[14, 

15] 

GABBR2 | O75899 

gamma-aminobutyric acid 

type B receptor subunit 2 

M1 

turquoise 

GABBR2 encodes the GABAB receptor 2 subunit – an important GABA 

signaling component. GABAB subunit (a metabotropic receptor) is 

downregulated in the post-mortem human middle temporal gyrus in AD. 

[16] 

VAT1L | Q9HCJ6 

vesicle amine transport 1 

M1 

turquoise 

Plays a role in neuronal maintenance, neurotransmission and calcium 

signaling. It is associated with more rapid decline on AD assessment scale-

cognitive subscale.  

[17] 

ALDHA1 | P00352 

aldehyde dehydrogenase 1 

family, member A1 

Grey Increases with AD severity; catalyzes the conversion of retinal to retinoic 

acid (RA) to regulate RA signaling, which is essential for normal brain 

homeostasis. 

[18] 

PSMD4 | P55036 

proteasome 26S subunit 

ubiquitin receptor, non-

ATPase 4 

Grey Downregulated in AD patients; plays a key role in maintenance of protein 

homeostasis by removing misfolded or damaged proteins. Also involved in 

hypertension and hypercholesterolemia. 

[19] 

[20] 

CMAS | Q8NFW8 

cytidine monophosphate n-

acetylneuraminic acid 

synthetase 

Grey Catalyzes activation of N-acetylneuraminic acid (NeuNAc) to CMP-

NeuNAc, a substrate required for the addition of sialic acid to form sialylated 

glycoprotein and glycolipid. Potential therapeutic target for AD. 

[21] 



 

PITPNB | P48739-2 

phosphatidylinositol transfer 

protein beta isoform 

Grey Catalyzes the transfer of phosphatidylinositol and phosphatidylcholine 

between membrane; involved in protein-protein interaction network of ciliary 

proteins indicating association between ciliary protein dysfunction and 

neuropsychiatric disorders  

[22] 

PTBP2 | Q9UKA9 

polypyrimidine tract binding 

protein 2 

Grey RNA-binding protein which binds to intronicpolypyrimidine tracts and 

mediates negative regulation of exons splicing. There is an increase in PTB 

dependent splicing in AD. 

[23] 

DHX15 | O43143 

putative pre-mRNA-splicing 

factor ATP-dependent RNA 

helicase 

Grey Splicing regulator with significant disease-related changes in transcript levels 

in AD. Has important roles in natural killer cell homeostasis. 

[24] 

[25] 

GNAI3 | P08754 

guanine nucleotide-binding 

protein G(i) subunit alpha-3 

Grey Transducers of G-protein-coupled receptors in numerous signaling cascades; 

negative correlation with G-proteins and Src family of tyrosine kinases with 

AD phenotypes. Also involved in depression and Parkinson’s. 

[26] 

PRKAG1 | P54619-2 

5'-AMP-activated protein 

kinase subunit gamma-1 

Grey ATP binding subunit of AMP-activate protein kinase, an energy sensor 

protein kinase that plays a key role in regulating cellular energy metabolism.  

[27] 

EXOC2 | Q96KP1 

exocyst complex component 

2 

Grey EXOC2 has been reported for nominal association with AD age of onset 

modifier gene through a whole exome study. EXOC2 is also involved in skin 

pigment and vitamin D, where vitamin D deficiency has been tied to AD risk. 

 

[28] 

[29] 

NRXN1 | Q9ULB1-2 

neurexin 1 

Grey Neuronal cell surface protein involved in cell recognition and cell adhesion. 

Forms intracellular junctions through binding neuroligins and interacting 

with neurexin. Neuroligin-neurexin pathway associated with AD. 

[30] 

DMXL1 | Q9Y485 

DmX-like protein 1 

Grey A member of WD repeat superfamily of proteins, which have regulatory 

functions. Identified in GWAS studies for AD. 

[31] 

SLC30A9 | Q6PML9 

solute carrier family 30 (zinc 

transporter), member 9 

Grey Zinc transporter involved in intracellular zinc homeostasis. An autosomal 

recessive cerebrorenal syndrome is known to be associated with pathogenic 

variants in SLC30A9.  

[32] 

PRKAR1B | P31321 

protein kinase CAMP-

dependent type I regulatory 

subunit beta 

Grey Regulatory subunit of cAMP-dependent protein kinases involved in cAMP 

signaling in cells. A pathogenic mutation found in gene coding for 

PRKAR1B protein is associated with aggregates of intermediate filaments 

seen in AD and PD. 

[33] 

 

DNAJA3 | Q96EY1 

DnaJ heat shock protein 

family 

Grey Modulates apoptotic signal transduction or effector structures within the 

mitochondrial matrix. Role in neuromuscular junction development as an 

effector of MUSK signaling. Extracellular heat shock protein involved in 

neurodegenerative diseases, including AD. 

[34] 

RABEP1 | Q15276 

rab GTPase-binding effector 

protein 1 

Grey Encodes RAB5 effector protein required for early endosome membrane 

fusions and phagosome biogenesis; AD risk enhancer in AD GWAS and 

myeloid epigenomic datasets.  

[35] 
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